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Abstract. Automatic segmentation and analysis of ancient mosaic images can

help archeologists and experts build digital collections and automatically com-

pare mosaics by means of image database indexing and content-based retrieval

tools. However, ancient mosaics are characterized by low contrast colors, irreg-

ular tessella shape, orientation and positioning, making automatic segmentation

difficult. In this work we propose a tessella-oriented strategy whose first step

consists in isolating tessellas from its cemented network by computing the wa-

tershed transformation of a criterion image generated to exhibit the cement net-

work as watershed crests. Then a simple k-means algorithm is used to classify

tessellas and segment mosaic images with more accuracy than with a pixel-

oriented strategy. Additionally, we propose a method to automatically get the

main directional guidelines of mosaics by estimating tessella orientation. This

is done by minimizing a contextual energy computed from gray-level means

of neighboring tessellas and orientation of their borders. Several examples of

cartographies show the effectiveness of the method.
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1 INTRODUCTION

The aim of this work is to (1) analyse ancient mosaic images (2) characterize

their structure and color by means of automatic processing tools. The final goal

is to detect and localize objects with a semantic meaning like animal, human,

object etc. in a complex mosaic scene. This can help archeologists and experts

in their historical and artistic studies, especially the analysis of ancient mosaicist

styles (i.e. opus musivum and opus vermiculatum∗). Such tools can also be of

interest for (i) museums in order to categorize mosaics and to draw up a digital

inventory of their collection† and (ii) computed-aided generation of old-style

mosaic images from a master image (cf. [1] for an overview of digital mosaic

frameworks and references cited therein). A first attempt to propose a content-

based and image retrieval system dedicated to ancient mosaic images has been

presented in [2]. In this work, efforts have been focused on pattern recogni-

tion aspects, by using an invariant description of semantic objects present in

scenes using Fourier-Mellin transform [3, 4]. Semantic objects are isolated us-

ing statistical segmentation and morphological operators, but extraction remains

a difficult task inherent to the way mosaics are built.

Mosaics are made of colored tiles, called tessera or tessella, usually formed

in the shape of a cube of materials separated by a cement joint. Smart and

∗Mosaic Art in Vitreous Glass, Millefiori, Tesserae Mosaics by Shelby Glass Studio,

www.mosaic-tileart.com/mosaic.html, 2006.
†Examples: Musée des Antiquités Nationales, Saint-Germain-en-Laye, France.

www.culture.gouv.fr/culture/arcnat/vienne/en/. Musée National

du Bardo, Tunisia, www.di.com.tn/museebardo/.



Fig. 1. Excerpt of an ancient mosaic showing a boar with a zoom on its hind

legs. This image will be used later as a guiding thread for algorithm illustration.

judicious use of orientation, shape and size of tessellas characterize the artwork

style and exhibit the “general flow” of the mosaic chosen by the mosaicist.

Fig. 1 shows a typical example of a mosaic image to be processed. This kind of

images shows specific difficulties inherent to their oldness and artwork style:

• Tessellas of ancient mosaics are characterized by pastel colors, with low

contrast. Color information is not discriminant and gray-level values are

generally sufficient to describe color dynamics in such an image.

• Shape of tessellas are irregular, from a square shape to a polygonal one.

Their positioning and orientation are not aligned according to a rectangu-

lar grid.

• The positioning of tessellas makes the joint appear as an irregular network

with numerous interconnections throughout the mosaic. Network inten-

sity, mainly middle gray, is not uniform through the image because of

tessella shadows due to non-flat mosaic surfaces and snapshot acquisition

angle.

These particularities make segmentation methods based on pixel values in-

efficient. Indeed pixels associated to the cement network interfere and intro-

duce confusions in the classification process. Hence, the strategy under which



the work was conducted is to consider that tessellas are indivisible entities with

almost a uniform gray-level value. So the first stage is to extract tessellas from

the cement network. In Section 2, we present a strategy adapted to the mosaic

network specificity. It is based on the watershed transformation of a particular

criterion image built from the original image in order to exhibit the cement net-

work as watershed crests. At this point, mosaic images are considered tessella-

oriented and no more pixel-oriented, i.e. all processings are applied on tiles

and not pixels. Hence, it was easy to obtain a robust segmentation of mosaic

images by using a simple tessella-based k-means algorithm, which outperforms

the classical pixel-based one.

Since orientation of tiles has a strong visual influence on the overall per-

ception of the mosaic and also in order to facilitate delimitation of semantic

objects in mosaic scene, we propose a simple and efficient way of estimating

main orientations of tessellas (allowing to exhibit directional guidelines of mo-

saics) in ancient mosaic images in Section 3. The proposed approach consists

in minimizing a contextual energy computed from mean-gray value of neigh-

boring tessellas and orientation of their borders. Conclusions and further works

are drawn in Section 4.

2 TESSELLA EXTRACTION FOR MOSAIC SEGMENTATION

The extraction of a network in an image is a recurrent problem, especially for

road extraction from aerial photos [5, 6] or for vascular network segmentation

from angiographies [7, 8]. Several approaches have been proposed. Methods

based on contour extraction are widely used and mainly rely on the assump-

tion that the network pixels and neighboring ones have different gray levels in

order to compute gradients. But methods based on high-pass filter, such as Har-



ris’s corner detector, highlight pixels belonging to the network, not connected

components. Higher-level processings detect lines with varying widths [9, 10].

Strategies that track the entire network from a starting point [11,12] are difficult

to justify in our case-study due to the high number of intersections in a typical

mosaic network.

Numerous methods based on Markov modeling [13,14] or active contours [15,

16] have also been proposed. These methods are quite efficient but time con-

suming. In the case of mosaics, these methods are not suited because of the high

density of the network to be extracted in images. In [14], a Markov model is

applied on a graph of adjacency crests, detected by a Watershed Transformation

(WT) applied on a criterion image. This criterion image, computed from the

original one, exhibits the potential of each pixel to belong to the network.

Among those methods, the WT approach appears interesting for mosaic

images since this method is a good compromise between low-level methods

(contour detection) and approaches by energy minimization (Markov model or

active contours) which are unworkable due to cement network complexity in

mosaic images. To work well, the WT needs to be computed on a criterion im-

age that shows tessellas as catchment basins and the network as crests. But the

network, mainly middle gray-valued, is sometimes darker than the tessellas and

sometimes lighter in the same image. Hence, for each pixel in the image, we

study the gray-level profile around it according to four directions (0o, 45o, 90o

and 135o) and compare them to two templates characteristic of the two situa-

tions, i.e. dark network and light tessellas and light network and dark tessellas.

The value of a pixel in the criterion image is the minimum value among the eight

ones. If this value is high then we face a somewhat flat profile that indicates a

pixel inside a tessella.



Fig. 2. Criterion image obtained from the boar image in Fig. 1.

Fig. 3. Extraction of tessellas from the criterion image in Fig. 2, without (left)

and with (right) area closing operator.

Fig. 2 shows the criterion image obtained by applying the method to the boar

image. As can be seen in this example, the network appears in dark. However

tessellas are not uniform in texture and show local gray-level crests that should

be deleted before WT in order to avoid over-segmentation. Following [14],

we first compute an area closing [17] of the criterion image which gives fewer

minima while retaining crest locations. The WT result is illustrated in Fig. 3.

The crest contours now represent correctly the network, which is confirmed by

the zoom shown in Fig. 4(a). To determine the width of the network (and not

only a one-pixel skeleton as done by WT), which varies through the image, a

simple threshold is applied on neighboring pixels of crests: a pixel is aggregated

to the crest if its gray value is no more different by 10% of the skeleton mean

gray value. The result of applying such a threshold is shown in Fig. 4(b).

For segmentation, we are now able to only consider the tessellas of the mo-



Fig. 4. Result of tessella extraction on the zoom in Fig. 1 (left), and net-

work/tessellas classification (right).

Fig. 5. Segmentation of the mosaic image in Fig. 1 with a pixel-based strat-

egy (left) and the tessella-based strategy proposed here (right), using a k-means

algorithm with two classes.

saic, not its network. Moreover, instead of using all pixels from the tessellas,

and since tessellas are almost homogeneous in color, we can segment the im-

age by using a tessella-oriented strategy: each tessella is characterized by one

or more features used for classification. Simple examples of features are mean

gray-level value or variance of the tessella, number of pixels in the tessella, etc.

For our application, a simple k-means algorithm on the mean gray-level value

of tessellas was sufficient to get a nice segmentation, as illustrated in Fig. 5.

This result can be compared with a classical pixel-based k-means strategy. A

second segmentation example is given in Fig. 6.

Remark: The entire processing is based on two parameters: (i) the length l of

the profile to compute the criterion image and (ii) the area closing threshold

s. These parameters can be set proportional to the mean tessella size α, which

is almost constant in a mosaic. Parameter l should be greater than 2α for the



(a) (b) (c)
Fig. 6. Segmentation of a mosaic representing a bird, (a) with a pixel-based

strategy (b) and a tessella-based strategy (c), using a k-means algorithm with

three classes.

profiles to fit at least two tessellas, and parameter s should be less than α2

to avoid small tessellas to be deleted by the morphological operator. In our

experiments, values l = 3α and s = α2/2 give good results. Coefficient α

depends on the image zoom and can be either set by an operator or estimated

automatically on a small uniform part of the mosaic for example.

3 TESSELLA ORIENTATION ESTIMATION FOR

DIRECTIONAL GUIDELINES DETECTION

Ancient mosaicists avoided to align their tiles according to rectangular grids. In-

deed, such grids emphasize only horizontal and vertical lines and may distract

the observer from seeing the overall picture. Hence, mosaicists placed tiles in

order to emphasis the strong edges of the subject to be represented, influencing

the overall perception of the mosaic. Hence, organization and positioning of

tessellas are interesting information for experts since they emphasize the main

directional guidelines chosen by the artist. This information is of crucial inter-

est for mosaic dedicated applications such as content-based retrieval of mosaic

elements or region-based mosaic image compression.

To get directional guidelines, one can first think of using the principal axes

of an ellipse-equivalent shape of each tessella, using well-known formulae based



on geometrical moments (minor an majors axes). However, ancient mosaic tes-

sellas are not box- neither regular-shaped and principal axes quickly appear not

enough robust. One major drawback of such method is that the method does not

take into account information of neighboring tessellas, which is of great impor-

tance for regularization and for recovering the main guidelines that emphasize

the “general flow” of a mosaic.

Hence, we propose an energy-based contextual algorithm for retrieving main

directional guidelines in a mosaic. The energy to be minimized is constructed

by using two key-features: the mean-gray value and borders directions of each

tessella. The optimization is done either by gradient descent or by simulated

annealing.

3.1 Methodology

We denote by N the number of tessellas detected in the mosaic. Each tessella i

is represented by

• its barycenter (xi, yi) computed on the support Ωi of i:

(xi, yi) =

(

m1,0

m0,0

,
m0,1

m0,0

)

with mp,q =

∫∫

Ωi

xp yq fi(x, y) dxdy.

• the list of its neighboring tessellas: Vi = {vi,1, . . . , vi,Ti
}. A neighbor is a

tessella that shares at least one pixel with i.

It should be noted that the number of neighbors Ti is different from one tile to

the other since tessellas are not organized according to a regular grid.

Each tessella i is characterized by an energy of configuration which links

itself to each of its neighbor vi,t ∈ Vi. This energy, denoted by Ei,t, t ∈

[1, . . . , Ti], is the sum of two complementary terms :



• The first term Q is based on the mean-gray value of tessellas. It is propor-

tional to the sum of the difference of gray-level means (1) between i and

vi,t, and (2) between i and the symmetrical tessella of vi,t with respect to

i. This feature favors alinement of tessellas with low contrast, which is a

characteristic of directional guidelines.

• The second term R is based on the orientation of tessella contours. We

compute the histogram of the orientation of segments constituting the

contour of tessella i. This histogram is regularized using a Gaussian ker-

nel, result of which is illustrated in Fig. 7. It should be noted that the two

modes at approximatively 900 each other correspond to the two ambigu-

ous orthogonal main directions of a square-shaped tile. It is then possible

to estimate the p.d.f. at angle αi,t given by the barycenter of i and the one

of vi,t.

Terms Q and R are normalized to belong to range [0, 1]. We can then initialize

the “main direction” of a tile, i.e. the direction of the neighboring tessella which

gives the highest Q + R value:

ti,max = arg max
t∈[1,...,Ti]

Ei,t.

The energy of a tessella is then defined as Ci = (2 − Ei,ti,max
) + λ Vi, with

λ a weighting factor set manually. Term Vi is defined as

Vi =
1

Ti

Ti
∑

t=1

∣

∣αi,ti,max
− αt,tt,max

∣

∣,

which is the normalized sum of absolute difference between the main direction

of tile i and the main direction of its neighbor t.
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Fig. 7. Plot of the regularized and normalized histogram of the contour orienta-

tion of one tile from the boar mosaic in Fig. 1.

We try next to minimize the mosaic energy, defined as the sum of Ci for all

tessellas in the mosaic. This is done by selecting the tessella i which gives the

highest value for Vi. To reduce the contribution of this tessella, we try another

main direction and recompute the mosaic energy. At that point, two strategies

have been tested:

• Deterministic framework (Gradient Descent): if the mosaic energy re-

duces then the new main direction is validated, otherwise another main

direction is tested. When all directions for this tile have been tested, we

repeat the process for the next tile with high Vi value.

• Stochastic framework (Simulated Annealing): a configuration which gives

a higher mosaic energy can be validated according to the simulated an-

nealing principle [18]. This strategy allows to search for the global min-

imum, which can not be reached with previous strategy since the mosaic

energy function is not convex.

The process is iterated until the mosaic energy is almost constant. The cartog-

raphy of tessella orientation is made of the main direction of each tile at the last

iteration.
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Fig. 8. Cartography of tessellas orientation. Each tessella is characterized by its

center of mass (circle) and its orientation (segment crossing the circle).

3.2 Experimental results

Fig. 8 illustrates the application of the tessella orientation methodology on the

zoom of the boar image in Fig. 1. From the initial configuration of tessellas (a)

we get the final configuration (b) using Simulated Annealing (SA) for optimiza-

tion. Figure (c) shows the evolution of the computed energy during iterations

of both gradient descent (GD) algorithm and simulated annealing one. As ex-

pected, SA reaches a lower minimum than GD but to the detriment of numerous

additional iterations (150 for SA versus 50 for GD). Indeed, GD searches for

a local minimum and is highly dependent on the initial configuration, whereas

SA is expected to reach the global minimum due to its stochastic nature.

The tessella cartography obtained with SA optimization is really satisfying

when visually compared to the main directional guidelines of the mosaic. This



(a) Configuration after SA
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Fig. 9. Another example of tessellas orientation cartography.

is especially true for regions at the borders between classes. A second exam-

ple of cartography is proposed in Fig. 9. Once again, the tessella orientation

estimation methodology, which makes use of contextual information, gives reg-

ularized results that emphasize the mosaic guidelines. Nevertheless, confusions

can be found on areas with homogeneous colors and where tessellas are square-

like shaped. Indeed, for those kinds of tessellas two orthogonal directions are

equally probable, which generally gives ambiguous results. However, these ar-

eas of uniform color are of limited interest for object-based scene applications,

such as mosaic pattern recognition.

Figure 10 shows a failure case in tessella orientation estimation. Indeed, the

result will not allow to find the main directional guidelines in the mosaic, that

can be more easily observed in Fig. 6(a). The main reason comes from an over-

detection of tessellas from the extraction step. This behavior is observed on

mosaics built with tessellas of different sizes (e.g. large tessellas for the back-

ground and small ones for objects or details). Hence the shape of extracted tiles

does not correspond to the shape of tessellas and the orientation is corrupted,



Fig. 10. Result of guidelines detection for the “bird” mosaic in Fig. 6.

showing no particular guideline in the mosaic.

Remark: For all experiments, weighting factor λ has been set to 1. A study

not reported here showed the low impact of λ value on the results.

4 CONCLUSION

In this work, a method for analyzing structure and color of ancient mosaic im-

ages has been presented, based on a tile-oriented strategy. To extract tessellas

from the cement network, we applied a watershed transform on a criterion im-

age computed from the original one. The criterion image was generated in

order to exhibit the cement network as watershed crests and each tessella as a

catchment basin. Then, from the individual tiles, we were able to compute a

tessella-based k-means classification, using the mean-gray value as a feature to

characterize tessellas. Results of segmentation are distinctly of higher quality

than those obtained from a pixel-based k-means strategy.

Then, in order to help archeologists understand mosaic structure and mo-

saicists’ way of working, and also to facilitate extraction of individual seman-

tic objects in complex mosaic scenes, we proposed a method to estimate the

main directional guidelines of tessellas in mosaics. To that goal, each tessella

is described by a contextual energy computed from the mean-gray value and



the main directions of tile borders. The minimum energy is searched for by

means of the simulated annealing algorithm. Results showing cartographies of

tessellas orientation are really interesting since most of searched guidelines are

retrieved, especially those at the borders between objects and scene background.

These processings are first steps toward a system devoted to the indexation

and retrieval of sematic objects in mosaic images, which should help archeolo-

gists to compare mosaics from different sites or built at different dates. Future

works will include a tessella-based invariant description of objects to enable the

comparison between images of mosaic taken at different zooms and orientations

for example. Image compression of ancient mosaics, using a tessella-based cod-

ing strategy, is also an interesting perspective, e.g. for quick look at a distant

catalog using Internet.
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[14] T. Géraud and J. B. Mouret, “Fast road network extraction in satellite images

using mathematical morphology and Markov random fields,” EURASIP Journal

on Applied Signal Processing 2004(16), 2503–2514 (2004).

[15] C. M. van Bemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen, “Level-

set-based artery-vein separation in blood pool agent CE-MR angiograms,” IEEE

trans. on Medical Imaging 22, 1224–1234 (2003).

[16] M. Rochery, I. H. Jermyn, and J. Zerubia, “Higher order active contours,” Int. J.

of Computer Vision 69, 27–42 (2006).

[17] L. Vincent, “Grayscale area openings and closings: their applications and effi-

cient implementation,” in Proc. EURASIP Workshop on Mathematical Morphol-

ogy and its Applications to Signal Processing, 22–27, (Barcelona, Spain) (1993).

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated an-

nealing,” Science, New Series 220, 671–680 (1983).



List of Figures

1 Excerpt of an ancient mosaic showing a boar with a zoom on its

hind legs. This image will be used later as a guiding thread for

algorithm illustration. . . . . . . . . . . . . . . . . . . . . . . . 3

2 Criterion image obtained from the boar image in Fig. 1. . . . . . 6

3 Extraction of tessellas from the criterion image in Fig. 2, with-

out (left) and with (right) area closing operator. . . . . . . . . . 6

4 Result of tessella extraction on the zoom in Fig. 1 (left), and

network/tessellas classification (right). . . . . . . . . . . . . . . 7

5 Segmentation of the mosaic image in Fig. 1 with a pixel-based

strategy (left) and the tessella-based strategy proposed here (right),

using a k-means algorithm with two classes. . . . . . . . . . . . 7

6 Segmentation of a mosaic representing a bird, (a) with a pixel-

based strategy (b) and a tessella-based strategy (c), using a k-

means algorithm with three classes. . . . . . . . . . . . . . . . 8

7 Plot of the regularized and normalized histogram of the contour

orientation of one tile from the boar mosaic in Fig. 1. . . . . . . 11

8 Cartography of tessellas orientation. Each tessella is character-

ized by its center of mass (circle) and its orientation (segment

crossing the circle). . . . . . . . . . . . . . . . . . . . . . . . . 12

9 Another example of tessellas orientation cartography. . . . . . . 13

10 Result of guidelines detection for the “bird” mosaic in Fig. 6. . . 14



Biographies

Lamia Benyoussef: L. Benyoussef received the electronics and informatics en-

gineering degree from the department of computer science of the University

of Sciences, Tunis, Tunisia in 1996. She received her Ph.D. degree from Bor-

deaux University, France, in signal and image processing in 2004. From 2003 to

2007, she has been with the College of higher education of Sciences and Tech-

nics of Tunis (ESSTT) and GRIFT department of École Nationale des Sciences
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