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Abstract

A novel method of snakes with shape prior is presented in this paper. We propose
to add a new force which makes the curve evolve to particular shape corresponding
to a template to overcome some well-known problems of snakes. The template is an
instance or a sketch of the researched contour without knowing its exact geometric
pose in the image. The prior information is introduced through a set of complete
and locally stable invariants to Euclidean transformations (translation, rotation
and scale factor) computed using Fourier Transform on contours. The method is
evaluated with the segmentation of myocardial scintigraphy slices and the tracking
of an object in a video sequence.

Key words: Snakes, shape prior, Fourier transform, invariant, completeness,
object tracking.

1 Introduction

Since Kass et al. seminal paper in 1987 [17], many researchers investigated in
active contour methods. Several variants have been presented. One can classify
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them in explicit models, i.e. snakes [17] and implicit ones, i.e. level sets [2].
Active contours can treat contours as a whole contrary to the classic contour
detectors (filters such as Sobel, Chen or Canny-Deriche) in which the output
is a set of isolated points characterized by strong gradient.

During the last two decades, several improvements of the snakes original model
were proposed. Many approaches have been introduced to minimize the snakes
energy such as variational calculus [17], greedy algorithm [26], dynamic pro-
gramming [1] and finite elements method [6]. It is well known that snakes
suffer from two major problems: their sensitiveness to the initial position of
the curve and their inadequacy for concave boundaries. To cope with these
problems, some solutions have been proposed in literature. Cohen [5] adds
new forces called the balloon forces which move the curve in the absence of
external energy. Balloon forces are normal to the curve and their weight is
not too important to allow the snakes to stop at the right edges. A prior
knowledge of the position of the initial curve is needed to know if the balloon
inflates or deflates. This method enhances sensitiveness to the initial position
of the curve. Gradient Vector Flow (GVF) is an external energy computed
using the general diffusion equations. The GVF, to some extent, has a large
capture range and presents forces that enable the snakes to evolve in concave
boundaries. Some other models have been presented such as Dual Snakes [15]
and Multiresolution snakes [19]. The fields of applications of these methods
include motion tracking [4], stereovision [4, 12, 18], medical imagery [5, 6] and
remote sensing [24].

Active contours, like most methods of segmentation, use essentially gray levels
of pixels that are low-level primitives. Sometimes, results are not satisfactory,
especially in presence of disruptive elements such as noise and occlusions. This
motivates the need to add prior. Snakes were among the first methods allowing
prior information embedding through the internal energy in the initial model
of Kass [17]. This internal energy adds constraints of elasticity and of rigidity
of the curve.

During the last decade, several investigations proposed to integrate prior in-
formation into active contour models. First, Staib and Duncan [25] suggest
a new description of the contours by the elliptic Fourier descriptors and as-
sociate each object to a shape class using Gaussian probability distributions.
Diffusion Snakes [7] are a modification of the Munford-Shah functional that
allows explicit expression of the curve. Thus, statistical shape prior using a set
of training data can be added to the functional of energy. The minimisation is
done in a variational framework. A Bayesian framework is used in [29] to com-
pute prior information obtained from a prototype. Transformations between
the prototype and the researched edges are estimated using the least square
fitting. Shape descriptors have been recently used to add prior information to
region-based active contours. Foulonneaux et al. [10] use Legendre moments to
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make the contour evolve to a shape of reference. It introduces a quadratic dis-
tance between the contour and the object of reference. This energy is invariant
to translation and scale factor. Rotation can be taken into consideration, yet
the computation may still more complex. Rochery et al. [24] presented a new
generation of active contours called High Order Active Contours. It allows the
integration of geometric information expressed in interaction between different
points of the contour, contrary to linear classical energies. This method has
been applied in the detection of linear primitives such as roads and rivers in
remote sensing data.

Prior knowledge enhances the active contour results. Indeed, it increases the
methods robustness to noise, clutter and occlusions. In addition, it increases
the active contour convergence. However, the prior embedding in these models
can increase their complexity, which can affect their applicability in real time
applications such as motion tracking. Prior information may not be available
in some cases.

This paper is organized as follows: in section 2, we recall some principles
of snake models. An overview of shape description methods using Fourier is
presented in section 3. The main contribution of this work including a novel
method of snakes with shape prior is detailed in section 4. The fourth section
is devoted to experimental results on synthetic images. In section 5 we present
the application of the method to the segmentation of myocardial scintigraphy
images and to object tracking in video sequences. Finally, we conclude and
highlight some perspectives for further investigation.

2 Overview of snakes methods

Snakes are methods for edge detection by energy minimization of a planar
curve. The curve is given by its parametric representation v(s, t) = (x(s, t), y(s, t))
where t denotes the time and s the normalized arclength. The energy of the
snake is

E∗

snakes =
∫ 1

0
(Eint + Eext) ds. (1)

Eint is the internal energy

Eint =
∫ 1

0
α|v′(s)|2 + β|v′′(s)|2 ds, (2)

where v′(s) and v′′(s) are the first and second derivatives of v according to s.
The first term of the internal energy is called the elasticity term. It prevents
the apparition of isolated points in the curve. The second one is the bending
term which prevents the formation of corners and sharp angles in the contour.
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These two terms correspond to the internal energy and make the snakes look
like a thin plate. α and β are two weight parameters.

Eext is the image or external energy which attracts the snake to features of
interest (lines or edges). In general, Eext is the smoothed image gradient:

Eext = −|∇(Gσ ∗ I)|, (3)

where I is a gray level image, Gσ a bi-dimensional Gaussian filter with stan-
dard deviation σ and ∇ the gradient operator.

3 Overview of Fourier-based shape description methods

This section recalls some basic facts about shape description of closed planar
curves under the action of Euclidean transformations, see [14] for a detailed
presentation. In this case, shapes can be parameterized according to the nor-
malized arclength:

f [0, 1]→C

l 7→ f(l) =
1

L

∫ l

0
|f ′(u)| du, (4)

where L denotes the curve length. We say that two objects O1 and O2 have
the same shape according to Euclidean transformations, if, for all parameter-
izations f1 and f2 of O1 and O2, we can write:

f2(l) = ejθ f1(l + l0), (5)

where θ denotes the orientation difference and l0 the starting description points
difference. Scale factor between the two curves is not considered since arclength
parametrization are normalized, i.e. curves have an equal length of 1. Also
we do not consider any translation between the two objects since curves are
described according to their center of mass.

Since parameterizations are periodic, Fourier series {Ck(.)}k∈J , J = [−N
2
; N

2
−

1] can be computed, and we get the following relation between O1 and O2 in
the Fourier domain:

∀k ∈ J, Ck(f2) = ej(θ+2πkl0) Ck(f1). (6)

The search for invariant Fourier descriptors comes from the nice relation above,
also called shift theorem. We recall that a set of scalars {Ik}k∈J is invariant
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with respect to Euclidean transformations if and only if, for two objects O1

and O2 with the same shape, we get Ik(f1) = Ik(f2) for all k in J . Initially,
the first set of invariants was constructed by taking the modulus of Fourier
descriptors

∀k ∈ J, Ik(f) = |Ck(f)| , (7)

and used to discriminate between simple-shaped objects [21, 28].

Nevertheless, this set is not complete in the sense defined in [8]. A set of
descriptors is said to be complete if the following property is verified: two
objects have the same shape if and only if they have the same set of invariants.
Completion allows the reconstruction of shapes from their invariants, up to
an Euclidean transformation. In fact, the set of descriptors in equation (7)
is no complete since we can find objects with different shapes but with the
same magnitude for their Fourier coefficients (the phase information is lost).
To overcome this problem, T.R. Crimmins [8] proposed the following complete
set:

Ik0
(f) = |Ck0

(f)|, for k0 such that Ck0
(f) 6= 0

Ik1
(f) = |Ck1

(f)|, for k1 6= k0 such that Ck1
(f) 6= 0

Ik(f) = Ck(f)k0−k1 Ck0
(f)k−k1 Ck1

(f)k0−k, ∀k 6= k0, k1. (8)

However, this set is not stable, i.e. a slight modification of invariants may
induce a noticeable shape distortion. A complete and stable set of invariant
Fourier descriptors has then been presented in [13]:

Ik0
(f) = |Ck0

(f)|, for k0 such that Ck0
(f) 6= 0

Ik1
(f) = |Ck1

(f)|, for k1 6= k0 such that Ck1
(f) 6= 0

Ik(f) =
Ck(f)k0−k1 Ck0

(f)k−k1 Ck1
(f)k0−k

Ik0
(f)k−k1−p Ik1

(f)k0−k−q
, ∀k 6= k0, k1, (9)

with p, q > 0.

All these properties have been extended to the action of affine transformations
on closed planar curves [3, 14].

4 Fourier-based shape prior for snakes

We propose to use a set of Fourier-based shape invariants to constrain the
snakes evolution to a particular shape called template which represents the
prior information. We exploit some specific properties of the invariants such
as completeness.
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4.1 Presentation of the shape-invariant family

Let v be a discrete parametrization of a closed curve with N points: v(n) =
x(n) + j y(n); n = 1, . . . , N ; where x(n) and y(n) are given according to the
barycenter of v. Let Ck(v) denote the Discrete Fourier Transform (DFT) of v:

Ck(v) =
1

N

N−1∑
n=0

v(n) e−j 2πnk

N , (10)

for k = −N
2
, . . . , N

2
− 1. The set of complex coefficients

Ik0
(v) = |Ck0

(v)|

Ik(v) =
Ck(v)

Ck0
(v)

, k = −
N

2
, . . . ,

N

2
,

forms a complete [8] and locally stable family of shape descriptors which are
invariant to translation, rotation and scale factor, but not to the initial de-
scription point. The shape can be retrieved using the inverse Fourier transform
(iDFT).

From a numerical point of view, no general rule can be given to choose an
optimal number of points N for the parametrization. This number must not
be too big for computational burden reasons and not too small to avoid a too
smooth approximation of shapes. Generally, as we use the FFT algorithm for
reducing the computing time for both DFT and iDFT computations, we take
for N the power of 2 just less than the number of pixels of the original contour.

4.2 Invariants embedding in snakes

To introduce shape prior information, we add a new force that guides the
active contour in the image to a given template vref , independently of its
pose, orientation and size. A two-step strategy is adopted. At each step t of
the algorithm:

(1) First, we compute a linear mixture of the snake invariants at time t and
the template invariants according to

Ik(v
′

t) = (1 − ck,t) Ik(vt) + ck,t Ik(vref ), (11)

where ck,t ∈ [0, 1] is a weight function which depends on the harmonic order
k and time t. ck,t can be constant or a low-pass filter (e.g. Hamming window)
to give more importance to low-order harmonics. Ik(v

′

t) can be considered as
the invariants set of a curve v′

t influenced by the classical snakes evolution vt
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and by the template contour vref . Equation (11) is the homotopy function.
vt must be re-sampled at each iteration in order to have the same distance
between each two consecutive nodes of the snake.

(2) Second, we reconstruct v′

t from Ik(v
′

t) using the completeness property of
the invariants set,

Ck(v
′

t) = Ck0
(v′

t) Ik(v
′

t), (12)

v′

t(n) =
1

N

N−1∑
k=0

Ck(v
′

t) ej 2πnk

N , (13)

and computing the iDFT. Since harmonic Ck0
of curve v′

t is unknown, we set
Ck0

(v′

t) to Ck0
(vt). Hence, v′

t is reconstructed with the same pose than vt. The
parameter k0 is chosen, at each iteration, so that Ck0

is big compared to other
harmonics to avoid division by small numbers.

We next define the prior shape forces as the difference between the snake vt and
the reconstructed shape v′

t after the invariants modification: Fprior = v′

t − vt.
The forces of the snake become F = c2F

t
prior−∇Eext(vt), where c2 is a constant

weight. We recall here that the two curves must have the same starting point.

To enhance numerical stability, we normalize the prior forces and Eext in the
same way as in [5, 25]. The new forces of snakes are then defined as follows:

F = c2

F t
prior

|F t
prior|

− c3
∇Eext(vt)

|∇Eext(vt)|
, (14)

where c3 is another constant weight that regularizes the prior and image forces.

5 Experimental results

To assess the performance of the method, we propose a set of experimental
results on syntectic and real data. Here we evaluate the behavior of the new
forces. We also show how the method can solve the problem of snakes evolution
in concave boundaries. We study the influence of parameters and show how
the curve evolves under the prior forces only.

Figure 1 portrays the evolution of some curves only under the prior forces
action. The external and the internal energies are not considered. It is clear
that the curves converge to have the same shape of the given template.

The major problem of snakes is their inadequacy in concave boundaries. The
results of the snakes with shape prior on the U shape with different cases of
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Fig. 1. Curves moved under the prior forces only.

(a) template

(b) (c) (d) (e)

Fig. 2. Results on the U shape using (a) as template. (b) no transformations,(c)
scale factor, (d) translation + scale factor, (e) rotation + scale factor.

Euclidean Transformations are presented in figure 2. These examples show the
snakes ability to solve the problem. Indeed, the classical snakes energies does
not attract the curve inside the concavity. The addition of the prior knowledge
allows the snakes to evolve in concave boundaries. In fact, the existence and
localisation of the concavities are carried by the invariants.

The GVF method is the only model that copes with the problem of evolv-
ing into concave boundaries. But, the GVF snakes are not able to evolve to
highly concave boundaries. In such case, the presented model gives better re-
sults. In fact, in figure 3, we compare the results of our method to the GVF
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(a) (b)

Fig. 3. The ability of snake with shape prior to evolve in highly concave boundaries.
(a) GVF snakes [27], (b) our method.

(a) (b)

Fig. 4. Initial conditions of myocardial scintigraphy images segmentation using
snakes with shape prior: (a) template used for images, (b) initial curve.

snakes on the object pliers which is characterized by their deep concavities.
We successfully segment the pliers whereas the GVF snakes fail.

6 Some Applications

In what follows, we summarize the results of the method applied to myocardial
scintigraphy images and to object tracking.

6.1 Myocardial scintigraphy images

First, we apply our method to the segmentation of myocardial scintigraphy
images on effort (after activity). The reference curve has been obtained by
running a classical snakes algorithm. The initial curve was placed inside the
concavity. Some points that seemed wrong were removed or fixed by a human
operator. This approximate template shown in figure 4(a) was used for all
the treated images presented in figure 5. This experiment can be seen as a
validation of the method robustness to approximate prior (sketch). In fact,
image forces are usually more important than shape forces. The values of the
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Fig. 5. Results of the snakes with shape prior on myocardial scintigraphy images.

introduced parameters are: c1 = 0.1, c2 = 0.25 and c3 = 0.3. The contour is
re-sampled into 100 points. An example of initial curve is given by figure 4(b).
The obtained results are shown in figure 5. They appear visually satisfactory.
The snakes evolve successfully in the concave zones.

Our results are satisfactory compared to those obtained by the watershed
segmentation method corrected by ground truth from experts. They can be
used for ischemia diagnosis by comparing the myocardium in rest and effort.

6.2 Object tracking

Due to their low complexity, snakes have been widely used in object tracking.
In [23], snakes are used to follow cells in microscopic images. Hao et al. present
a predictive snake [16] for general object tracking. The inertia of the tracked
object is predicted using block-wise motion estimation and a smoothing pro-
cess. Kalman snakes [22] use gradient-based measurements and optical flow
along contours for tracking non rigid objects. The method is more robust to
occlusion and clutter.

We then considered the tracking of an isolated object using the snakes with
shape prior. The use of the prior knowledge constrains the snakes evolution to
the tracked shape. The adopted strategy consists in using the contour obtained
at frame ti−1 as a template for the snakes at frame ti. We assume that the
shape deformations between two consecutive treated frames are not important.

In our experiments, we used three sequences. The first two ones represent a
moving cup and a moving hand, and the third one a fixed mouse acquired
from a moving camera. Figure 6 shows the tracking result of some frames
of the “cup sequence” with a quite uniform background and high contrast.

10



(a) frame 35 (b) frame 68 (c) frame 139 (d) frame 191

Fig. 6. Tracking of a cup.

(a) frame 1 (b) frame 3 (c) frame 10 (d) frame 23

(e) frame 37 (f) frame 44 (g) frame 58 (h) frame 63

Fig. 7. Tracking of a moving hand with fixed camera.

(a) frame 84 (b) frame 108 (c) frame 162 (d) frame 189

(e) frame 229 (f) frame 252 (g) frame 270 (h) frame 274

Fig. 8. Tracking of a mouse with a moving camera.

This sequence illustrates the model ability to track objects with small shape
deformations. Figure 7 shows some frames of a “hand sequence” moving on
a relatively complex background. The hand keeps approximatively the same
shape in all frames. In the last sequence (Figure 8), we tracked a mouse on a
textured background with a moving camera, which illustrates another kind of
deformation.

Table 1 summarizes the algorithm parameter values for the three sequences.
Except the number of nodes which depends on the shape complexity, all
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Table 1
Parameter values in tracking experiments.

nodes c1 c2 c3

Cup sequence 50 0.1 0.25 1

Hand sequence 80 0.1 0.25 1

Mouse sequence 50 0.1 0.25 1

weighting coefficients are equal. This shows that the algorithm is not very
sensitive to them. In these applications, we do not use any predication method
and all frames are treated with a rate of 25 frames per second. The snakes
with shape prior succeeds to pursuit the object when the motion is limited.
Larger motion can be handled by using a predictive method such as Kalman
filter.

7 Conclusion and perspectives

A novel method of snakes with shape prior has been presented in this paper.
The originality comes from the embedding of prior knowledge into the model
using Fourier based shape descriptors. As demonstrated by our experiments,
the proposed method is able to make the snake evolve in concave boundaries
and even highly concave boundaries. GVF [27] fails in overcoming highly con-
cave boundaries. In addition, the robustness to noise was enhanced.

However, the used prior does not ensure the invariance to the starting point
of the curve which imposes hard constraints on the initialisation (i.e. the
initialisation and the template must have the same starting point, a small
shift can be corrected). In addition, the complexity of the algorithm is higher
compared to classical model of Kass et al. [17]. This is because it requires the
re-sampling and computation of the DFT at each iteration. However, time
computation remains lower than the GVF snakes. The method is traceable in
nearly real-time applications as it was shown for object tracking.

We plan to solve first the dependence to the starting point of the curve. In ad-
dition, we intend to extend the model to more general transform such as affine
transform, especially the complete family of affine-invariant Fourier descrip-
tors proposed in [3]. Tracking results can be enhanced by the use of prediction
methods such as Kalman filter, we could apply the whole method to specific
applications such as iris or lips tracking.

12



References

[1] A. Amini, S. Terhani and T. Weymouth, Using dynamic programming
for minimizing the energy of active contours in presence of hard constraints ,
in Proc. 2nd Int. Conference on Computer Vision, (pp. 95–99), Tampa,
Florida, 1988.

[2] R. Casselles and R. Kimmel, Geodesic active contours, in Proc. of the
Int. Conf. on Computer Vision, (pp. 694–699), Cambridge, Massachusetts,
June 1995.

[3] F. Chaker, M.T. Bannour and F. Ghorbel, A complete and stable
set of affine-invariant Fourier descriptors, in Proc. of the 12th Int. Conf.
on Image Analysis and Processing (ICIAP’03), (pp. 578–581), Barcelona,
Spain, 17-19 September 2003.

[4] T. J. Cham and R. Cipolla, Stereo coupled active contours , in Proc.
of the IEEE Int. Conf. on Computer Vision and Pattern Recognition, (pp.
1094–1097), San Juan, Puerto Rico, 1997.

[5] L. Cohen, On active contour models and balloons , Graphical Models and
Image Processing, vol. 53, no. 2, pp. 211–218, March 1991.

[6] L. Cohen and I. Cohen, Finite-elements methods for active contour mod-
els and balloons for 2-D and 3-D images , IEEE trans. on Pattern Analysis
and Machine Intelligence, vol. 15, no. 11, pp. 1131–1147, November 1996.

[7] D. Cremers, F. Tischhauser, J. Weickert and C. Schnorr, Diffu-
sion snakes: introducing statistical shape knowledge into the Mumford-Shah
functional , Int. J. of Computer Vision, vol. 50, no. 3, pp. 295–313, December
2002.

[8] T. R. Crimmins, A complete set of Fourier descriptors for two-
dimensional shapes , IEEE trans. on Systems, Man, and Cybernetics, vol. 12,
pp. 848–855, 1982.

[9] S. Derrode, M. A. Charmi and F. Ghorbel, Fourier-based invariant
shape prior for snakes , in Proc. of the IEEE Int. Conf. on Acoustic, Speech
and Signal Processing , Toulouse, France, 14-19 May, 2006.

[10] A. Foulonneau, P. Charbonnier and F. Heitz, Affine-invariant
geometric shape priors for region-based active contours , IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1352–1357,
August 2006.

[11] M. Gastaud, M. Barlaud and G. Aubert, Combining shape prior
and statistical features for active contour segmentation, IEEE trans. on Cir-
cuits and Systems for Video Technology, vol. 14, pp. 726–734, May 2004.

[12] M. Gelautz and D. Markovic, Recognition of object contours from
stereo images: an edge combination approach, in 2nd Int. Symp. on 3D
Data Processing, Visualization, and Transmission, Thessaloniki, Greece,
September 2004.

[13] F. Ghorbel, Stability of invariant Fourier descriptors and its inference
in the shape classification, in 11th Int. Conf. in Pattern Recognition, The
Hague, The Netherlands, 30 August - 3 September 1992.

13



[14] F. Ghorbel, Towards a unitary formulation for invariant image descrip-
tion: application to image coding , Annals of telecommunications, vol. 53,
no. 3, pp. 143–153, May 1998.

[15] S.R. Gunn and M.S. Nixon, A dual active contour for head bound-
ary extraction., in Colloq. on Image Processing for Biometric Measurement,
London, UK, (pp. 6/1–4), November 1994.

[16] H. Jiang and M.S. Drew, A predictive contour inertia snake model for
general video tracking , in Proc. of the IEEE Int. Conf. on Image Processing,
Rochester, New York, (pp. 413–416), July 2002.

[17] M. Kass, A. Witkin and D. Terzopoulos, Snakes: active contour
models , Int. J. of Computer Vision, vol. 1, no. 4, pp. 321–331, January
1988.

[18] S. H. Kim, J. H. Choi, H. B. Kim and J. W. Jung, A new snake
algorithm for object segmentation in stereo images , in Proc. of the IEEE
Int. Conf. on Multimedia and Expo, (pp. 27–30), Taipei, Taiwan, June,
2004.

[19] B. Leroy, I. Herlin and L. D. Cohen, Multi-resolution algorithms for
active contour models , in Proc. 12th Int. Conf. Analysis and Optimization
of Systems, Paris, France, 1996.

[20] N. Paragios and M. Rousson, Shape priors for level set representa-
tions , in Proc. of the European Conf. on Computer Vision, (pp. 78–92),
Copenhagen, Danemark, 27 May - 2 June 2002.

[21] E. Persoon and K. S. Fu, Shape discrimination using Fourier des-
criptors, IEEE trans. On Pattern Analysis and Machine Intelligence, vol. 8,
n. 3, pp. 388–397, 1986.

[22] N. Peterfreund, Robust tracking of position and velocity with Kalman
snakes , IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21,
no. 6, pp. 564–569, June 1999.

[23] N. Ray and S.T. Acton, Active contours for cell tracking, in Proc.
Fifth IEEE Southwest Symp. on Image Analysis and Interpretation, Santa
Fe, New Mexico, USA, 7-9 April 2002.

[24] M. Rochery, I. Jermyn and J. Zerubia, Higher order active contours ,
Int. J. of Computer Vision, vol. 69, no. 1, pp. 27–42, August 2006.

[25] L. Staib and J. Duncan, Boundary finding with parametrically de-
formable models , IEEE trans. on Pattern Analysis and Machine Intelligence,
vol. 14, no. 11, pp. 1061–1075, November 1992.

[26] D. J. Williams and M. Shah, A fast algorithm for active contours ,
Graphical Models and Image Processing, vol. 51, no. 1, pp. 14–26, 1992.

[27] C. Xu and J.L. Prince, Generalized gradient vector flow external forces
for active contours , Signal Processing, vol. 71, n. 2, pp. 131–139, 1998.

[28] C.T. Zahn and R.Z. Roskies, Fourier descriptors for plane closed
curves, Transactions on Computers, vol. 21, n. 3, pp. 269–281, March 1972.

[29] X. Zhong, S. Li and E. Teoh, AI-Eigensnake: an affine-invariant de-
formable contour model for object matching , Image and Vision Computing,
vol. 20, no. 2, pp. 77–84, 2000.

14


