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Département Image et Traitement de l’Information,
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This paper addresses the gray-level image representation ability of the

Fourier-Mellin Transform (FMT) for pattern recognition, reconstruction

and image database retrieval. The main practical difficulty of the FMT

lies in the accuracy and efficiency of its numerical approximation and we

propose three estimations of its analytical extension. Comparison of these

approximations is performed from discrete and finite-extent sets of Fourier-

Mellin harmonics by means of experiments in: (i) image reconstruction

via both visual inspection and the computation of a reconstruction error;

and (ii) pattern recognition and discrimination by using a complete and

convergent set of features invariant under planar similarities.

Experimental results on real gray-level images show that it is possible

to recover an image to within a specified degree of accuracy and to classify

objects reliably even when a large set of descriptors is used. Finally, an

example will be given, illustrating both theoretical and numerical results

in the context of content-based image retrieval.

Key Words: analytical Fourier-Mellin transform, reconstruction, invariant, completeness,

distance between shapes, stability, pattern recognition, image retrieval.
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1. INTRODUCTION

Recent applications in the field of image analysis such as object-oriented video

coding, content-based retrieval and digital image watermarking, induced a renewal

of interest for scenes representation. The latter requires to precise the shape of

objects in the scene and the geometrical transformations that act globally on the

objects [1, 2]. A lot of works to date were therefore motivated for the search of

global features invariant to some geometrical transformations. In the 2D case,

planar closed contours and gray-level objects have been widely studied.

In the case of planar contours, several similarity-invariant and starting-point

independent Fourier descriptors have been proposed for closed-curve description

under planar Euclidean motions [3]. Refinements of such sets have then been defined

using completeness and stability properties. A stable set of invariants insures that

small shape variations do not induce a noticeable change in the feature values [4],

whereas a complete set guarantees that an object is fully identified up to a certain

transformation [5]. Completeness is recognized as an important criterion for full

shape discrimination and reconstruction from features [6].

In the case of 2D gray-level objects, similarity-invariant description can be achieved

with moment invariants. Hu, in a landmark paper [7], proposed seven invariants

based on combinations of low-order geometric moments. In order to extract a

complete set of rotation-invariant features, research has focused on moment invari-

ants computed from images expressed in polar rather than rectangular coordinates.

Reddi [8] proposed using radial and angular moments, but this attempt was not

sufficient to attain completeness. Abu-Mostafa and Psaltis [9] suggested the use

of complex moments. Since a simple relation connects complex moments of simi-

lar objects, a normalization process [10] may be used to derive a complete set of

rotation- and scale-invariant moments. However, it is well known that the recovery

of an image from geometric moments is numerically unstable and computation-

ally expensive [11]. Image reconstruction from a finite set of moment descriptors

has been addressed successfully only with orthogonal moments because of their

straightforward inverse transform and their good reconstruction capabilities (see

works on Legendre, Zernike, and related moments [12, 13, 14], and disk harmonic

coefficients [15]).

Late on the 70’s, the optical research community introduced the Fourier-Mellin

Transform (FMT) for pattern recognition [16, 17] and it was later used in digital

signal and image processing [18, 19, 20]. Several sets of rotation- and scale-invariant

features based on the FMT modulus have been designed, but completeness was not

reached since the descriptors do not hold phase information. Furthermore, it was

also pointed out that numerical estimation of the Mellin integral brings up crucial

difficulties [21]. Recently, a solution for the convergence of the integral has been

given by using the Analytical Fourier-Mellin Transform (AFMT), and a complete

set of similarity-invariant features for planar gray-level images was proposed [22].

But, it is essentially impossible to realize an exact estimation since image data

originates as sample measurements on a 2D grid. Therefore the accuracy and

efficiency of different approximations is of practical interest and can benefit to recent

applications of the FMT such as content-based image retrieval [23] and digital image

watermarking [24].
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In this paper, emphasis is placed on the numerical image representation ability

of the AFMT for pattern recognition and gray-level image reconstruction purposes.

The general lay-out is as follows: The direct and inverse AFMT and some of its

relevant properties are briefly reviewed in Section 2. Three equivalent expressions

of AFMT integrals are used for deriving three numerical approximations of the

Fourier-Mellin transform in Section 3. The approximations, namely, the direct-,

the fast-, and the Cartesian-AFMT estimations, differ in resampling methods of

the discrete image on polar, log-polar and cartesian grids and in numerical in-

tegration performed on these grids. Then, the comparison between discrete and

finite-extent Fourier-Mellin spectrums is conducted in two ways. In Section 4, the

inverse problem of reconstructing an image from its numerical spectrum is exam-

ined via both visual inspection and the computation of a reconstruction error. In

Section 5, pattern recognition and content-based image retrieval regardless of the

orientation and scale of gray-level images is tested with the computation of a real

distance derived from a complete and convergent set of AFMT similarity invariant

descriptors.

2. THE ANALYTICAL FOURIER-MELLIN TRANSFORM

The Fourier-Mellin transform is mainly concerns with the study of similarity

transformations (direct product of the rotation and scale groups). Harmonic analy-

sis on group provides the basis for the definition of other Fourier transforms suited

to more general groups of geometrical transformations. Interesting results have

been brought to the image-processing field by several authors. For examples, Gau-

thier et al [25] worked on the Fourier transform in the case of 2D and 3D motion

groups (semi-direct product of the translation and rotation groups in 2 and 3 dimen-

sions), Ghorbel [2] focus in particular on Fourier transforms defined on 2D and 3D

parameterizations for affine transformations, and, in a recent paper, Turski [26] pro-

posed some Fourier transforms for sub-groups of the affine group (including shearing

transformations). Other references include [27, 28, 29]. It was often pointed out

that there is still a lot of works to do regarding practical considerations for image

analysis (approximation, fast algorithms, ...). These considerations remain crucial

in the case of the well-known FMT.

Throughout this paper, we shall denote by Z1 the additive group of integers, R
the additive group of the real line, R∗

+
the multiplicative group of positive and non-

zero real numbers, and S1 the unit circle of the plane R2. All these groups are locally

compact and commutative. The direct product R∗
+
× S1 forms a locally compact

and commutative group under the following law : (α, θ) ◦ (ρ, ψ) = (αρ, θ + ψ).

2.1. The standard Fourier-Mellin transform

Let f denote a function representing a gray-level image defined over a compact

set of R2. The standard Fourier-Mellin transform of f is given by:

∀(k, v) ∈ Z× R, Mf (k, v) =
1

2π

∫ ∞

0

∫ 2π

0

f(r, θ) r−iv e−ikθ dθ
dr

r
. (1)
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f is assumed to be summable over R∗
+
× S1 under the measure dθ dr

r
, i.e.

∫ ∞

0

∫ 2π

0

∣∣f(r, θ) r−iv e−ikθ
∣∣ dθ dr

r
=

∫ ∞

0

∫ 2π

0

1

r
f(r, θ) dθdr <∞, (2)

since f is positive.

The FMT is a global transform and applies on all pixels in the same way. Tex-

tured images cannot be taken into account directly and objects must first be local-

ized and isolated from the scene to match one of the requirements regarding the

existence of the integral in Eq. (1).

To be computed, there is also a need to define a center of coordinates. This center

shall be independent to translation in order to make the FMT representation shift-

invariant. Translation invariant positioning procedures, such as the auto-correlation

function or the modulus of Fourier transform, make the representation incomplete,

which is not satisfactory regarding the objectives, i.e. reconstruction and complete

invariant description. For isolated objects, the center of mass is certainly the easiest

way to set the origin of coordinates, even if others specific shape points can be used.

Another problem associated with the computation of the FMT, that has been

less addressed, concerns the existence of the integral too. From Eq. (2), the FMT

exists for functions which are equivalent to Krσ in the neighborhood of the origin,

for some constants K and σ > 0. However, an image function does not meet this

requirement since, in the vicinity of the center of coordinates, f is equivalent to the

gray value of the centroid, which is generally different from 0. As a result, f is not

summable and the integrals in (1) diverge [22].

2.2. The analytical Fourier-Mellin transform and inverse transform

Due to the singularity at the origin of coordinates, a solution generally adopted

is to cancel the image over a small disk around the origin [21]. However, this

approximation has serious effects on the numerical computation of the FMT because

of the following reasons:

• Image values nearer the origin have a larger effect on the FMT than image

values remote from the centroid because of the 1/r weighting in the measure of the

Fourier-Mellin integrals. Hence, a significant information content of the image is

lost in addition to removing a small disk in the image centroid.

• It may cause stretching problems when images are enlarged : how large must

the disk be if the image is scaled by an unknown factor ? By cancelling a disk of

constant radius for every image, different amounts of information are removed.

More recently, a rigorous approach has been introduced to tackle the difficulties

described above. According to Eq. (2), Ghorbel [22] suggested computing the stan-

dard FMT of fσ(r, θ) = rσf(r, θ) instead of f(r, θ), where σ is a fixed and strictly

positive real number. Hence, the integral (1) exists and is called the Analytical

Fourier-Mellin Transform (AFMT) of f :

∀(k, v) ∈ Z× R, Mfσ(k, v) =
1

2π

∫ ∞

0

∫ 2π

0

f(r, θ) rσ−iv e−ikθ dθ
dr

r
, (3)
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with σ > 0. The AFMT gives a unique representation of images and the Inverse

AFMT (IAFMT) enables f to be retrieved as:

∀(r, θ) ∈ R∗
+
× S1, f(r, θ) =

∫ +∞

−∞

∑

k∈Z

Mfσ(k, v) r
−σ+iv eikθdv. (4)

Mfσ is assumed to be summable over Z× R.

It is worth noting that this general form of the FMT can be found in mathematical

literature on harmonic analysis [30], but less attention has been devoted to its use

in image processing. The AFMT is close to the Laplace transform defined under the

planar similarity group in the group theory and harmonic analysis viewpoint [2].

In the following, we recall some basic properties of the AFMT that will be used

latter.

2.3. Gray-level shape and shift theorem for planar similarities

For pattern recognition, the interest in the standard FMT comes essentially from

its shift theorem under planar similarities. Let derive now the transformation law

in the AFMT case. Let g denote the rotation and size change of an object f through

angle β ∈ S1 and scale factor α ∈ R∗
+
, i.e. g(r, θ) = f(αr, θ+β). The two objects f

and g have the same shape and will be termed similar objects. The AFMT of g is

∀(k, v) ∈ Z× R, Mgσ (k, v) =
1

2π

∫ ∞

0

∫ 2π

0

f(αr, θ + β) rσ−iv e−ikθ dθ
dr

r
,

and performing a simple change of the variables r and θ gives the following relations:

∀(k, v) ∈ Z× R, Mgσ (k, v) = α−σ+iv eikβ Mfσ(k, v). (5)

While the classical Fourier transform converts translation into a pure phase

change, Eq. (5) shows that the AFMT converts a similarity transformation in the

original domain into a complex multiplication in the Fourier-Mellin domain. These

relations can be seen as the shift theorem for the planar similarity group, and make

the AFMT appropriate for extracting features that are invariant to scale and ro-

tation changes. However, the usual modulus-based FMT descriptors are no longer

invariant to scale because of the α−σ term. A normalization process is used in

Section 5 to derive a complete set of AFMT invariant descriptors.

3. THREE APPROXIMATIONS TO THE AFMT

While the analytical extension of the AFMT can be used to solve the crucial

problem of the convergence of the FMT integrals for gray-level images, it is still

of practical interest to propose approximation methods to the AFMT since no

exact transform can be derive. Indeed, the direct and inverse AFMT are valid

for functions with real-valued parameters (r ∈ R∗
+
, θ ∈ S1, and v ∈ R). As no

discrete version exists, we propose three methods to estimate the direct and inverse

AFMT pair. The approximations differ (i) in discrete image resampling into polar,

log-polar, or rectangular grids and, (ii) in the way numerical integration of the gray-

level function is performed. The performance of the methods is evaluated by means

of reconstruction and pattern discrimination experiments in Sections 4 and 5.
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3.1. Discrete and finite-extent AFMT

An object f(p, q) is considered as a discrete image defined on a rectangular grid

with finite spatial extent (Fig. 1). Since f vanishes outside a bounded domain of

the 2D plane, its AFMT is not band-limited and requires an infinite number of

harmonics to fully describe the object. However, we can only deal with a finite set

of harmonics in practice, with the result that a part of the original image content

is lost. According to the Riemann-Lebesgue theorem, the FMT tends towards zero

as |v| and |k| tend to infinity, and the information lost by numerical truncation can

be made as weak as desired for a given application.

The discrete and finite-extent AFMT M̂fσ(k, v) is computed for k ∈ [−K,K]

and v ∈ [−V,V], with a sampling step value over axis v set to 1. Following the

recommendation of Goh [31], σ is set to 0.5. For real-valued functions, the AFMT

is symmetrical:

Mfσ (−k,−v) =Mfσ(k, v),

where the overline denotes complex conjugation. The effective size SK,V of this

representation is one half of the size of the AFMT due to the symmetry property.

Finally, f̂K,V(p, q) indicates the reconstructed version of f(p, q) from a finite set of

Fourier-Mellin harmonics. The selection of the ranks K and V may be guided in

terms of image spectral content and application, but no general rule can be defined.

�

� � �����	�




FIG. 1. Cartesian grid and butterfly image used to illustrate the three approximation
methods of the AFMT.

3.2. The direct algorithm

The direct AFMT approximation (D-Afmt) consists of resampling f(p, q) in dis-

crete polar coordinates and estimating the Fourier-Mellin integrals (3) and (4) (see

Fig. 2). The polar sampling grid is built from the intersection between M concentric

circles with increasing radii of fixed spacing and N radial lines originating from the

image centroid. The angular and radial sampling steps are, respectively,

4θ =
2π

M
, 4ρ =

R

N
,

where R denotes the radius of the smallest disk required to contain the object.

Wherever the polar sampling point does not correspond to a grid location, the

gray-level value is estimated from the four nearest pixels using bi-linear interpola-

tion. Hence, the polar representation of an image is an [N,M]-matrix whose values

correspond to

f̂(ρ̂n, θ̂m), n ∈ [0,N− 1],m ∈ [0,M− 1],
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where ρ̂n = n4ρ and θ̂m = m4θ are respectively the beam with index n and the

circle with index m. Replacing integrals over circles and beams by sums in (3), we

get the D-Afmt approximation M̂D
fσ

of f :

∀k ∈ [−K,K], ∀v ∈ [−V,V], M̂D
fσ
(k, v) = 4ρ4θ

N−1∑

n=0

F̂k (ρ̂n) (ρ̂n)
σ−iv−1

,

where

F̂k (ρ̂n) =

M−1∑

m=0

f̂
(
ρ̂n, θ̂m

)
e−i

km
M .

From (4), the discrete polar image f̂DK,V(ρ̂n, θ̂m) is recovered with the following

approximation of the inverse AFMT :

∀n ∈ [0,N− 1], ∀m ∈ [0,M− 1], f̂DK,V

(
ρ̂n, θ̂m

)
= (ρ̂n)

−σ
V∑

v=−V

Ĝk

(
θ̂m, v

)
(ρ̂n)

iv
,

where

Ĝk

(
θ̂m, v

)
=

K∑

k=−K

M̂D
fσ
(k, v) ei

km
M .

The discrete Fourier series may be computed with a fast Fourier transform algorithm

(FFT) if M and (2K + 1) are integral powers of 2. The reconstructed image is

retrieved with a polar to Cartesian conversion.

�
�

��
��� � �����������
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FIG. 2. Illustration of the direct approximation of the AFMT (D-Afmt) for the butterfly in

Fig. 1. (a) Polar sampling grid and representation of the butterfly (N = M = 128). (b) Magnitude
of central Fourier-Mellin harmonics (K = V = 10). (c) Cartesian reconstruction obtained with
K = V = 41.

3.3. The fast algorithm
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With a change of the integration variable from r to q = ln(r), Eq. (3) and (4)

can be rewritten as the Fourier transforms of the deformed object etσ f(et, θ):





Mfσ(k, v) =
1

2π

∫ +∞

−∞

∫ 2π

0

etσ f(et, θ) e−i(kθ+tv)dθdt.

f(et, θ) = e−tσ
∫ +∞

−∞

∑

k∈Z

Mfσ(k, v) e
i(kθ+tv)dv.

(6)

The fast AFMT approximation (F-Afmt) consists of resampling f(p, q) in dis-

crete log-polar coordinates and estimating the Fourier integrals (see Fig. 3). The

numerical conversion from Cartesian to log-polar coordinates of the discrete im-

age is performed using an algorithm similar to the previous one except that circles

are exponentially spaced. The AFMT is computed using a 2D Discrete Fourier

Transform (DFT), with log-polar coordinates :

∀k ∈ [−K,K], ∀v ∈ [−V,V], M̂F
fσ
(k, v) = 4θ

N−1∑

n=0

eσρ̂n
M−1∑

m=0

f̂
(
eρ̂n , θ̂m

)
e−i(kθ̂m+vρ̂n).

It is worth noting that this algorithm assumes the image to be periodic in the radial

direction.

From (6), the discrete log-polar image f̂
(
eρ̂n , θ̂m

)
is recovered by computing a

2D DFT over the Fourier-Mellin coordinates:

∀n ∈ [0,N−1], ∀m ∈ [0,M−1], f̂
(
eρ̂n , θ̂m

)
= e−σρ̂n

V∑

v=−V

K∑

k=−K

M̂F
fσ
(k, v)ei(kθ̂m+vρ̂n).

If M and N, (2K + 1) and (2V + 1) are integral powers of 2, the FFT algorithm

can be used for reducing the computation time. The Cartesian image f̂FK,V (p, q) is

retrieved with a log-polar to Cartesian conversion.

3.4. The Cartesian algorithm

Another expression of the AFMT pair can be obtained by performing a polar

to rectangular change of variable in (3) and (4). Hence the AFMT is expressed

according to the Cartesian coordinates of f :





Mfσ(k, v) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

f(x, y) (x+ iy)−k (x2 + y2)
k−2+σ−iv

2 dxdy.

f(x, y) =

∫ +∞

−∞

∑

k∈Z

Mfσ (k, v)(x+ iy)k (x2 + y2)
−k−σ+iv

2 dv.

(7)

In this case, no resampling of the discrete image is necessary and the AFMT can

be estimated directly from the rectangular grid (see Fig. 4). The Cartesian AFMT
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FIG. 3. Illustration of the fast approximation of the AFMT (F-Afmt) for the butterfly

in Fig. 1. (a) Log-Polar sampling grid and representation of the butterfly (N = M = 128).
(b) Magnitude of central Fourier-Mellin harmonics (K = V = 10). (c) Cartesian reconstruction
obtained with K = V = 41.

(C-Afmt) approximation M̂C
fσ

is computed by using sums in place of integrals:





M̂C
fσ
(k, v) =

1

2π

Qmax∑

q=Qmin

Pmax∑

p=Pmin

f(p, q) (p+ iq)−k (p2 + q2)
k−2+σ−iv

2 .

f̂CK,V(p, q) = (p2 + q2)
−σ
2

V∑

v=−V

K∑

k=−K

M̂C
fσ
(k, v) (p+ iq)k (p2 + q2)

−k+iv
2 .

The coordinates m and n correspond to a pixel position from the object centroid.

Pmin, Pmax, Qmin, and Qmax indicate the coordinates, with respect to the image

centroid, of the smallest rectangle that fully contains the object. For the sake of

compatibility with other approximations, we used the trapezoidal integration rule.

The discrete image is recovered directly in rectangular coordinates. It is worth

noting that no fast algorithm is available for this version and the computation cost

is higher than that of the other approximations.

A careful visual inspection shows differences between the three reconstructions.

The question of which approximation gives the best reconstruction for a given

finite-extent spectrum is addressed in the next section.

4. RECONSTRUCTION EXPERIMENTS

An image can be fully reconstructed from its Fourier-Mellin transform. In the

discrete case, it must be shown that a finite number of Fourier-Mellin harmonics

can reconstruct the original image to within a specified degree of accuracy. For this

purpose, the reconstruction error between an image f(p, q) and its reconstructed

version from a finite number of its Fourier-Mellin harmonics is used as a measure

of the image reconstruction ability of the AFMT. According to works done on

reconstruction from orthogonal moments [13, 14], we use the discrete normalized
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FIG. 4. Illustration of the Cartesian approximation of the AFMT (C-Afmt) for the butterfly

in Fig. 1 using the original grid. (a) Magnitude of central Fourier-Mellin harmonics (K = V = 10).
(b) Cartesian reconstruction obtained with K = V = 41.

mean square reconstruction error (NMSRE) defined by

ε2
(
f̂K,V

)
=

Pmax∑

p=Pmin

Qmax∑

q=Qmin

∣∣∣f(p, q)− f̂K,V(p, q)
∣∣∣
2

Pmax∑

p=Pmin

Qmax∑

q=Qmin

f(p, q)2

, (8)

where f̂K,V is one of the three reconstructions obtained from the inverse D-Afmt,

F-Afmt, or C-Afmt algorithms with K and V harmonics. It is well-known that an

image with a high NMSRE can be of better visual quality than an image with a

small one. In our case, it is used to measure the improvement when the number of

harmonics involved in the reconstruction process increases and to characterize the

individual parts of the Fourier and Mellin transforms.

Experiments that are reported in the following used a binary image of the letter

F and the image of a butterfly (Fig. 5). For increasing values of K and V, the

results show the reconstructed images f̂K,V, the difference between the original and

the reconstructed images: f − f̂K,V +128, and the evolution of the NMSRE for the

reconstructed images ε
(
f̂K,V

)
(8).

FIG. 5. Images used for reconstruction experiments. Left: Binary image of the letter F
(original size 36× 49). Right: Euplagia Quadripunctaria (original size 112× 73).
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4.1. Binary image of a typographic letter

Fig. 6 shows the evolution of the reconstruction and the NMSRE of a binary

image with the typographic letter F for an increasing number of harmonics along

both frequency axes corresponding to the Fourier and Mellin transforms. The

harmonics were computed with the C-Afmt algorithm.

As expected, the reconstruction error is reduced when the spectral dimensions

increase, confirming the visual improvement of the reconstructed image. By in-

cluding increasingly higher-order harmonics in both frequency directions, we get a

visual illustration of the contribution of each dimension independently. For lower

dimensions, results show respectively the radial and the angular influence of the

Mellin and the Fourier parts of the AFMT. For larger dimensions, these influences

are combined and finally give a high quality reconstruction with a low NMSRE of

about 0.05. From the NMSRE, it can be also pointed out that the two dimensions

carry different information of nearly equal importance.

4.2. Gray-level image of a butterfly

Fig. 7, 8 and 9 show the reconstruction and the NMSRE of the butterfly im-

age for the three approximations of the direct and inverse AFMTs. This image

presents high contrast texture variations and is relevant in order to compare the

three algorithms.

From the reconstruction results, it becomes apparent that low-order Fourier-

Mellin harmonics contain gross shape information and higher-order harmonics fill

the fine details of an image. An object of finite spatial extent will possess Fourier-

Mellin harmonics of infinite order. When the AFMT is computed to a finite order,

the inverse AFMT approximation results in a blurred and corrupted reconstruction

(Gibb’s phenomenon) [31]. These degradations are reduced with the contribution

of additional increasing order Fourier-Mellin harmonics, confirming the visual im-

provement of the reconstructed image.

However, a careful inspection of Fig. 7 shows that the improvement in the re-

construction from the D-Afmt algorithm is counter-balanced by a divergent hole

in the image centroid where numerical values exceed the gray-level limit. From

the reconstructed images, it becomes apparent that the hole size increases as the

number of Mellin harmonics grows. Further experiments have shown that using

a smaller radial step in the polar representation reduces the hole and improves

the NMSRE, but requires an additional computational effort. For the F-Afmt and

C-Afmt approximations, the difference between the original and the reconstructed

images shows the effect of the sampling grids and outlines the existence of circular

waves due to the spectrum truncation. These waves are reduced with the contri-

bution of higher order Fourier-Mellin harmonics and finally the difference becomes

small.

In order to compare the reconstruction results for the three AFMT approxima-

tion methods, Fig. 10 shows plots of NMSRE of the butterfly image for K = V.

For the D-Afmt algorithm, the NMSRE reaches a minimum at K = V = 45, and

then starts to increase as the number of Fourier-Mellin harmonics involved in the

reconstruction process increases. This illustrates the impact of the divergent hole

on the reconstruction. For the F-Afmt and C-Afmt algorithms, the NMSRE always

decreases as the spectrum dimensions increase. For larger spectra (K = V > 20),
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FIG. 6. Evolution of reconstruction of a binary image of the lettre F with the C-Afmt al-
gorithm for varying dimensions K (lines) and V (columns) and corresponding mean square recon-
struction error.

the C-Afmt algorithm provides a lower reconstruction error than the F-Afmt al-

gorithm. The total error introduced in estimating the integral over rectangular

coordinates for a sufficiently large spectrum produced less error than the log-polar

resampling.

Each Fourier-Mellin harmonic is computed over the entire image so that a too

small polar or log-polar resampling rate results in a poor Fourier-Mellin representa-

tion. In the case of log-polar description, the radial and angular steps M and N set

the maximum number of Fourier-Mellin harmonics available in both dimensions,

i.e. K ≤ 2M + 1 and V ≤ 2N + 1 (see section 3.3). So that a low resampling rate

results in a truncated FM representation with higher frequencies discarded, and the

inverse F-Afmt algorithm reconstructs a smoothed image. The effects of resampling

become apparent whatever the degree of approximation used (bi-linear or higher).
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FIG. 7. Evolution of reconstruction of the image of a butterfly with the D-Afmt algorithm
for varying dimensions K (lines) and V (columns) and corresponding mean square reconstruction
error.

In the case of a high resampling rate, the degree of approximation has a small

impact on precision and we verified that the reconstruction error improvement and

the visual gain are negligible.

The next section goes on with the comparisons for pattern recognition and im-

age retrieval from a complete and convergent set of invariants computed from the

AFMT.

5. APPLICATION TO INVARIANT PATTERN RECOGNITION

AND CONTENT-BASED IMAGE RETRIEVAL

In the following, we examine the extent to which a numerical spectrum of an

object is a reliable estimation of its AFMT by mean of experiments on pattern

recognition and Content-Based Image Retrieval (CBIR) from a complete set of

similarity invariant descriptors. The investigation gives an idea of the robustness

of the three algorithms and their ability to perform pattern classification.
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FIG. 8. Idem to Fig. 7 with the F-Afmt algorithm.

5.1. Standard Fourier-Mellin descriptors

Since the usual FMTs of two similar objects only differ by a phase factor, a

standard set of descriptors invariant to object position, orientation, and size is gen-

erally obtained by taking the magnitude of selected Fourier-Mellin harmonics [16].

However, the phase of the AFMT representation contains an important amount of

information on the object shape, as illustrated in Fig. 11. In this experiment, we

reconstructed an object from the combination of the AFMT phase of a first image

with the AFMT magnitude of a second one. It is clear from images (c) and (d)

that we first recognized the object whose phase has been used for reconstruction.

Furthermore, most experiments on pattern recognition only deal with a small set

of low-order standard descriptors because of the numerical difficulties encountered

in estimating the FMT. Therefore, the corresponding set of invariant features is

dramatically reduced and only represents an outline of the shape of the object.

For pattern recognition purposes, the classification of an unknown object as one

of a set of reference patterns is achieved with a comparison method such as: the

computation of an error between the features [32], neural networks [33, 34], or

statistical classifiers [19, 35, 20]. These methods are turned out to be efficient when

the models to compare have simple and distinct shapes (typographic symbols or
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FIG. 9. Idem to Fig. 7 with the C-Afmt algorithm.

letters). Nevertheless, image databases become more and more voluminous and

heterogeneous. Due to the lack of completeness, one can find distinct objects with

identical descriptor values, and the classification process may mix up objects.

5.2. A complete family of AFMT descriptors

In order to overcome the difficulties described above, a complete family of simi-

larity invariant features based on the AFMT has been suggested in [22]. This family

can be easily rewritten and applied to any strictly positive σ value in the following

way:

∀(k, v) ∈ Z× R, Ifσ(k, v) =Mfσ(0, 0)
−σ+iv

σ eik arg(Mfσ (1,0)) Mfσ(k, v), (9)

with σ > 0. Each feature Ifσ(k, v) is constructed in order to compensate for

the α−σ+iveikβ term that appears in the shift theorem (5). The compensation is

achieved via the two Fourier-Mellin harmonicsMfσ(0, 0) andMfσ(1, 0), which act

as normalization parameters. Fig. 12 shows the magnitude of the central AFMT

invariant descriptors of the butterfly in Fig. 5. We used the F-Afmt approximation
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FIG. 10. Plots of the NMSRE of the butterfly image in Fig. 5 versus spectral dimensions

(K=V) for the three algorithms.

í�îBï í�ð�ï í�ñ^ï í�ò ï
FIG. 11. Illustration of the importance of phase in the AFMT representation. (a) and (b)

Two gray-level objects from the COIL database (Columbia university). (c) image reconstructed
from the inverse AFMT (C-Afmt algorithm) with the modulus of (a) and the phase of (b). (d)
idem with the modulus of (b) and the phase of (a).

with K = V = 10. The central harmonic (k = v = 0) has a value of 1, and the

magnitude of the set converges towards zero as k and v increase.

The set of features in Eq. (9) is complete since it is possible to recover the AFMT

of an object from all of its invariant features and the two normalization parameters.

Since the family is also convergent for square integrable functions defined on R∗
+
×S1,

it is possible to define a mathematical distance between shapes [22]:

d2(Ifσ , Igσ) =

(∫ +∞

−∞

∑

k∈Z

|Ifσ (k, v)− Igσ(k, v)|
2 dv

) 1
2

. (10)

The invariant distance (10) is the well-known d2 Euclidean distance expressed

in the Fourier-Mellin domain. The distance is zero if and only if the objects are

similar, regardless of translation, rotation and scale. When objects are distinct, the

distance is used for the quantification of the dissimilarity between the objects.
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FIG. 12. Magnitude of central AFMT invariant descriptors for the butterfly image in Fig. 5
(F-Afmt approximation, K = V = 10).

The completeness property of the feature set shows an infinite number of invari-

ants, which appears to be incompatible with numerical constraints. However, the

expression in Eq. 9 allows to extract as many descriptors as needed for a given

application. By including higher-order invariants, theoretical completeness is best

attained and we get a more and more accurate representation of shapes. Further-

more, no additional error is introduced in computing the invariants and the three

AFMT approximations can be compared by means of pattern recognition experi-

ments.

5.3. Pattern recognition and discrimination experiments

We now present some results of discrimination experiments with the images of

butterflies in Fig. 13. These images were chosen in order to illustrate the numerical

behavior of the different approximations. It must be pointed out that comparing

butterflies as in Fig. 13 is rather difficult since their global aspect shows obvious

shape characteristics, independent of size and orientation, that allow the images to

be understood by the human eye as being butterflies. The main difference is in the

texture of the wings and contour-based invariants such as Fourier descriptors will

probably fail.

� ��� � ��� � ��� � �	�

FIG. 13. Four test images used in the pattern recognition experiments (original size
128×128). Fig. (a), (b) and (c) represent the same butterfly but with different size and orientation.
Fig. (d) is an image of a butterfly with a different shape. (a) Graphium Agamemnon. (b) image
(a) scaled by 0.9 and rotated by 20. (c) image (a) scaled by 0.75 and rotated by -60. (d) Taenaris
Macrops.
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The computation of the invariant distance is performed in three steps. Firstly,

we estimate the AFMT of the two objects to compare with one of the three ap-

proximations. Secondly, we compute the invariant descriptor values for each object

according to Eq. (9). We obtain as many invariants as there are Fourier-Mellin

harmonics. Thirdly, we substitute summation for the integration in (10) and get

the invariant distance between the two objects. When objects are similar, the nu-

merical approximation of the distance is a measure of the error between invariant

values. This question is examined in the following experiments by investigating

the numerical behavior of the distance when an increasing number of descriptors is

used for its computation.

The two graphs in Fig. 14 show the invariant distance between images with the

same shape. As expected, the distance increases when increasing portions of the

Fourier-Mellin spectrum are used. There are two main reasons for not obtaining

exact invariance (zero distance) in case of similar objects. Firstly, the Cartesian

grid is not well suited for similarity transforms, and objects may present small dif-

ferences due to interpolation. Secondly, the approximation of the AFMT introduces

numerical errors in the computation of the invariant features. Note that the dis-

tance values are different for the same pair of images but different approximation

of the AFMT.

In our experiments, the evolution of the distance computed from the D-Afmt ap-

proximation shows a scale factor sensibility when the set of invariant features grows.

The direct algorithm does not provide a reliable estimation of higher-order Fourier-

Mellin harmonics. This point confirms the results of the reconstruction experiments

reported in Section 4. Further experiments have also shown that the rotation angle

has lesser effect on the results as compared to the scale factor. For the C-Afmt and

F-Afmt approximations, the distances are more stable. The fast algorithm gives al-

ways a lower distance, whatever the size of the feature set. The additional error com-

ing from higher-order invariants is low, and we may conclude that the F-Afmt and

C-Afmt algorithms give a better estimate of higher-order Fourier-Mellin harmonics.
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FIG. 14. Plot of the invariant distance between similar images versus the spectral dimensions
involved in its computation. (a): images in Fig. 13(a) and 13(b). (b): images in Fig. 13(a) and
13(c).

Theoretical completeness of the invariant set is best attained with a large set of

descriptors. On the other hand, previous experiments show that invariant distance
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increases as the spectrum is enlarged. To get an idea of the numerical discrimination

performance of the invariant family, we divided the distances obtained with a pair

of distinct objects with that obtained with a pair of similar objects. The farther

the ratio is from 1, the greater the discrimination is. Fig. 15(b) illustrates the ratio

between the images in Fig. 13(a) and (c) and the images in Fig. 13(a) and (d) (the

distance is reported in Fig. 15(a)). The D-Afmt approximation provides the best

discrimination until the dimensions of the invariant set reach 8× 8. For larger set,

the ratio is close to 1, and discrimination between objects becomes impossible. The

C-Afmt and F-Afmt algorithms provides a discrimination ratio that is greater than

3, even when the feature set is large, indicating that it is still possible to distinguish

shapes.
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FIG. 15. (a) Invariant distance between images in Fig. 13(a) and (d), and (b) discrimination
ratio between images in Fig. 13(a), (c) and (d) versus the spectral dimensions involved in its
computation.

5.4. Content-based image retrieval

In the following, we examine the application of the complete set of AFMT de-

scriptors and the invariant distance to perform content-based image retrieval. The

experiments presented here don’t cover the many aspects of CBIR systems (rele-

vance feedback, combination of descriptors, fast search, ...), but illustrate the FMT

in this context.

At archival time (off-line), each model f i, i ∈ [1,N] of the image database is

indexed by its set of invariant descriptors Ifiσ (k, v), with k ∈ [−K,K] and v ∈

[−V,V]. At query time (on-line), the retrieval of a query object g, regardless of the

objects pose, orientation and size, is achieved by :

1. computing its invariant features from Eq. (9),

2. estimating the distance between the input object g and the N models f i, by

using Eq. (10),

3. sorting and selecting the M models f j which give the smallest distance to g.

In this way, all images from the database can be compared with any query image,

and ranked by the value of d2. The search through the database is exhaustive

and future work will include an effective access method such as tree indexing and
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hashing as pointed out in the conclusion. Since invariants are used as indexes, a

new model can be added to the database without modifying the models already

stored and no voting algorithm for selecting the best models is required.

Concerning to the experiments, we used the F-Afmt approximation since it ap-

pears more robust and faster than the two other estimations. We computed about

one thousand invariant descriptors for each gray-level images in the database. The

computation time for deriving the invariant representation of an image is about 3

seconds on a 300 MHz PC (including file I/O, log-polar resampling (128× 128), 2D

FFT computation and invariant extraction). The computation time only depends

on the size of the image, not on its complexity. At query time, the search through

the database is performed sequentially.

Fig. 16 shows the top M = 9 ranked images retrieved for three query image (from

up to bottom) by a larger set of invariants (from left to right, S =13, 181 and 761).

The first retrieval (R1) has been conducted on a collection of N = 98 images of

butterflies. 69 images represent distinct butterflies and 29 images show translation,

rotation and scale changes. The two objects with a shape similar to the query have

been first selected, whatever the size of the feature set. This result confirms the

invariance and the discrimination of our set of descriptors.

The next two retrievals in Fig. 16 (R2 and R3) have been conducted on the

Columbia Object Image Library [36]. This database contains N = 1440 images of

20 different 3D objects: 72 images per object taken at 5 degrees in pose. In this

collection, the camera motion clearly infringes the similarity transformation model

underlying the image representation of the AFMT. These experiments intend to il-

lustrate the robustness of the descriptors to partial occlusions and shape distortions

(non-similarity transformations).

In the first retrieval, the number of invariants shows no influence on the search,

while the second result becomes better as the dimension of the invariant features

set enlarges, since more and more images of the query object are retrieved. These

results have been chosen amongst the worst retrievals we obtained since most of

the time the process retrieves more than 10 images of the query object.

These interesting results illustrate the stability of the complete invariant family.

This stability is due to the normalization process and, above all, to the robustness

of the AFMT approximations, since each invariant descriptor is computed from the

corresponding Fourier-Mellin harmonic. The small difference of texture between

two consecutive images of the same object is coded by a small difference in the

Fourier-Mellin harmonics values so that the invariant descriptors are also closed to

and the invariant distance is low.

6. CONCLUSION

In this paper, three approximations of the AFMT were proposed and investigated

through experiments with real gray-level images by means of image reconstruction

and pattern recognition. From both theoretical and numerical improvements, re-

sults show that it is possible to recover an image to within a given degree of accuracy

and to classify objects reliably even when a large set of invariant descriptors is used.

Actually, it has been pointed out that a relatively small set of AFMT harmonics

may characterize an image adequately, but that the fine details can be recreated

only by including higher-order harmonics. From reconstruction experiments, the
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FIG. 16. Retrieval results for three query images (top-left corner) for larger sets of AFMT
descriptors (SK,V = 13, 181, 761). Images are ranked by increasing distance from left to right and
top to bottom.

fast and the Cartesian AFMT approximations were found to perform better than

the direct approximation.

For pattern recognition, we used a complete and convergent set of descriptors

invariant to similarity transformations. The completeness of the set gives a flexi-

ble and extensive representation of gray-level shapes. A real distance between the

invariant descriptors has been used to compare objects, regardless of their pose,

orientation and size, in the context of content-based image retrieval. For reducing

the computing effort, the fast AFMT algorithm was preferred to the Cartesian ap-
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proximation. Since the FMT is global, it suffers from local modifications, which

often happens in case of complex cluttered scene or 3D objects motion. Neverthe-

less, the results were found to be robust even when images present small distortions

and occlusions. These points make the FMT suitable in the context of the object-

oriented MPEG-4 and MPEG-7 standards and argue in favor of the FMT to be

incorporated in CBIR systems for gray-level shapes description.

In this context, future work will improve the efficiency for indexing and searching

by means of feature quantization and hierarchical search strategies adapted to the

shape space. Then, it should be interesting to test the robustness of descriptors to

quantification and, especially, the influence on the reconstruction process. Other

works will test the direct and inverse AFMT approximations for digital image wa-

termarking [24], and study other Fourier transforms suited to more general groups

of transformations.
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