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Abstract. This paper is the continuation of works about analysis of
secure watermarking schemes in the case of WOA (Watermarked Only
Attack) framework. In previous works, two new BPSK spread-spectrum
watermarking modulations, Natural Watermarking (NW) and Circular
Watermarking (CW), have been proposed and have been shown to be
more secure than classical modulations. Because security is guaranted
using specific distributions of watermarked contents, we propose to use
optimal model-based embedding to ensure security while minimizing the
overall distortion. Additionally, we propose a new secure watermarking
scheme based on distribution of vector norms in the Gaussian case. We
illustrate model-based embedding performance in the case of Gaussian
signals and show that this approach not only allows to achieve excellent
level of security in the WOA framework, but also allows to minimize
distortion. Finally, a comparison of the robustness of the proposed em-
bedding schemes is performed.

Key words: Watermarking, Security, Hungarian method, Distortion
Optimization.

1 Introduction

Watermarking is a mean to hide information into digital contents (images,
sounds, videos). This hidden information can be used for copyright or copy
protection applications, integrity checking, or fingerprinting in order to control
each copy of a numerical document. Our works focus on copyright and copy
protection. The embedding of the message must meet many constraints:
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– imperceptibility : the hidden information must not impair the original content
for regular use,

– capacity : in multi-bit watermarking, one must ensure a sufficient number of
bits can be reliably hidden into the host content,

– robustness: the hidden message should still be readable after common media
processing,

– security : this last constraint can be viewed as “the inability by unauthorized

users to access, remove, read or write the hidden message” [1]. Security in
general is based on Kerckhoffs’ principle [2]: the key is the only unknown
parameter for the adversary.

This secret key is used to embed and detect (zero-bit watermarking) or decode
(multi-bit watermarking) the watermark. Security is different from robustness.
Robustness attacks relate to watermark survivability under common processing
(in the case of still images, one may want to resist geometrical deformations,
compression or noise addition). These attacks are generally not intentional.

On the contrary, security attacks are intentional and relate to the estimation
of a part or all the secret key [3]. In multi-bit watermarking, the key is defined
by the location of a set of codewords in a subspace. To embed a message in a
host content, it must be placed in the decoding region of the right codeword. If
an adversary learns the secret key, he can alter the message while minimizing the
attack distortion with a 100% probability: his attack becomes deterministic. For
example, he can design an attack in order to “push” the watermarked content
into the nearest (wrong) decoding region, he can read the hidden message and
copy the watermark in another content (copy attack [4]).

This paper deals with the case of WOA (Watermarked Only Attack) [5], the
adversary has only access to several marked contents and to the source code of
the watermarking algorithm (Kerckhoffs’ principle). One should notice that the
adversary can model the distribution of the host contents (Gaussian mixture or
generalized Gaussian distribution for DCT or wavelet coefficients for example)
since he knows the watermarking space. The adversary’s goal is twofold. On
one hand, he wants to model the conditional distribution of marked contents
given the secret key, and on the other hand, he wants to estimate each codeword
location.

Based on these ideas, we can find [6] the definition of four security classes
to rank watermarking schemes security in the WOA framework (see Fig. 1 for
relationships among them).

The first class is insecurity. In this class, the conditional distribution (given
the key) of marked contents is not the same for all keys. By exhaustive search
(or a more involved technique), he can estimate both the private subspace and
the codewords.

A watermarking scheme belongs to the second class, key-security, if, for a
subset of keys, the conditional distribution of the marked contents given each
key is the same. The adversary can find this subset of keys and he can find the
secret subspace but he cannot gain more information about the codewords.
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The third class is called subspace-security. In this case, the conditional distri-
bution of marked contents given the key will be the same for all keys. Therefore
the pirate cannot gain any information about the key (he has not access to the
secret subspace).

The last class stego-security relates to steganography: the distribution of
marked contents is the same than that of the host contents. The adversary
cannot decide whether the contents are marked or not.

Fig. 1. Security classes in WOA framework.

Obviously, security in the WOA framework is strongly linked with the distri-
bution of the contents after watermark embedding. In [7], authors have applied
two secure modulations (namely Circular and Natural Watermarking, resp. CW
and NW in the sequel) to still images. These modulations are used to modify the
distribution of marked contents in order to be stego-secure or subspace-secure
for NW and key-secure for CW. Note that such an approach is similar to the
one proposed by Sallee in steganography [8], where perfect secrecy [9] is guaran-
teed by constraining the distributions of stego contents to be identical with the
distributions of cover contents.

In this paper, we propose a new method to watermark signals in order to fit
a chosen target distribution in an optimal way. This method uses the Hungarian
algorithm, which minimizes distortion on average (in the sense of Euclidean dis-
tance) between points of host distribution and points of the target distribution.
Section 2 recalls basics on BPSK-based SS watermarking schemes with an em-
phasis on unsecure and secure modulations and presents a watermarking scheme
based on distribution of norm of signals. Section 3 presents our model-based
embedding scheme by using Hungarian method. Section 4 compares our imple-
mentations of classical versus model-based embedding from security, distortion
and robustness point of view over 2000 Gaussian signals.
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2 Secure watermarking schemes

This section recalls definitions of unsecure and secure modulations, moreover we
propose also a new secure embedding scheme based on the modification of the
norm of the host vector.

2.1 Notations and definitions

We first list the conventions used in this paper. Data are written in small letters.
Vectors and matrices are set in bold fonts. Vectors are written in small letters
and matrices in capital ones. x(i) is the i-th component of a vector x and xj is
the vector x associated to a j-th observation. We write (x(0),x(1),x(2), ...) the
content of a vector x. We note [a;b], ]a;b[, [a;b[ and ]a;b] real-intervals. Sets are
noted in capital letters and vect (A) represents the vector space generated by A.
p (xj) denotes the distribution of vectors xj . σ2

x denotes the variance of a signal
x and 〈.|.〉 denotes the usual scalar product.

We want to hide a message m of Nc bits in a host vector x ∈ R
Nv . So we

create a watermark signal w ∈ R
Nv in order to obtain y = x+w the watermarked

signal. The secret key K used to embed and decode the message m is the seed
of a PRNG. With K, we generate Nc Gaussian carriers ui ∈ R

Nv . Each carrier
is able to hide one bit. In order to have a null ISI (Inter Symbol Interference),
carriers must be orthogonal. Thanks to s : {0, 1} → R, a modulation, we can
create w by:

w =

Nc−1∑

i=0

uis(m(i)). (1)

Distortion is assessed by means of the WCR (Watermark-to-Content Ratio):

WCR[dB] = 10 log10

(
σ2
w

σ2
x

)
. (2)

We model robustness attacks by adding Gaussian noise n. So we consider the
attacked vector r = y + n. Attack strength is assessed by means of the WCNR

(Watermarked Content-to-Noise Ratio):

WCNR[dB] = 10 log10

(
σ2
y

σ2
n

)
. (3)

Decoding is classically obtained by correlations z:

zr,ui
=

Nv−1∑

j=0

r(j)ui(j). (4)

We consider m̂ the estimated message, so we have for each bit:

m̂(i) =

{
0 if zr,ui

> 0,

1 if zr,ui
< 0.

(5)
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We measure robustness of the watermarking scheme by BER (Bit Error Rate)
between the estimated and the original message:

BER(m, m̂) =
1

Nc

Nc−1∑

i=0

m(i) ⊕ m̂(i). (6)

For a pirate, there is no difference between estimating the carriers or getting
K in the WOA context. According to [6], the security of a watermarking scheme
relies on the properties of the conditional distribution p(yj |K). In the case of
spead-spectrum techniques, points of conditional distribution given the carriers
are the Nc-tuples (zy,u0

, ..., zy,uNc−1
) in the subspace spanned by the carriers.

2.2 Unsecure SS modulations:

Classical modulation SS (Spread Spectrum) is given by:

sSS(m(i)) = γ(−1)m(i). (7)

This modulation is analog to BPSK modulation. Parameter γ is used to set the
power of watermark. It is a function of WCR. ISS (Improved Spread Spectrum)
[10] uses side-information to improve robustness:

sISS(m(i)) = α(−1)m(i) − λ
〈x|ui〉

‖ui‖2
, (8)

where 〈.|.〉 denotes the usual scalar product, α and λ are computed to achieve
host-interference rejection and error probability minimisation given Noise-to-
Content power Ratio:

NCR[dB] = 10 log10

(
σ2
n

σ2
x

)
, (9)

where n denotes Gaussian noise. Previous works [5] have shown that SS and ISS
are unsecure, and that carriers estimation is possible (see tests on [7]).

2.3 Secure modulations:

NW (Natural Watermarking) [6] modulation is defined by:

sNW (m(i)) =

(
(−1)m(i) 〈x|ui〉

|〈x|ui〉|
− 1

)
〈x|ui〉

‖ui‖2
. (10)

NW belongs to the so-called stego-secure class and is suitable for steganography
applications.
CW (Circular Watermarking) [6] modulation is defined by:

sCW (m(i)) = α(−1)m(i)d(i) − λ
〈x|ui〉

‖ui‖2
, (11)
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where α and λ are computed the same way than with ISS and d is generated at
each embedding as follows from g ∼ N (0, 1), this parameter is used to randomly
spread the correlations of the mixed signals on the whole decoding regions:

d(i) =
|g(i)|

‖g‖
. (12)

This parameter d enables the following property of circularity :

p
(
zy,u0

, ..., zy,uNc−1

)
= p





√√√√
Nc−1∑

i=0

z2
y,ui



 . (13)

The circularity of the distribution allows us to say that for a subset of several
keys (all bases of vect({ui})), the distribution of marked signals will be the same.
CW belongs to the so-called key-secure security class.

2.4 A new secure embedding based on the χ
2 distribution

Based on previous security assessment, we are able to propose a stego-secure
watermarking scheme χ2W (CHI2 Watermarking) by modifying norm of Gaus-
sian host signals after embedding, while keeping the same distribution between
original and watermarked contents. Distribution of these norms can be mod-
eled by a χ2 law. So we define codewords location by real-intervals in the set
of norms of Gaussian vectors. Finally, in order to embed a secret message, we
chose randomly a norm in the corresponding interval and we multiply the host
vector in order to have the desired norm. Contrary to BPSK modulations, the
watermarking subspace (space of norms) is not private, secret relies only on the
partition of the real-positive axis representing the norms. There is no security
flaw because we works on the WOA framework. Adversaries do not know the
embedded message. However, this embedding is easy to implement, it enables
to achieve stego-secure embedding since the distributions of original and water-
marked contents are the same, and brings another scheme to compare with in
term of robustness.

We use previous notations of Part. 2.1. We want to create a watermarked
signal y = αx, α ∈ R

+. This method is based on the distribution of the norms
of host Gaussian vectors. In fact, if x ∈ R

Nv with x ∼ N (0, 1), ‖x‖2 ∼ χ2(Nv)
(Chi-2 law of degrees Nv), ‖.‖ representing the euclidean norm. Codewords are
sets in a partition of [0,+∞[. To embed a secret message m in a host vector
x, we randomly choose a norm ‖y‖2 in the corresponding real-interval and we
compute:

y =

√
‖y‖2

‖x‖2
x. (14)

We obtain the watermark signal w = y−x. This process can be considered as a
variant of Moulin and Briassouli stochastic embedding [11] who work on different
host distributions. Different consequences arise from this new embedding scheme:



7

– The means of choosing a norm in the right codeword is not optimal (from
the distortion point of view): we generate real numbers until we have one of
them in the desired interval.

– To define the secret partition on the real-positive axis, we use an estimator
of the quantile function of χ2 distribution.

– With the condition of message equiprobability, we must have more than one
codeword for each message. Without this condition, a pirate can find the
secret partition by using a quantile function (he separates the p.m.f. into
2Nc parts of probability 1

2Nc
). We denote Nw the number of codewords used.

Fig. 2 shows a secure partition of real positive axis and the associated distribution
with parameters Nc = 2,Nw = 8,Nv = 55.

0 20 40 60 80 100
Norm of signal
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0,15

0,2

4*
Fr

eq
ue

nc
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(0 0)
(0 1)
(1 0)
(1 1)
Theoretical CHI2 p.d.f.

CHI2 Distribution (55 degrees of freedom)

Fig. 2. Secret partition of real-positive axis and associated distribution with parameters
Nc = 2,Nw = 8,Nv = 55, each message is coded into 2 codewords. We have constructed
the bins by generating 2000 Gaussian vectors for each message and calculating their
respectives norms.

Note that the decoding regions are the same for NW and CW (they are delimited
by hyperplanes) but different from the ones related to χ2W (delimited by hyper-
spheres). Fig. 3 shows 2D representations of coding regions for spread-spctrum
schemes and for χ2W. We use Nc = 2.

3 Minimisation of the embedding distortion

We have seen that the level of security of the previously watermarking methods
is given by the distribution of the signals after watermarking. Note that these
distributions are defined by the distribution of correlations for BPSK modula-
tions and the distribution of the norms for χ2W. However, from the distortion
point of view, these implementations are not optimal. We propose in the next
section a new scheme which can ensure a given distribution of our marked signals
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Fig. 3. 2D representations of coding regions for NW and CW (left part) and for χ2W
(right part) for 2 bits.

while minimizing the embedding distortion. We want to associate each point of
host distribution with each point of a chosen distribution with a minimal average
Euclidean distance between these two points (distortion is proportional to the
distance). The Hungarian algorithm is a mean to solve this problem. To explain
this algorithm, some reminders about graph theory are useful.

3.1 Minimal cost perfect matching in a bipartite graph

A bipartite graph is a graph G = (V,E) with the following property: there exists
a partition V = A⊔B, each edge of E is of the form [a, b] with a ∈ A and b ∈ B.
Moreover G satisfy |A| = |B| = Nm. A weighted bipartite graph G = (V,E, P )
is a bipartite graph where each edge is weighted by a function P : E → R. A
perfect matching M of G is defined as a subset of E with Nm elements where each
vertex is incident with exactly one member of M . In this paper, we are interested
in the Assignement Problem (AP), we search the minimal cost perfect matching
M∗, i.e., a perfect matching whose the sum of weights of edges is minimal. More
precisely we search:

M∗ = arg min
M

∑

t∈M

P (t). (15)

Fig. 4 shows a weighted bipartite graph and its minimal cost perfect matching.

3.2 The Hungarian method for the AP

The Hungarian method [12] is an efficient algorithm to solve the AP in a weighted
bipartite graph in polynomial time (O(Nm

3)). We consider G = (V,E, P ) a
weighted bipartite graph with:

– V = A ⊔ B,
– A = {a0, ..., aNm−1},
– B = {b0, ..., bNm−1}.

We consider D ∈ MNm,Nm
(R), a matrix initialized with D(i, j) = P ([ai, bj ]).

The goal is to choose Nm elements of this matrix in order to have each row and
each column containing one chosen element. In fact, the minimal cost perfect
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A E B

0.967

0.9010.547

0.17
3

0.973

0.856
0.
71
5

0.60
9

0.698

A M* B

0.547

0.17
3

0.60
9

Fig. 4. Example of a weighted bipartite graph with two partitions of three vertices
and minimal cost perfect matching found by Hungarian Method (weights between two
vertices are noted on each corresponding edge).

matching is the set of edges corresponding to these choosen elements. The Hun-
garian algorithm does the following:

1. Subtract the entries of each row by the row minimum: each row has at least
one zero, all entries are positive or zero.

2. Subtract the entries of each column by the column minimum: each row and
each column has at least one zero.

3. Select rows and columns across which to draw lines, in such a way that all
the zeros are covered and that no more lines have been drawn than necessary.

4. A test for optimality:

– If the number of the lines is n, choose a combination from the modified
cost matrix in such a way that the sum is zero.

– If the number of the lines is < n, go to 5.

5. Find the smallest element which is not covered by any of the lines. Then
subtract it from each entry which is not covered by the lines and add it to
each entry which is covered by a vertical and a horizontal line. Go back to
3.

So we have:

M∗ = {[ai, bj ] : D(i, j) = 0}. (16)

3.3 Application for NW and CW embedding

Construction of bipartite graphs: We want to create 2Nc bipartite graphs
which contain, for the host partition, points of distribution of several host sig-
nals (correlations). We construct points of target distributions by selecting only
points in codeword of the desired message. The goal is to find the minimal cost
(euclidean distance) perfect matching between the two partitions. Formally, we
use Nm host signals {xi}i=0,...,Nm−1.

For each host signal xi we construct the correlation host vector:

zxi
=
(
zxi,u0

, ..., zxi,uNc−1

)
.
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We want to construct 2Nc target distributions. As we have seen before, NW and
CW modulations can permit to construct distributions we want to obtain in
order to match the security class we want (stego-secure, key-secure, ...).

We proceed by watermarking for each message m, host signals xi with the
chosen modulation to obtain yi. Finally, we construct the correlation marked
vector zyi

=
(
zyi,u0

, ..., zyi,uNc−1

)
. We obtain, for each message, the weighted

bipartite graph G = {X ⊔ Y, A, P} with:

– X = {zxi
}i=0,...,Nm−1,

– Y = {zyj
}j=0,...,Nm−1 (depends on m),

– A defines the set of edges [zxi
, zyj

] of the graph G,
– P is the weight function of the edges of G.

P ([zxi
, zyj

]) = ‖zxi
− zyj

‖
2
.

We obtain 2Nc minimal cost perfect matchings M∗
k between host correlations

and marked correlations by using Hungarian method.

Mapping reduction: In previous section, we construct one bipartite graph
for one message to embed. In order to reduce complexity of bijections calculus,
we can use property of symmetry of our distributions (the axis of symmetry
are the carriers); points of target distributions are computed in order to embed
a constant message (for example the message (1, 1, ..., 1)). For the rest of this
article, we notate Nm -map a triplet (X, Y,M∗) constructed with Nm host signals.
Fig. 5 shows a correlation bipartite graph with Nm = 3, Nc = 2 and its minimal
cost perfect matching found by Hungarian method.

1637, 1923

-2133, 7408

1193, -454

-10400, -6135

-8665, -7956

-12308, -471

<y|u0>

<
y|

u1
>

X
Y

14485.162

14273.631

14149.251

15
86

7.0
75

16
69

5.
59

2

12869.003

12910.202

12388.498

13501.144
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-8665, -7956

-12308, -471

<y|u0>

<
y|

u1
>

X
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14485.162

12869.003

12388.498

Fig. 5. Projection over two carriers (Nc = 2): correlation bipartite graph construction
and minimal cost perfect matching found by Hungarian method with two partitions of
three vertices, host correlations and marked correlations (Nm = 3). Euclidean distances
(weights) between two vertices are noted on each corresponding edge. The minimal
cost perfect matching associates elements of each vertex partition while minimizing
the summation of the distances.
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Model-based embedding: We consider (X, Y,M∗) the Nm-map constructed
in the previous section. Now, we want to mark a signal x with any message m us-
ing the map. First, we compute the correlation host vector zx =

(
zx,u0

, ..., zx,uNc−1

)
.

We want to associate zx with a point of Y by using M∗.
We have seen that elements of Y have been constructed in order to embed the

message (1, ..., 1). We note indices of m where the bit is different from 1. Note
that a matching from an original content to a given codeword enables to generate
matchings to any codewords by symmetrising both points along appropriated
axes. Consequently sign changes must be made on the coefficients of zx in the
indices that have undergone symmetries. Afterwards inverse symmetry must
be performed after watermarking in order to embed the correct message m.
Formally, we construct Rzx,

R ∈ MNc,Nc
(R),R(i, j) =

{
0 if i 6= j,

(−1)m(i)+1 if i = j.

Next, we find the nearest neighboor (minimal euclidean distance) of Rzx in X,
for example zxi0

. Thanks to the perfect matching M∗ we find zyj0
, the corre-

spondance of zxi0
. Next, we apply inverse symmetry to compute the correlation

marked vector zy:

zy = R−1zyj0
= Rzyj0

.

So, we obtain the correlation vector of our marked signal. By a difference between
zy and zx, we have zw, the watermark correlation vector. Proper retro-projection
of this signal in the NvD-space is assured by :

w =

Nc−1∑

i=0

zw(i)

〈ui|ui〉
ui.

And finally, we compute the watermarked signal y = x + w. Fig. 6 shows this
process by using the 3-map constructed, see Fig. 5.

3.4 Application for χ
2 Watermarking

Construction of bipartite graphs: We want to create 2Nc bipartite graphs
which contain, for the host distribution, norms of several host signals. We con-
struct points of target distribution by selecting only real points in codewords of
the desired message. We generate Nm Gaussian vectors xi and, for each message,
Nm Gaussian vectors yj with ‖yj‖

2 in the right codewords. We can construct,
for each k = 0, ..., 2Nc − 1 a bipartite graph G = {X ⊔ Y, A, P} with:

– X = {‖xi‖
2}i=0,...,Nm−1,

– Y = {‖yj‖
2}j=0,...,Nm−1,

– A defines the set of edges [‖xi‖
2, ‖yj‖

2] of the graph G,
– P is the weight function of the edges of G. We use the absolute value of the

differences of norms.
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Fig. 6. Model-based watermarking scheme: illustration of Sec. 3.3. After calculating
the correlation vector zx of a host signal, we compute the watermarked correlations zy

by using the 3-map of Fig. 5 (Nm = 3) with the constant message m = (0, 1) (Nc = 2).

By using the Hungarian algorithm, we find 2Nc minimal cost perfect matching
M∗

k between host norms and marked norms (functions of embedded message).
For the rest of this article, we denote Nm-smap the set {(X, Yk,M∗

k )}k=0,...,2Nc−1

constructed with Nm signals.

Embedding: Process is similar to SS model-based embedding. To embed a
vector x with message m and a Nm -smap; we calculate ‖x‖2. Next we find the
nearest neighboor of ‖x‖2 in X. By M∗

k (k depends on m), we find ‖y‖2. Finally,

we obtain y =
√

‖y‖2

‖x‖2 x.

4 Experiments

The goal of this section is to assess the preservation of the distributions after
the Hungarian method, the impact of this method on distortion and the general
robustness of the three secure embedding schemes we presented.

4.1 Numerical values and assessments

In practice, Nc = 2. For NW and CW, we use Nv = 256 and for χ2W, we use
Nv = 55 (in order to have the same distortion for the three schemes, WCR =
−18dB), Nw = 8. Tests are made with 2000 host Gaussian signals. For χ2W,
in order to have the equiprobable condition, we use an estimator of a fractile
function of χ2 distribution given in [13] which uses an estimator of the repartition
function of a normal distribution in [14], we use the partition of the real-positive
axis defined on Tab. 1. We have constructed a 10000-map and a 10000-smap
with our signals database by using CW, NW and χ2W and we have marked the
initial 2000 signals by using on the one hand the secure modulation, and on the
other hand the corresponding model-based found by Hungarian method (HCW,
HNW and Hχ2W).
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message probability real-interval

(0 0) 0.1 [0;42.06]

(0 1) 0.2 [42.06;49.055]

(1 0) 0.15 [49.055;53.037]

(1 1) 0.15 [53.037;57.016]

(0 0) 0.15 [57.016;61.665]

(0 1) 0.05 [61.665;63.577]

(1 0) 0.1 [63.577;68.796]

(1 1) 0.1 [68.796;+∞[

Table 1. χ2W: secret key used for Nc = 2, Nw = 8, Nv = 55. This table shows the
real-interval functions of probability of messages. Each message appears with the same
probability (0.25). This partition is the same than in Fig. 2.

4.2 Distribution preservation after the Hungarian method

Fig. 7 shows host, NW and HNW distributions on two carriers. As we can see,
distribution of correlations after Natural Watermarking is the same than distri-
bution of host correlations. It is consistent with the definition of stego-security.
Moreover, correlations are the same after using Hungarian Method. Our model-
based doesn’t impair security. Distribution of CW and HCW on two carriers is
shown on Fig. 8, we can see that the distribution is circular and we can conclude
that for all bases (û0, û1) of vect(u0,u1) the distribution p(y0, ...,y1999|û0, û1)
will be the same (rotations of the secret subspace). It is consistent with the def-
inition of key-security, the pirate can access the subspace of the codewords but
has no information about the decoding regions. As HNW, HCW doesn’t impair
security. Fig. 9 shows projections of host, χ2W and Hχ2W signals over the two
first components. The distribution do not change with the two methods. As NW,
χ2W is stego-secure.

4.3 Distortion minimisation

Tab. 2 shows the impact on distortion obtained on average on our 2000 signals
for NW, CW, χ2W, HNW, HCW and Hχ2W. We can see that we gain 2.7dB of
distortion for NW, 1.1dB for CW and 3.6dB for χ2W. This last result is due to
the fact that there are two codewords for on message and these codewords are
away in the real-positive axis.

4.4 Robustness

Beside distortion and security, the last constraint to assess is the general robust-
ness of the presented schemes. We measure robustness of these secure modula-
tions with and without distortion optimisation. Fig. 10 shows Bit Error Rate
functions of chosen WCNR over 2000 signals and we can verify that distortion
optimisation does not modify robustness of our schemes. As we can see, CW is
more robust than NW which is more robust than χ2W. An insight of the poor
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Fig. 7. (a): distribution of the projections of the host signals over two carriers. (b) and
(c): distributions of the projection of the marked signals over two carriers for NW and
HNW.
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Fig. 8. Distribution of the projections of the marked signals over two carriers for CW
and HCW.

robustness of χ2W can be given by the fact that for this embedding, the decod-
ing regions are always very close to each other (see Fig. 3). Consequently one
watermarked vector corrupted by noise will have a higher probability to change
of coding regions for χ2W than for NW or CW. Note that we cannot show ro-
bustness of the six schemes with the same distortion because NW modulation
does not allow to set a target distortion.

5 Conclusion

The goals of this paper are twofold: to propose and compare secure embedding
schemes for data-hiding and to propose a general method to minimise the global
embedding distortion for each scheme. The first point is addressed by proposing
the χ2 embedding scheme which is more fragile than other scheme like NW or
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Fig. 9. (a): projection of host signals over the two first components. (b) and (c): pro-
jections of marked signals distributions over the two first components for χ2W and
Hχ2W.

WCR (classical) WCR (with the Hungarian method)

NW -18.07 -20.76

CW -17.97 -19.11

χ2W -18.02 -21.65

Table 2. Distortion for NW, CW and χ2W on initial embedding schemes and after
using the Hungarian optimisation scheme.

CW. The optimisation regarding robustness appears not to be straightforward
and future works will be devoted to find more robust schemes and to find coding
regions that will improve the robustness of χ2W.
Moreover, we found that the Hungarian method is the ideal practical tool to
minimize distortion while guaranteeing a given class of security.
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