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TOPOLOGY OF MANIFOLDS WITH ASYMPTOTICALLY

NONNEGATIVE RICCI CURVATURE

BAZANFARÉ MAHAMAN

Abstract. In this paper, we study the topology of complete noncom-
pact Riemannian manifolds with asymptotically nonnegative Ricci cur-
vature. We show that a complete noncompact manifold with asymp-
toticaly nonnegative Ricci curvature and sectional curvature KM (x) ≥

−
C

dp(x)α is diffeomorphic to a Euclidean n-space R
n under some condi-

tions on the density of rays starting from the base point p or on the
volume growth of geodesic balls in M.

1. Introduction

One of most important problems in Riemannian geometry is to find con-
ditions under which manifold is of finite topological type: A manifold is
said to have finite topological type if there exists a compact domain Ω with
boundary such that M \Ω is homeomorphic to ∂Ω×[0,∞[. The fundamental
notion involved in such a finite topological type result is that of the critical
point of a distance function introduced by Grove and Shiohama [8]. Let p a
fix point and set dp(x) = d(p, x) A point x 6= p is called critical point of dp

if for any v in the tangent space TxM there is minimal geodesic γ from x to
p forming an angle less or equal to π/2 with γ′(0) (see [8]).

In several papers it has been proved results for manifolds with nonnega-
tive curvature. By isotopy lemma (see below), the absence of critical point
assumed that the manifold is diffeomorphic to the euclidean space R

n.
X. Menguy in [11] and J. Sha and D.Yang in [13] constructed manifolds

with nonnegative Ricci curvature and infinite topological type. Hence a
natural question is under what additional conditions are manifolds with
nonnegative Ricci curvature of finite topological type? Are those manifolds
diffeomorphic to the unit sphere or the euclidean space? Under volume
growth, diameter or density of rays conditions, some results were obtained
on the geometry and topology of open manifolds with nonnegative Ricci
curvature. See [2], [3],[6],[10],[12],[13], [14],[15], [17],[18]. . .

Let K denotes the sectional curvature of M and fix a point p ∈ M . For
r > 0 let

kp(r) = inf
M\B(p,r)

K

2000 mathematics subject classification Primary 53C21, Secondary 53C20.

1



2 BAZANFARÉ MAHAMAN

where B(p, r) is the open geodesic ball around with radius r and the infimum
is taken over all the sections at points on M \B(p, r). If (M,g) is a complete
noncompact Riemannian manifold, we say M has sectional curvature decay
at most quadratic if kp(r) ≥ − C

rα for some C > 0, α ∈ [0, 2] and all r > 0.
In this paper we see the case of manifolds with asymptotically nonnegative

Ricci curvature and with sectional curvature decay almost quadratically.
A complete noncompact Riemannian manifold is said to have an asymp-

totically nonnegative sectional curvature (Ricci curvature) if there exists a
point p, called base point, and a monotne decreasing positive function λ
such that

∫ +∞
0 sλ(s)ds = b0 < +∞ and for any point x in M we have

K(x) ≥ −λ(dp(x)) (resp. Ric(x) ≥ −(n − 1)λ(dp(x)))

where dp is the distance to p. Let B(x, r) denote the metric ball of ra-
dius r and centre x in M and B(x, r) denote the similar metric ball in the
simply connected noncompact complete manifold with sectional curvature
−λ(dp(x)) at the point x where dp(x) = d(p, x) is the distance from p to x.

The volume comparison theorem proved in [9]] says that the function

r 7→ volB(x,r)
volB(x,r) is monotone decreasing. Set

αx = lim
r→+∞

volB(x, r)

volB(x, r)
and αM = inf

x∈M
αx.

We say M is large volume growth if αM > 0.
In [1] U. Abresch proved that asymptotically nonnegative sectional cur-

vature have finite topolological type.
Let Rp denotes the set of all ray issuing from p and S(p, r) the geodesic

ball of radius r and the center p. Set H(p, r) = maxx∈S(p,r) d(x,Rp). By de-
finition,we have H(p, r) ≤ r. Some results have been obtained by geometers
on manifolds with nonnegative Ricci curvature by using the density of the
rays. For manifods with quadratic sectional curvature decay, Q. Wang and
C. Xia proved that there exists a constant δ such that if H(p, r) < δr then
they are diffeomorphic to R

n.
In this paper we prove the following theorem:

Theorem 1.1. Given c > 0 and α ∈ [0, 2]; suppose that M is an n-
dimensional complete noncompact Riemannian manifold with RicciM (x) ≥
−(n − 1)λ(dp(x)) and K(x) ≥ − C

dp(x)α , Critp ≥ r0 then there exists a posi-

tive constant δ0 > 0 such that if H(p, r) < δ0r
β/2 then M is diffeomorphic

to R
n where β = 2

n + α(1 − 1
n).

Remark 1.2. (i) Theorem1.1 is an improvement of theorem1.1 [16] where
nonnegative Ricci curvature was assumed and sectional curvature Kp(r) ≥
− C

(1+r)α .

(ii) For α = 0 theorem1.1 is a generalisation of lemma 3.1 [18].

In [16] Q. Wang and C. Xia proved the following theorem (Theorem 1.3)
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Theorem 1.3. Given α ∈ [0, 2], positive numbers r0 and C, and an integer
n2, there is an ǫ = (n, r0, C, β) > 0 such that any complete Riemannian
n-manifold M with Ricci curvature RicM ≥ 0, αM > 0, critp ≥ r0 and

K(x) ≥ − C

(1 + dp(x))α
,

volB(p, r)

ωnrn
≤
(

1 +
ǫ

r(n−2 1
n

)(1−α
2
)

)

αM

for some p ∈ M and all r ≥ r0 is diffeomorphic to R
n.

In this paper we prove a more general result:

Theorem 1.4. Given c > 0 and α ∈ [0, 2]; suppose that M is an n-
dimensional complete noncompact Riemannian manifold with RicciM (x) ≥
−(n − 1)λ(dp(x)) and K(x) ≥ − C

dp(x)α , Critp ≥ r0 then there exists a posi-

tive constant ǫ = ǫ(C,α, r0) such that if

(1.1)
volB(p, r)

volB(p, r)
≤
(

1 +
ǫ

r(n−2+ 1
n

)(1−α
2
)

)

αp

then M is diffeomorphic to R
n.

2. Prelimanaries

To prove our results we need some lemmas.
The following one is proved in [8]

Lemma 2.1. (Isotopy Lemma).
Let 0 ≤ r1 ≤ r2 ≤ ∞. If a connected component C of B(p, r2) \ B(p, r1)

is free of critical points of p, then C is homeomorphic to C1 × [r1, r2], where
C1 is a topological submanifold without boundary.

If r1 = 0 and r2 = ∞ then the homeomorphism becomes diffeomorphism
(see for example [7].)

Let p and q be two points of a complete Riemannian manifold M. The
excess function epq is defined by: epq(x) = dp(x) + dq(x) − d(p, q). In [2] U.
Abresch and D. Gromoll gave and explicit upper bound of the excess function
in manifolds with curvature bounded below. They proved the following
lemma:

Lemma 2.2. (Proposition 3.1 [2]) Let M be an n−dimensional complete
Riemannian manifold (n ≥ 3 and let γ be a minimal geodesic joining the
base point p and another point q ∈ M , x ∈ M is a third point and the excess
function epq(x) = dp(x) + dq(x) − d(p, q). Suppose d(p, q) ≥ 2dp(x) and,
moreover, that there exists a nonincreasing function λ : [0,+∞[→ [0,+∞[
such that b0 =

∫∞
0 rλ(r)dr converges and Ric ≥ −(n − 1)λ(dp(x)) at all

points x ∈ M. Then the height of the triangles can be bounded from below in
terms of dp(x) and excess epq(x). More precisely,

(2.1) s ≥ min

{

1

6
dp(x),

dp(x)

(1 + 8b0)1/2
, C0dp(x)1/n(2epq(x))1−

1
n )

}

where C0 = 4
17

n−2
n−1( 5

1+8b0
)1/n.
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Lemma 2.3 (lemma [9]). Let (M,g) be a complete noncompact Riemannian
manifold with asymptotically nonnegative Ricci curvature with base point p
Then for all x ∈ M and all numbers R′, R with 0 < R′ < R we have
(2.2)
volB(x,R)

volB(x,R′)
≤ volB(x,R)

volB(x,R′)
≤
{

e(n−1)b0
(

R
R′

)n
if 0 < R < r = d(p, x)

e(n−1)b0
(

R+r
R′

)n
if R ≥ r

where B(x, s) is the ball in M with center x and radius s.

Let Σp be a closed subset of Up = {u ∈ TpM, ‖u‖ = 1} .
Set Σp(r) = {v ∈ Σp/γ(t) = expptv, γ is minimal on [0, r]} and

BΣp(r)(p, r) =
{

x ∈ B(p, r)/∃γ : [0, s] → M,γ(0) = p, γ(s) = x and γ′(0) ∈ Σp

}

.

Set Σp(∞) = ∩r>0Σp(r).
The following two lemmas generalised the above one.

Lemma 2.4 (Lemma3.9 [10]). Let (M,g) be a Riemannian complete non-
compact manifold such that RicM ≥ −(n − 1)λ(dp(x)) and Σp be a closed

subset of Up. Then the function r 7→ volBΣp (p,r)

volB(p,r) is non increasing.

Lemma 2.5 (Lemma 3.10 [10]). Let (M,g) be a Riemannian complete non-
compact manifold such that RicM ≥ −(n − 1)λ(dp(x)) and Σp be a closed

subset of Up. Then
volBΣp(r)(p,r)

volB(p,r) ≥ αp.

3. Proofs

Proof of theorem1.1
To prove the theorem1.1, it suffices to show that dp has no critical point

other than p. Let x be a point of M. Set r = d(p, x); s = d(x,Rp). Since
Rp is closed there exists a ray γ issuing from p such that s = d(x, γ). Set
q = γ(t0) for t0 ≥ 2r. Let σ1 and σ2 be geodesics joining x to p and q
respectively.

Set p̃ = σ1(δr
α/2) ; q̃ = σ2(δr

α/2) with

(3.1) δ < min

{

Cn
0 ,

r
1−β/2
0

20
,

r
1−β/2
0√
1 + 8b0

, Cn
0 r

1−β/2
0

}

.

Consider the triangle (x, p̃, q̃); if y is a point on this triangle, then

d(p, y) ≥ d(p, x) − d(x, y) ≥ d(p, x) − d(p̃, x) − d(p̃, y) ≥ d(p, x) − 2δrα/2.

Since β ≥ α. we have

(3.2) d(p, y) ≥ d(p, x) − 2δrβ/2 ≥ r(1 − 2δr
β

2
−1) ≥ r(1 − 2δr

β

2
−1

0 ) ≥ r/4.

Hence y ∈ M \ B(p, r/4) and KM (y) ≥ −4αC
rα .

Thus the triangle (x, p̃, q̃) ⊂ M \ B(p, r
4). Set θ = ∡σ′

1(0), σ
′
2(0).
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Applying the Toponogov’s theorem to the triangle (x, p̃, q̃) we have:
(3.3)

cosh

(

2αC1/2

rα/2
d(p̃, q̃)

)

≤ cosh2

(

2αC1/2

rα/2
d(p̃, x)

)

−sinh2

(

2αC1/2

rα/2
d(p̃, x)

)

cos θ

Since s < δrβ/2, we deduce from inequaties (2.1) and (3.1)

C0r
1/n(2epq(x))1−

1
n < δrβ/2,

hence

(3.4) epq(x) ≤ δn/n−1

2C
n/n−1
0

rα/2 ≤ δ

2
.rα/2.

By triangle inequality, we have

(3.5)
d(p̃, q̃) ≥ d(p, q) − d(p, p̃) − d(q, q̃)

≥ d(p, q) − d(p, x) + d(p̃, x) − d(x, q) + d(q̃, x)

≥ 2δrα/2 − epq(x).
.

Hence

(3.6) d(p̃, q̃) ≥ 2δrα/2 − δ

2
rα/2 ≥ 3

2
δrα/2.

From inequalities (3.3) and (3.6) we deduce

cosh

(

3

2
C1/22αδ

)

≤ cosh2
(

C1/22αδ
)

− sinh2
(

C1/22αδ
)

cosθ.

Therefore

sinh2
(

C1/22αδ
)

cosθ ≤ cosh2
(

C1/22αδ
)

− cosh

(

3

2
C1/22αδ

)

Let X0 be the solution of the equation cosh22X − cosh3X = 0. If δ0 < X0
2α−1

then θ > π
2 which means that x is not a critical point of dp and the conclusion

follows.

Proof of theorem1.4

If y(t) denotes the function given by the Jacobi equation

y′′(t) = λ(t)y(t)

in the simply connected manifold with sectional curvature −λ(d(p, x)) at
the point x then (see [9] )

(3.7) t ≤ y(t) ≤ eb0t

and it follows that

(3.8) ωnrn ≤ volB(p, r) ≤ ωne(n−1)b0rn.

In one hand we have:
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Let x ∈ M , x 6= p; set s = d(x,Rp) and Σc
p(∞) = Up \ Σp(∞). Thus

B(x,
s

2
) ⊂ BΣc

p(∞)(p, r +
s

2
) \ B(p, r − s

2
).

Hence

(3.9) volB(x,
s

2
) ≤ volBΣc

p(∞)(p, r +
s

2
) − volB(p, r − s

2
)

(3.10) ≤ volBΣc
p(∞)(p, r +

s

2
) − volBΣc

p(∞)(p, r − s

2
)

(3.11) ≤ volBΣc
p(∞)(p, r − r

2
)

(

volBΣc
p(∞)(p, r + s

2 )

volBΣc
p(∞)(p, r − r

2 )
− 1

)

.

We deduce from lemma2.5

(3.12) volB(x,
s

2
) ≤ volBΣc

p(∞)(p, r − s

2
)

(

volB(p, r + s
2 )

volB(p, r − s
2 )

− 1

)

(3.13) ≤
volBΣc

p(∞)(p, r − s
2 )

ωn(r − s
2)n

(

∫

Up

∫ r+s/2

r−s/2
Jn−1(t)dt

)

where J(t) denotes the exponential Jacobi in polar coordinates. Since the
function J/y is nonincreasing (see [9]) and using the inequality (3.7 we have:

(3.14) volB(x,
s

2
) ≤

volBΣc
p(∞)(p, r − s

2)

ωn(r − s
2)n

e(n−1)b0

(

∫

Up

∫ r+s/2

r−s/2
tn−1dt

)

(3.15) ≤
volBΣc

p(∞)(p, r − s
2)

(r − s
2 )n

e(n−1)b0 ((r + s/2)n − (r − s/2)n)

(3.16) ≤ volBΣc
p(∞)(p, r − s

2
)e(n−1)b0

((

r + s/2

r − s/2

)n

− 1

)

(3.17)

≤ volBΣc
p(∞)(p, r−s

2
)e(n−1)b0

(

(1 +
2s

r
)n − 1

)

≤ volBΣc
p(∞)(p, r−s

2
)e(n−1)b0 .

s

r
(3n−1).

In other hand we have

volBΣc
p(∞)(p, r − s

2
) = volB(p, r − s/2) − volBΣp(∞)(p, r − s/2)

By (2.5) we have

(3.18) volBΣp(∞)(p, r − s/2) ≥ αpvolB(p, r − s/2).

From (3.17) and (3.18 we deduce

volB(x, s/2) ≤ [volB(p, r − s/2) − αpvolB(p, r − s/2)] .e(n−1)b0 .
s

r
(3n − 1).
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By 1.1 we have

(3.19) volB(x, s/2) ≤ ǫαp

(r − s/2)(n−2+ 1
n

)(1−α
2
)
e(n−1)b0 s

r
3nvolB(p, r − s

2
).

From (3.8) and (3.19) we have

(3.20) volB(x, s/2) ≤ ǫαpe
2(n−1)b0s3nωnr(n−1)( 1

n
+ α

2
(1− 1

n
)).

We claim that

(3.21) volB(x, s/2) ≥ ωnαp

6ne(n−1)b0
sn.

Indeed we have B(p, r) ⊂ B(x, 2r), and by (2.3) we deduce

(3.22)
volB(p, r)

volB(x, s/2)
≤ volB(x, 2r)

volB(x, s/2)
≤ B(x, 2r)

volB(x, s/2)

(3.23) ≤ e(n−1)b0

(

2r + s

s/2

)n

≤ e(n−1)b06n
(r

s

)n
.

Thus

(3.24) volB(x, s/2) ≥ snvolB(p, r)

6ne(n−1)b0rn
.

Hence from (3.8), lemma2.5 and (3.24) the conclusion follows.
Thus from (3.20) and the inequality (3.21) we have

sn−1 ≤ ǫ18ne3(n−1)b0r(n−1)( 1
n

+ α
2
(1− 1

n
))

which means that

s ≤ ǫ1/(n−1)18n/(n−1)e3b0r
1
n

+ α
2
(1− 1

n
).

Then it suffices to take ǫ < δn−1

18ne3(n−1)b0
.
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