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TOPOLOGY OF MANIFOLDS WITH ASYMPTOTICALLY NONNEGATIVE RICCI CURVATURE

In this paper, we study the topology of complete noncompact Riemannian manifolds with asymptotically nonnegative Ricci curvature. We show that a complete noncompact manifold with asymptoticaly nonnegative Ricci curvature and sectional curvature KM (x) ≥ -C dp(x) α is diffeomorphic to a Euclidean n-space R n under some conditions on the density of rays starting from the base point p or on the volume growth of geodesic balls in M.

Introduction

One of most important problems in Riemannian geometry is to find conditions under which manifold is of finite topological type: A manifold is said to have finite topological type if there exists a compact domain Ω with boundary such that M \Ω is homeomorphic to ∂Ω×[0, ∞[. The fundamental notion involved in such a finite topological type result is that of the critical point of a distance function introduced by Grove and Shiohama [START_REF] Grove | A generalized sphere theorem[END_REF]. Let p a fix point and set d p (x) = d(p, x) A point x = p is called critical point of d p if for any v in the tangent space T x M there is minimal geodesic γ from x to p forming an angle less or equal to π/2 with γ ′ (0) (see [START_REF] Grove | A generalized sphere theorem[END_REF]).

In several papers it has been proved results for manifolds with nonnegative curvature. By isotopy lemma (see below), the absence of critical point assumed that the manifold is diffeomorphic to the euclidean space R n .

X. Menguy in [START_REF] Menguy | Noncollapsing examples with positive Ricci curvature and infinite topological type[END_REF] and J. Sha and D.Yang in [START_REF] Sha | Examples of manifolds of positive Ricci curvature[END_REF] constructed manifolds with nonnegative Ricci curvature and infinite topological type. Hence a natural question is under what additional conditions are manifolds with nonnegative Ricci curvature of finite topological type? Are those manifolds diffeomorphic to the unit sphere or the euclidean space? Under volume growth, diameter or density of rays conditions, some results were obtained on the geometry and topology of open manifolds with nonnegative Ricci curvature. See [START_REF] Abresch | On complete manifolds with nonnegative Ricci curvature[END_REF], [START_REF] Anderson | On the topology of complete manifolds with nonnegative Ricci curvature[END_REF], [START_REF] Carmo | Ricci curvature and the topology of open manifolds[END_REF], [START_REF] Mahaman | Open manifolds with asymptotically nonnegative curvature[END_REF], [START_REF] Sha | Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity[END_REF], [START_REF] Sha | Examples of manifolds of positive Ricci curvature[END_REF], [START_REF] Shen | On complete manifolds of nonnegative kth-Ricci curvature[END_REF], [START_REF] Shen | Complete manifolds with nonnegative Ricci curvature and large volume growth[END_REF], [START_REF] Xia | Open manifolds with sectional curvature bounded below[END_REF], [START_REF] Xia | Large volume growth and the topology of open manifolds[END_REF] where B(p, r) is the open geodesic ball around with radius r and the infimum is taken over all the sections at points on M \ B(p, r). If (M, g) is a complete noncompact Riemannian manifold, we say M has sectional curvature decay at most quadratic if k p (r) ≥ -C r α for some C > 0, α ∈ [0, 2] and all r > 0. In this paper we see the case of manifolds with asymptotically nonnegative Ricci curvature and with sectional curvature decay almost quadratically.

A complete noncompact Riemannian manifold is said to have an asymptotically nonnegative sectional curvature (Ricci curvature) if there exists a point p, called base point, and a monotne decreasing positive function λ such that +∞ 0 sλ(s)ds = b 0 < +∞ and for any point x in M we have

K(x) ≥ -λ(d p (x)) (resp. Ric(x) ≥ -(n -1)λ(d p (x)))
where d p is the distance to p. Let B(x, r) denote the metric ball of radius r and centre x in M and B(x, r) denote the similar metric ball in the simply connected noncompact complete manifold with sectional curvature -λ(d p (x)) at the point x where d p (x) = d(p, x) is the distance from p to x.

The volume comparison theorem proved in [START_REF] Mahaman | A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature[END_REF]] says that the function r → volB(x,r) volB(x,r) is monotone decreasing. Set

α x = lim r→+∞ volB(x, r) volB(x, r) and α M = inf x∈M α x .
We say M is large volume growth if α M > 0.

In [START_REF] Abresch | Lower curvature bounds, Toponogovs theorem and bounded topology I[END_REF] U. Abresch proved that asymptotically nonnegative sectional curvature have finite topolological type.

Let R p denotes the set of all ray issuing from p and S(p, r) the geodesic ball of radius r and the center p. Set H(p, r) = max x∈S(p,r) d(x, R p ). By definition,we have H(p, r) ≤ r. Some results have been obtained by geometers on manifolds with nonnegative Ricci curvature by using the density of the rays. For manifods with quadratic sectional curvature decay, Q. Wang and C. Xia proved that there exists a constant δ such that if H(p, r) < δr then they are diffeomorphic to R n .

In this paper we prove the following theorem:

Theorem 1.1. Given c > 0 and α ∈ [0, 2]; suppose that M is an n- dimensional complete noncompact Riemannian manifold with Ricci M (x) ≥ -(n -1)λ(d p (x)) and K(x) ≥ -C dp(x) α , Crit p ≥ r 0 then there exists a posi- tive constant δ 0 > 0 such that if H(p, r) < δ 0 r β/2 then M is diffeomorphic to R n where β = 2 n + α(1 -1 n ). Remark 1.2. (i) Theorem1.
1 is an improvement of theorem1.1 [START_REF] Wang | Topological rigidity theorems for open Riemannian manifolds[END_REF] where nonnegative Ricci curvature was assumed and sectional curvature K p (r) ≥ -C (1+r) α .

(ii) For α = 0 theorem1.1 is a generalisation of lemma 3.1 [START_REF] Xia | Large volume growth and the topology of open manifolds[END_REF].

In [START_REF] Wang | Topological rigidity theorems for open Riemannian manifolds[END_REF] Q. Wang and C. Xia proved the following theorem (Theorem 1.3)

Theorem 1.3. Given α ∈ [0, 2]
, positive numbers r 0 and C, and an integer n2, there is an ǫ = (n, r 0 , C, β) > 0 such that any complete Riemannian n-manifold M with Ricci curvature Ric M ≥ 0, α M > 0, crit p ≥ r 0 and

K(x) ≥ - C (1 + d p (x)) α , volB(p, r) ω n r n ≤ 1 + ǫ r (n-2 1 n )(1-α 2 )
α M for some p ∈ M and all r ≥ r 0 is diffeomorphic to R n .

In this paper we prove a more general result:

Theorem 1.4. Given c > 0 and α ∈ [0, 2]; suppose that M is an n- dimensional complete noncompact Riemannian manifold with Ricci M (x) ≥ -(n -1)λ(d p (x)) and K(x) ≥ -C dp(x) α , Crit p ≥ r 0 then there exists a posi- tive constant ǫ = ǫ(C, α, r 0 ) such that if (1.1) volB(p, r) volB(p, r) ≤ 1 + ǫ r (n-2+ 1 n )(1-α 2 ) α p then M is diffeomorphic to R n .

Prelimanaries

To prove our results we need some lemmas.

The following one is proved in [START_REF] Grove | A generalized sphere theorem[END_REF] Lemma 2.1.

(Isotopy Lemma). Let 0 ≤ r 1 ≤ r 2 ≤ ∞. If a connected component C of B(p, r 2 ) \ B(p, r 1 ) is free of critical points of p, then C is homeomorphic to C 1 × [r 1 , r 2 ],
where C 1 is a topological submanifold without boundary.

If r 1 = 0 and r 2 = ∞ then the homeomorphism becomes diffeomorphism (see for example [START_REF] Grove | Critical point theory for distance functions[END_REF].)

Let p and q be two points of a complete Riemannian manifold M. The excess function e pq is defined by: e pq (x) = d p (x) + d q (x) -d(p, q). In [START_REF] Abresch | On complete manifolds with nonnegative Ricci curvature[END_REF] U. Abresch and D. Gromoll gave and explicit upper bound of the excess function in manifolds with curvature bounded below. They proved the following lemma: Lemma 2.2. (Proposition 3.1 [START_REF] Abresch | On complete manifolds with nonnegative Ricci curvature[END_REF]) Let M be an n-dimensional complete Riemannian manifold (n ≥ 3 and let γ be a minimal geodesic joining the base point p and another point q ∈ M , x ∈ M is a third point and the excess function e pq (x) = d p (x) + d q (x) -d(p, q). Suppose d(p, q) ≥ 2d p (x) and, moreover, that there exists a nonincreasing function λ : [0, +∞[→ [0, +∞[ such that b 0 = ∞ 0 rλ(r)dr converges and Ric ≥ -(n -1)λ(d p (x)) at all points x ∈ M. Then the height of the triangles can be bounded from below in terms of d p (x) and excess e pq (x). More precisely,

(2.1) s ≥ min 1 6 d p (x), d p (x) (1 + 8b 0 ) 1/2 , C 0 d p (x) 1/n (2e pq (x)) 1-1 n )
where

C 0 = 4 17 n-2 n-1 ( 5 1+8b 0 ) 1/n .
Lemma 2.3 (lemma [START_REF] Mahaman | A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature[END_REF]). Let (M, g) be a complete noncompact Riemannian manifold with asymptotically nonnegative Ricci curvature with base point p Then for all x ∈ M and all numbers R ′ , R with 0 < R ′ < R we have

(2.2) volB(x, R) volB(x, R ′ ) ≤ volB(x, R) volB(x, R ′ ) ≤ e (n-1)b 0 R R ′ n if 0 < R < r = d(p, x) e (n-1)b 0 R+r R ′ n if R ≥ r
where B(x, s) is the ball in M with center x and radius s.

Let Σ p be a closed subset of U p = {u ∈ T p M, u = 1} . Set Σ p (r) = {v ∈ Σ p /γ(t) = exp p tv, γ is minimal on [0, r]} and B Σp(r) (p, r) = x ∈ B(p, r)/∃γ : [0, s] → M, γ(0) = p, γ(s) = x and γ ′ (0) ∈ Σ p . Set Σ p (∞) = ∩ r>0 Σ p (r).
The following two lemmas generalised the above one. ≥ α p .

Proofs

Proof of theorem1.1

To prove the theorem1.1, it suffices to show that d p has no critical point other than p. Let x be a point of M. Set r = d(p, x); s = d(x, R p ). Since R p is closed there exists a ray γ issuing from p such that s = d(x, γ). Set q = γ(t 0 ) for t 0 ≥ 2r. Let σ 1 and σ 2 be geodesics joining x to p and q respectively. Set p = σ 1 (δr α/2 ) ; q = σ 2 (δr α/2 ) with

(3.1) δ < min C n 0 , r 1-β/2 0 20 , r 1-β/2 0 √ 1 + 8b 0 , C n 0 r 1-β/2 0 .
Consider the triangle (x, p, q); if y is a point on this triangle, then

d(p, y) ≥ d(p, x) -d(x, y) ≥ d(p, x) -d(p, x) -d(p, y) ≥ d(p, x) -2δr α/2 .
Since β ≥ α. we have

(3.2) d(p, y) ≥ d(p, x) -2δr β/2 ≥ r(1 -2δr β 2 -1 ) ≥ r(1 -2δr β 2 -1 0 ) ≥ r/4.
Hence y ∈ M \ B(p, r/4) and K M (y) ≥ -

4 α C r α . Thus the triangle (x, p, q) ⊂ M \ B(p, r 4 ). Set θ = ∡σ ′ 1 (0), σ ′ 2 (0).
Applying the Toponogov's theorem to the triangle (x, p, q) we have:

(3.3) cosh 2 α C 1/2 r α/2 d(p, q) ≤ cosh 2 2 α C 1/2 r α/2 d(p, x) -sinh 2 2 α C 1/2 r α/2 d(p, x) cos θ
Since s < δr β/2 , we deduce from inequaties (2.1) and (3.1)

C 0 r 1/n (2e pq (x)) 1-1 n < δr β/2 , hence (3.4) e pq (x) ≤ δ n/n-1 2C n/n-1 0 r α/2 ≤ δ 2 .r α/2 .
By triangle inequality, we have

(3.5) d(p, q) ≥ d(p, q) -d(p, p) -d(q, q) ≥ d(p, q) -d(p, x) + d(p, x) -d(x, q) + d(q, x) ≥ 2δr α/2 -e pq (x).
.

Hence (3.6) d(p, q) ≥ 2δr α/2 - δ 2 r α/2 ≥ 3 2 δr α/2 .
From inequalities (3.3) and (3.6) we deduce

cosh 3 2 C 1/2 2 α δ ≤ cosh 2 C 1/2 2 α δ -sinh 2 C 1/2 2 α δ cosθ.
Therefore

sinh 2 C 1/2 2 α δ cosθ ≤ cosh 2 C 1/2 2 α δ -cosh 3 2 C 1/2 2 α δ
Let X 0 be the solution of the equation cosh 2 2X -cosh3X = 0. If δ 0 < X 0 2 α-1 then θ > π 2 which means that x is not a critical point of d p and the conclusion follows.

Proof of theorem1.4

If y(t) denotes the function given by the Jacobi equation

y ′′ (t) = λ(t)y(t)
in the simply connected manifold with sectional curvature -λ(d(p, x)) at the point x then (see [START_REF] Mahaman | A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature[END_REF] ) In one hand we have:

Let x ∈ M , x = p; set s = d(x, R p ) and Σ c p (∞) = U p \ Σ p (∞). Thus B(x, s 2 ) ⊂ B Σ c p (∞) (p, r + s 2 ) \ B(p, r - s 2 ). Hence (3.9) volB(x, s 2 ) ≤ volB Σ c p (∞) (p, r + s 2 ) -volB(p, r - s 2 ) (3.10) ≤ volB Σ c p (∞) (p, r + s 2 ) -volB Σ c p (∞) (p, r - s 2 ) (3.11) ≤ volB Σ c p (∞) (p, r - r 2 ) volB Σ c p (∞) (p, r + s 2 ) volB Σ c p (∞) (p, r -r 2 ) -1 .
We deduce from lemma2.5

(3.12) volB(x, s 2 ) ≤ volB Σ c p (∞) (p, r - s 2 ) volB(p, r + s 2 ) volB(p, r -s 2 ) -1 (3.13) ≤ volB Σ c p (∞) (p, r -s 2 ) ω n (r -s 2 ) n U p r+s/2 r-s/2 J n-1 (t)dt
where J(t) denotes the exponential Jacobi in polar coordinates. Since the function J/y is nonincreasing (see [START_REF] Mahaman | A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature[END_REF]) and using the inequality (3.7 we have:

(3.14) volB(x, s 2 ) ≤ volB Σ c p (∞) (p, r -s 2 ) ω n (r -s 2 ) n e (n-1)b 0 U p r+s/2 r-s/2 t n-1 dt (3.15) ≤ volB Σ c p (∞) (p, r -s 2 ) (r -s 2 ) n e (n-1)b 0 ((r + s/2) n -(r -s/2) n ) (3.16) ≤ volB Σ c p (∞) (p, r - s 2 )e (n-1)b 0 r + s/2 r -s/2 n -1 (3.17) ≤ volB Σ c p (∞) (p, r- s 2 )e (n-1)b 0 (1 + 2s r ) n -1 ≤ volB Σ c p (∞) (p, r- s 2 )e (n-1)b 0 . s r (3 n -1).
In other hand we have 6 n e (n-1)b 0 r n . Hence from (3.8), lemma2.5 and (3.24) the conclusion follows.

volB Σ c p (∞) (p, r - s 2 ) = volB(p, r -s/2) -volB Σp(∞) (p,
Thus from (3.20) and the inequality (3.21) we have s n-1 ≤ ǫ18 n e 3(n-1)b 0 r (n-1)(

1 n + α 2 (1-1 n ))
which means that s ≤ ǫ 1/(n-1) 18 n/(n-1) e 3b 0 r

1 n + α 2 (1- 1 
n ) . Then it suffices to take ǫ < δ n-1

18 n e 3(n-1)b 0 .

  . . . Let K denotes the sectional curvature of M and fix a point p ∈ M . For r > 0 let k p (r) = inf M \B(p,r) K 2000 mathematics subject classification Primary 53C21, Secondary 53C20.1
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 2425 Lemma3.9[START_REF] Mahaman | Open manifolds with asymptotically nonnegative curvature[END_REF]). Let (M, g) be a Riemannian complete noncompact manifold such that Ric M ≥ -(n -1)λ(d p (x)) and Σ p be a closed subset of U p . Then the function r → volB Σp (p,r) volB(p,r) is non increasing. Lemma 3.10 [10]). Let (M, g) be a Riemannian complete noncompact manifold such that Ric M ≥ -(n -1)λ(d p (x)) and Σ p be a closed subset of U p . Then volB Σp (r) (p,r) volB(p,r)

(3. 7 )

 7 t ≤ y(t) ≤ e b 0 t and it follows that(3.8) ω n r n ≤ volB(p, r) ≤ ω n e (n-1)b 0 r n .

  r -s/2) ≤ ǫα p e 2(n-1)b 0 s3 n ω n r (n-1)( 1

	By 1.1 we have			
	(3.19) volB(x, s/2) ≤ From (3.8) and (3.19) we have (r -s/2) (n-2+ 1 ǫα p n )(1-α 2 )	e (n-1)b 0 s r	3 n volB(p, r -	s 2	).
	(3.20)	volB(x, s/2) n + α 2 (1-1 n )) .
	We claim that (3.21)	volB(x, s/2) ≥	ω n α p 6 n e (n-1)b 0	s n .
	Indeed we have B(p, r) ⊂ B(x, 2r), and by (2.3) we deduce (3.22) volB(p, r) volB(x, s/2) ≤ volB(x, 2r) volB(x, s/2) B(x, 2r) ≤ volB(x, s/2)
	(3.23)		≤ e (n-1)b 0 2r + s s/2		
	By (2.5) we have			
	(3.18) From (3.17) and (3.18 we deduce volB Σp(∞) (p, r -s/2) ≥ α p volB(p, r -s/2).
	volB(x, s/2) ≤ [volB(p, r -s/2) -α p volB(p, r -s/2)] .e (n-1)b 0 .	s r	(3 n -1).

n ≤ e (n-1)b 0 6 n r s n . Thus (3.24) volB(x, s/2) ≥ s n volB(p, r)