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Abstract : For a large class of R+ valued, continuous local martingales (Mt t ≥ 0), with
M0 = 1 and M∞ = 0, the put quantity : ΠM(K, t) = E

(
(K − Mt)

+
)

turns out to be the
distribution function in both variables K and t, for K ≤ 1 and t ≥ 0, of a probability γM

on [0, 1] × [0,∞[. In this paper, the first in a series of three, we discuss in detail the case

where Mt = Et := exp
(
Bt −

t

2

)
, for (Bt, t ≥ 0) a standard Brownian motion.

Keywords : First and last passage times, pseudo-inverse, local time-space calculus, Black-
Scholes set up.

1 Introduction

1.1 Throughout this paper, we consider a generic continuous local martingale (Mt, t ≥ 0),
taking values in R+, and such that :

M0 = 1, lim
t→∞

Mt = 0 a.s. (1.1)
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To such an (Mt, t ≥ 0), we associate the function 1 ΠM : [0, 1] × R+ → R+ defined by :

ΠM(K, t) := E
(
(K − Mt)

+
)
, 0 ≤ K ≤ 1, t ≥ 0 (1.2)

Note that this function is separately increasing in K and t
(
since, (K − x)+ being convex,(

(K − Mt)
+, t ≥ 0

)
is a submartingale

)
. Furthermore, we have :

(i) ΠM(K, 0) = 0 (0 ≤ K ≤ 1) and

ΠM(K,∞) := lim
t→∞

ΠM(K, t) = K (1.3)

(from the dominated convergence Theorem)

(ii) ΠM(K, t) = K P (GK ≤ t) (1.4)

with GK := sup{t ≥ 0 ; Mt = K} (1.5)
(
see [1], [5], [6], [7], [8]

)
. In particular :

ΠM(1, t) = P (G1 ≤ t) (1.6)

Thus,
(
ΠM(K,∞), K ≤ 1

)
, resp.

(
ΠM(1, t), t ≥ 0

)
is a distribution function on [0, 1],

resp. on [0,∞[ ; more precisely, these functions are, respectively, the distribution function
of U , a standard uniform variable on [0, 1], and of G1.

To illustrate (1.6), let us recall that in the case
(
Mt = Et := exp

(
Bt −

t

2

)
, t ≥ 0

)
, with

(Bt ; t ≥ 0) a standard Brownian motion it was shown in [5] that : G1
(law)
= 4B2

1 ; hence,
(1.6) reads, in this case :

ΠE(1, t) = P (4B2
1 ≤ t) (1.7)

This formula may also be checked directly from the Black-Scholes formula.

1.2 It is thus a natural question to ask whether the function of K and t :(
ΠM(K, t) ; K ≤ 1, t ≥ 0

)
is the distribution function of a probability on [0, 1] × [0,∞[

which, assuming it exists, we shall denote by γ(= γM). If so, we have :

E
(
(K − Mt)

+
)

= γ
(
[0, K] × [0, t]

)
, K ≤ 1, t ≥ 0 (1.8)

1.3 Here is our strategy to attack this question. Note that by Fubini :

E
(
(K − Mt)

+
)

=

∫ K

0

P (Mt ≤ x)dx (1.9)

1It is the ”put” associated to the local martingale (Mt), with strike K, and maturity t.
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Assume that there exists, for every x < 1, a r.v. Yx ≥ 0 such that :

P (Mt ≤ x) = P (Yx ≤ t) (x < 1, t ≥ 0) (1.10)

We shall call this collection (Yx, x ≤ 1) of r.v.’s, provided it exists, a pseudo-inverse of
(Mt, t ≥ 0).
To justify this terminology, think of (Mt, t ≥ 0) as a process with a tendency to decrease,
since it is a supermartingale which converges to 0 as t → ∞. Now, replace (Mt, t ≥ 0)
by a decreasing process (Dt, t ≥ 0) ; then, if (θd, d ≥ 0) is the inverse of D, we have :
P (Dt ≤ x) = P (θx ≤ t).

Let us go back to (1.9), and assume that (Mt, t ≥ 0) admits a pseudo-inverse (Yx, x ≤ 1).
Then, plugging (1.10) in (1.9), we find that γ exists, and it is the probability :

γ(dx, dt) = dx P (Yx ∈ dt) on [0, 1] × [0,∞[

Note that, a priori, we do not know the existence of (Yx, x ≤ 1) as a process ; if such a
process exists, then γ is the law of :

(U, YU) (1.11)

where U is uniform on [0, 1], independent of (Yx, x < 1).

1.4 In practice, most of the time, the function :

(K, t) → ΠM(K, t)

is regular ; if so, we find that (Mt, t ≥ 0) admits a pseudo-inverse if and only if :

∂2

∂K∂t

(
ΠM(K, t)

)
≥ 0 (1.12)

and then :

γ(dK, dt) = dK P (YK ∈ dt) =

(
∂2

∂K∂t

(
ΠM(K, t)

))
dK dt (1.13)

1.5 In Section 2, we shall develop this program in the case Mt = Et :=

exp
(
Bt −

t

2

)
, t ≥ 0 where

(
Bt, t ≥ 0

)
is a standard Brownian motion started at 0. In

particular, we prove the existence of a pseudo-inverse for (Et, t ≥ 0).

1.6 In Part II, (in preparation) we aim to show the existence of a pseudo-inverse for
a large number of Markovian martingales (Mt, t ≥ 0). In Part III, further classes of
martingales shall be shown to admit pseudo-inverses.
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2 The Black-Scholes paradigm

2.1 In this Section, (Bt, t ≥ 0) denotes a standard Brownian motion started at 0 and
(Et, t ≥ 0) is the exponential martingale defined by :

Et := exp
(
Bt −

t

2

)
, t ≥ 0 (2.1)

Note that E0 = 1 and Et −→
t→∞

0 a.s. We define, for 0 ≤ K ≤ 1 and t ≥ 0 :

ΠE(K, t) := E
(
(K − Et)

+
)

(2.2)

Theorem 2.1 There exists a probability, which we shall denote by γ, on [0, 1]× [0,∞[ such
that :

ΠE(K, t) = γ
(
[0, K] × [0, t]

)
(2.3)

(
see point ii) of Proposition 2.7 for a description of the density of γ

)
.

In order to prove Theorem 2.1 and to describe γ, we start with :

Lemma 2.2 Denote by N the distribution function of the standard Gaussian variable :

N (x) :=
1√
2π

∫ x

−∞

e−
y2

2 dy (x ∈ R) (2.4)

Then :

i) To any a, b > 0, one can associate a r.v. Ya,b, taking values in [0,∞[, such that :

P (Ya,b ≤ t) = N
(

a
√

t − b√
t

)
, t ≥ 0 (2.5)

ii) The density fYa,b
of Ya,b is given by :

fYa,b
(t) =

1√
2π

eab ·
(

a

2
√

t
+

b

2t
3
2

)
exp

(
−1

2

(
a2t +

b2

t

))
(2.6)

iii) Let us define :

T
(a)
b := inf{t ≥ 0 ; Bt + at = b} (2.7)

G
(a)
b := sup{t ≥ 0 ; Bt + at = b} (2.8)

Then :

P (Ya,b ∈ dt) =
1

2

{
P (T

(a)
b ∈ dt) + P (G

(a)
b ∈ dt)

}
(2.9)
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We note that this formula (2.9) allows to define the law of a process (Ya,b ; b ≥ 0) obtained

as a fair coin toss of (T
(a)
b ; b ≥ 0) on one hand and (G

(a)
b ; b ≥ 0) on the other hand.

Remark 2.3
i) It may be worth mentioning that this point i) of Lemma 2.2 admits a wide extension,

since to any distribution function F on R, and any a, b > 0, we can associate a new
distribution function Fa,b on R+ via :

Fa,b(t) = F

(
a
√

t − b√
t

)
(t ≥ 0)

However, the particular case F = N fits extremely well with our discussion.

ii) We note that
1

Ya,b

(law)
= Yb,a, which may be deduced from either (2.5), (2.6) or (2.9).

Proof of Lemma 2.2
a. Points i) and ii) of Lemma 2.2 are immediate since :

• lim
t↓0

N
(

a
√

t − b√
t

)
= 0

• lim
t↑∞

N
(

a
√

t − b√
t

)
= 1

• ∂

∂t
N
(

a
√

t − b√
t

)
=

1√
2π

(
a

2
√

t
+

b

2t
3
2

)
exp−1

2

(
a
√

t − b√
t

)2

≥ 0

= fYa,b
(t)

b. We now prove point iii) of Lemma 2.2 :
We shall use the well-known formulae

(
see e.g. [6]

)

P (T
(a)
b ∈ dt) =

b dt√
2πt3

exp− 1

2t
(b − at)2 (a, b > 0, t ≥ 0) (2.10)

P (G
(a)
b ∈ dt) =

a dt√
2πt

exp− 1

2t
(b − at)2 (a, b > 0, t ≥ 0) (2.11)

(2.9) is now an immediate consequence of (2.10), (2.11) and (2.6).

c. Another proof of point iii) of Lemma 2.2 :

Let us denote, for ν > 0,
(
E (2ν)

t := exp(2νBt − 2ν2t), t ≥ 0
)
. It is proven in [6] Theorem

1, that, for A ≥ 1 :

P (T
(ν)
log A ≤ t) = E(E (2ν)

t 1
E

(2ν)
t >A2ν ) + A2νP (E (2ν)

t > A2ν)

and for A ≥ 0 :

P (G
(ν)
log A ≤ t) = E(E (2ν)

t 1
E

(2ν)
t >A2ν ) − A2νP (E (2ν)

t > A2ν)
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Thus, by addition :

1

2

{
P (T

(ν)
log A ≤ t) + P (G

(ν)
log A ≤ t)

}
= E(E (2ν)

t 1
E

(2ν)
t >A2ν )

= P (e2νBt+2ν2t > A2ν) (from Cameron-Martin formula)

= P (Bt > log A − νt) = P

(
B1 >

log A − νt√
t

)

= 1 −N
(

log A√
t

− ν
√

t

)
= N

(
ν
√

t − log A√
t

)
(2.12)

(2.6) is now an immediate consequence of (2.12), with b = log A and ν = a, by derivation
with respect to t.

Proof of Theorem 2.1 From (1.8), we denote, for K ≤ 1 and t ≥ 0 :

ΠE(K, t) := E
(
(K − Et)

+
)

=

∫ K

0

P (Et ≤ x)dx

=

∫ K

0

N
(

log x√
t

+

√
t

2

)
dx

(
since P (Et ≤ x) = P (eBt−

t
2 ≤ x) = P

(
B1 <

log x√
t

+

√
t

2

))

=

∫ K

0

P (Y 1
2
, log 1

x
≤ t)dx (from Lemma 2.2) (2.13)

Hence :

∂2

∂K∂t
ΠE(K, t) =

∂

∂t
P (Y 1

2
, log 1

K
≤ t) = fY 1

2 , log 1
K

(t) ≥ 0

This ends the proof of Theorem 1.

2.2 Descriptions of the probability γ

2.2.1 First description of γ : conditioning with respect to U
Proposition 2.4 The probability γ on [0, 1] × [0,∞[ is the law of the pair :

(U, Y 1
2
, log 1

U
) (2.14)

where U is uniform on [0, 1], independent of the process (Y 1
2
,b, b > 0).

We now describe in words this probability viewed from (2.14) : it is the law of a two
components r.v. ; the first component is the choice of a level out ot the moneyness for a
put, or the choice of a strike K < 1, uniformly on [0, 1]. Given this level, we construct
the second variable on the outcome of a fair coin toss as either the first passage time of
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the stock price under the share measure to the level

(
1

K

)
, or the last passage time of the

stock price under the share measure to level

(
1

K

)
·

Proof of Proposition 2.4
We have, for K ≤ 1 and t ≥ 0 :

P (U ≤ K, Y 1
2
, log 1

U
≤ t) =

∫ K

0

du P (Y 1
2
, log 1

u
≤ t) (as explained just above)

=

∫ K

0

N
(√

t

2
+

log u√
t

)
du

=

∫ K

0

P (Et ≤ u) (since Et

(law)
= exp

(√
tB1 −

t

2

)
, for fixed t)

= E
[
(K − Et)

+
] (

from (1.9)
)

= γ
(
[0 K] × [0, t]

) (
from (2.3)

)

The density of γ with respect to the Lebesgue measure on [0, 1]×R+ given by (2.23) may
also be obtained from the preceding relations.

2.2.2 Second description of γ : conditioning with respect to G1

Proposition 2.5 The probability γ on [0, 1] × [0,∞[ is the law of the pair :

(
exp(−2e) ∨ exp(−

√
8e′B2

1), 4B2
1

)
(2.15)

where B1, e, e
′ are independent, with e and e

′ two standard exponential variables.

Remark 2.6 Upon comparing Propositions 2.4 and 2.5, it is quite natural to look for some
understanding of the implied identities in laws between the first, resp. second, components
of (2.15) and (2.14) ; precisely, we wish to check directly that :

(
exp(−2e)

)
∨
(
exp(−

√
8e′B2

1)
) (law)

= U (2.16)

Y 1
2
, log 1

U

(law)
= 4B2

1

( (law)
= G

(
− 1

2

)
0

)
(2.17)

a. We now prove (2.16)
• First, we have :
√

2e′B2
1

(law)
= e (2.18)

Indeed :

P
(√

2e′B2
1 > x

)
= P

(
e
′ >

x2

2B2
1

)
= E

(
exp

(
− x2

2B2
1

)) (a)
= E

(
exp

(
− x2

2
T1

)) (b)
= exp(−x)
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since T1, the first hitting time of 1 by (Bt, t ≥ 0) is distributed as
1

B2
1

, hence (a), and the

Laplace transform of T1 is well known to be given by (b).

• Since exp(−2e)
(law)
= U2, we have, from (2.18) :

(
exp(−2e)

)
∨
(
exp(−

√
8e′B2

1)
) (law)

= U2 ∨ (U ′)2

with U and U ′ uniform on [0, 1] and independent. But, for y ∈ [0, 1] :

P
(
U2 ∨ (U ′)2 ≤ y

)
=
[
P (U2 ≤ y)

]2
= (

√
y)2 = y

We have proven (2.16).

b. We now prove (2.17)
We have for every t ≥ 0 :

P (Y 1
2
, log 1

U
≤ t) =

∫ 1

0

P (Y 1
2
, log 1

u
≤ t)du (after conditioning by U = u)

=

∫ 1

0

N
(√

t

2
+

log u√
t

)
du (from Lemma 2.2)

= E
(
(1 − Et)

+
) (

from (2.13)
)

= P (4B2
1 ≤ t)

(
from the classical Black-Scholes formula, see (1.7)

)

We now prove Proposition 2.5
Conditioning on B2

1 and using the explicit formula for the density of B2
1 :

fB2
1
(z) =

1√
2πz

e−
z
2 1z>0

we have, for K ≤ 1 and t ≥ 0 :

P
(
exp(−2e)

)
∨
(
exp−

√
8e′B2

1) ≤ K, 4B2
1 ≤ t

)

=

∫ t
4

0

dz√
2πz

e−
z
2 P
((

exp(−2e)
)
∨ (exp−z

√
8e′) ≤ K

)

=

∫ t
4

0

dz√
2πz

e−
z
2 P
((

exp(−2e)
)
≤ K

)
P

(
e
′ >

log2( 1
K

)

8z2

)

=
√

K

∫ t
4

0

dz√
2πz

e−
z
2 exp

(
−
(
log 1

K

)2

8z2

)
(
since exp(−e)

(law)
= U

)

=
√

K E

(
1B2

1≤
t
4
· exp− log2

(
1
K

)

8B2
1

)

= E
[
(K − Et)

+
]

(2.19)
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where the last equality follows from Theorem 2 of [6] which asserts that for K ≤ 1 :

E
[
(K − Et)

+
]

=
√

K E

{
14B2

1≤t exp

(
−
(
log
(

1
K

))2

8B2
1

)}
(2.20)

�

Another proof of Proposition 2.5
We have, from (2.11) with a = 1/2 and K < 1 :

P (GK ∈ ds) =
1
2√
2πs

exp− 1

2s

(
log K +

s

2

)2

ds

Hence :

KP (GK ∈ ds) =
√

K

(
exp

(
−(log 1

K
)2

2s

))
P (G1 ∈ ds)

= exp

(
1

2
log K

)
exp

(
−(log

(
1
K

)
)2

2s

)
P (G1 ∈ ds)

= P

(
e > −1

2
log K

)
P

(
e
′ >

(log 1
K

)2

2s

)
P (G1 ∈ ds)

= P
(
exp(−2e) ∨ exp(−

√
2s e

′) < K
)
P (G1 ∈ ds)

= P
(
exp(−2e) ∨ exp(−

√
8B2

1e
′) < K

)
P (4B2

1 ∈ ds)

since G1
(law)
= 4B2

1

(
see [5]

)
.

Hence, since, from (1.4), E
(
(K − Es)

+
)

= K P (GK ≤ s), one has :

γ(dK, ds) =
∂2

∂K∂s

(
K P (GK ≤ s)

)
dK ds

= P
(
exp(−2e) ∨ exp(−

√
8B2

1e
′) ∈ dK

)
P (4B2

1 ∈ ds)

which is Proposition 2.5

2.2.3 Third description of γ : its relation with local time-space calculus

Let us define (LK
s ; K ≥ 0, s ≥ 0) the jointly continuous family of local times of the

martingale (Es, s ≥ 0). This family is characterized by the occupation density formula :

∫ t

0

f(Es)d <E>s=

∫ ∞

0

f(K)LK
t dK

9



for every Borel and positive function f . Here
(

<E>s, s ≥ 0
)

denotes the bracket i.e. the
quadratic variation process of (Es, s ≥ 0) and we have :

d <E>s= E2
s ds

The Itô-Tanaka formula yields, for K ≤ 1 :

E
(
(K − Et)

+
)

=
1

2
E(LK

t ) (2.21)

As a consequence of (2.21), we obtain point i) of the following :

Proposition 2.7
i) The probability γ on [0, 1] × [0,∞[ admits a density fγ which satisfies :

γ(dK, dt) =
1

2

(
∂2

∂K∂t
E(LK

t )

)
dK dt (0 ≤ K ≤ 1, t ≥ 0) (2.22)

ii) A closed form of fγ is :

fγ(K, t) =
1

2
√

2πKt

(
1

2
− log K

t

)
exp

(
−(log K)2

2t
− t

8

)
1[0,1](K) · 1[0,∞[(t) (2.23)

Proof of point ii) of Proposition 2.7
In [6], we obtained the following explicit formula for E(LK

t ) :

E(LK
t ) =

√
K√
2π

∫ t

0

ds√
s

exp

(
−(log(K))2

2s
− s

8

)
(2.24)

Hence :

∂2

∂K∂t
E(LK

t ) =
1√
2πt

∂

∂K

(√
K exp

(
−(log K)2

2t
− t

8

))
(2.25)

and (2.23) is an easy consequence of (2.25) and (2.22).

2.2.4 Relation with a result by N. Eisenbaum
(
see [2a] and [2b]

)
.

We now relate the above description of γ as in Proposition 2.7 with the definition-formula
established in [2b] :

∫ ∞

−∞

∫ t

0

f(K, s)dK,s(L
K
s ) =

∫ t

0

f(Es, s)dEs +

∫ 1

1−t

f(E1−s, 1− s)dsE1−s (t ≤ 1) (2.26)

This formula which is the translation for Xs = Es of the formula found in Theorem 2.2
of [2b] for a general reversible semi-martingale. Here, on the RHS of (2.26), the second

stochastic integral is taken with respect to the natural filtration of Ês = E1−s, which is, of
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course, that of B̂s = B1−s. We take f bounded, Borel, with support in [0, 1]K × [0, 1]s. In
order to relate formula (2.26) with Proposition 2.7, we note that :

a)

∫ 1

0

∫ 1

0

f(K, s)γ(dK, ds) =
1

2
E
(∫ 1

0

∫ 1

0

f(K, s)dK,s(L
K
s )
)

which follows from (2.21), and the monotone class Theorem.

b) From formula (2.26) and the fact that (Es, t ≥ 0) is a martingale, we deduce :

E
(∫ 1

0

∫ 1

0

f(K, s)dK,s(L
K
s )
)

= E
(∫ 1

0

f(Ês, 1 − s)dÊs

)
(2.27)

which we shall compute explicitely thanks to the semi martingale decomposition of (Ês, s ≤ 1)
in its own filtration. This is presented in the next :

Proposition 2.8

i) The canonical decomposition of (Bt, t ≤ 1) in the filtration

B(1)
t := σ(Bs, s ≤ t) ∨ σ(B1) is :

Bt = B∗
t +

∫ t

0

B1 − Bs

1 − s
ds (2.28)

where (B∗
t , t ≤ 1) is a (B(1)

t , t ≤ 1) Brownian motion.

ii) The canonical decomposition of B̂t = B1−t in its own filtration is :

B̂t = B1−t = B1 + β∗
t −

∫ t

0

B1−s

1 − s
ds (2.29)

where (β∗
t , t ≤ 1) is a Brownian motion in

{
B̂t := σ(B̂u, u ≤ t), t ≤ 1

}
.

iii) The canonical decomposition of Êt in B̂t is :

dÊt = Êt

{
dβ∗

t + dt
(
1 − B1−t

1 − t

)}
(2.30)

Proof of Proposition 2.8

i) is well-known, see, e.g., Jeulin-Yor
(
[4], 1979

)
or Itô (1976) : Extension of Stochastic

Integrals
(
[3]
)

ii) may be deduced from i), when i) is applied to βt = B1−t − B1. Actually, formula
(2.29) appears in [2a], bottom of p. 308

iii) follows from ii), thanks to Itô’s formula.
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Comments a) We are grateful to N. Eisenbaum (personal communication) for pointing
out formula (2.29), which allowed to correct our original wrong derivation of the canonical

decomposition of B̂t = B1−t :

B̂t = B1−t = B1 + β̃t +

∫ t

0

du

u
(B̂u − B1) (2.31)

Indeed, by time-reversal from (2.28) in Proposition 2.8, there is the identity :

B̂t = B1−t = B1 + β̃t +

∫ t

0

du

u
(B̂u − B1)

where β̃t = B∗
1−t −B∗

1 is a Brownian motion, but is not the canonical decomposition of B̂t

in B̂t

(
for a discussion of non-canonical decomposition of Brownian motion, see, e.g. Yor

[9], Chiu [10], Hibino, Hitsuda, Muraoka [11]
)
.

b) A slightly different derivation of (2.29) consists in remarking that B1−t = (1−t)B1+b(t)
with

(
b(t), 0 ≤ t ≤ 1

)
a standard Brownian bridge.

From i), this Brownian bridge admits the decomposition :

b(t) = β∗
t −

∫ t

0

b(s)

1 − s
ds

Thus we obtain :

B1−t = (1 − t)B1 + β∗
t −

∫ t

0

ds

1 − s

(
b(s) + (1 − s)B1 − (1 − s)B1

)

= (1 − t)B1 + β∗
t −

∫ t

0

B1−s

1 − s
ds + tB1

= B1 + β∗
t −

∫ t

0

B1−s

1 − s
ds

which is precisely (2.29).

Now, plugging (2.30) in (2.27), and with the help of i), we get :

∫ 1

0

∫ 1

0

f(K, s)γ(dK, ds) =
1

2
E
(∫ 1

0

f(Es, s)Es

(
1 − Bs

s

)
ds
)

=
1

2
E
(∫ 1

0

Esf(Es, s)
(1

2
− log Es

s

)
ds
)

which matches perfectly with our previous formula (2.23). Thus, we have established a
close link with local time-space calculus as developed in

(
[2a] - [2b]

)
.
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2.3 An extension of Theorem 2.1
In the next statement, we shall replace the standard Brownian martingale (Et, t ≥ 0) by
the semimartingale

(
Eσ,−ν

t := exp(σBt − νt), t ≥ 0
)

(σ 6= 0, ν > 0). Then we can show :

Theorem 2.9 i) There exists a probability on [0, 1]× [0,∞[, which we shall denote by γσ,ν

such that :

Πσ,ν(K, t) := E
(
(K − Eσ,−ν

t )+
)

= γσ,ν

(
[0, K] × [0, t]

)
(2.32)

ii) Moreover, γσ,ν is the law of :
(
U, Y ν

|σ|
, 1
|σ|

log 1
U

)
(2.33)

where U is uniform on [0, 1], independent of (Ya,b, a, b > 0) as introduced in Lemma 2.2.

Proof of Theorem 2.9

We may choose σ > 0, since σBt

(law)
= −σBt. Then, from the definition (2.26), we write, for

K ≤ 1, by Fubini :

E
(
(K − Eσ,−ν

t )+
)

=

∫ K

0

P (Eσ,−ν
t ≤ x)dx

=

∫ K

0

P

(
B1 <

ν
√

t

σ
+

log x

σ
√

t

)
dx

=

∫ K

0

N
(

ν
√

t

σ
+

log x

σ
√

t

)
dx

=

∫ K

0

P
(
Y ν

σ
, 1
σ

log 1
x
≤ t
)

dx (from Lemma 2.2)

which implies points i) and ii) of Theorem 2.9. �

Note that (2.33) corresponds to the first description in Section 2.2 of the particular case

σ = 1, ν =
1

2
· We would like to see whether there is a second description of γσ,ν ; in

particular, what is the law of Y ν
σ

, 1
σ
·log 1

U
? Let us denote by fσ,ν the density of Y ν

σ
, 1

σ
·log 1

U
.

Then, we have :

Proposition 2.10 The following formulae hold :

i) fσ,ν(t) =
σ

2
√

2πt
e−

ν2t

2σ2

(
1 +

(
2

ν

σ2
− 1
)∫ ∞

0

e−µx− x2

2σ2t dx

)
(2.34)

where µ = 1 − ν
σ2

ii) In particular, if
2ν

σ2
= 1,

(
this condition ensures that (Eσ,−ν

t , t ≥ 0) is a martin-

gale !
)
, we have :

f
σ, σ2

2

(t) =
σ

2
√

2πt
e−

σ2t
8 (2.35)
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(
= f4B2

1
(t) if σ = 1 and ν =

1

2
, in agreement with Proposition 2.5, formula (2.17)

)
.

Proof of (2.34)
From (2.12) and (2.33) we have :

fσ,ν(t)dt =
1

2

∫ 1

0

du
{

P
(
T

( ν
σ

)
1
σ

log 1
u

∈ dt
)

+ P
(
G

( ν
σ

)
1
σ

log 1
u

∈ dt
)}

Making the change of variable log
1

u
= x and using (2.10) and (2.11), we obtain :

fσ,ν(t) =
1

2

∫ ∞

0

e−x

{(
x

σ
√

2πt3
+

ν

σ
√

2πt

)
e−

(x−νt)2

2σ2t

}
dx

=
σ

2
√

2πt
exp

(
− ν2t

2σ2

)∫ ∞

0

exp

(
−x − x2

2σ2t
+

xν

σ2

)( x

tσ2
+

ν

σ2

)
dx

We now introduce the parameter µ = 1 − ν

σ2
and we compute the integral :

I :=

∫ ∞

0

e−µx− x2

2σ2t

( x

tσ2
+

ν

σ2

)
dx

:= I1 +
ν

σ2
I2 with

I1 =

∫ ∞

0

e−µx− x2

2σ2t

x

tσ2
dx = 1 − µ

∫ ∞

0

e−µx− x2

2σ2t dx

(after integrating by parts). Finally :

I = I1 +
ν

σ2
I2 = 1 − µI2 +

ν

σ2
I2

= 1 +

(
2ν

σ2
− 1

)∫ ∞

0

e−µx− x2

2σ2t dx and :

fσ,ν(t) =
σ

2
√

2πt
exp

(
− ν2t

2σ2

){
1 +

(
2ν

σ2
− 1

)∫ ∞

0

e−µx− x2

2σ2t dx

}

This proves (2.33).

2.4 γ as a signed measure on R+ × R+

In this paragraph, we extend the definition of γ to [0,∞[×[0,∞[.

Proposition 2.11

i) There exists a signed measure γ on [0,∞[×[0,∞[ such that :

ΠE(K, t) := E
(
(K − Et)

+
)

= γ
(
[0, K] × [0, t]

)

holds for all values K, t ≥ 0. (2.36)
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ii) γ admits on R+ × R+ the density fγ given by :

fγ(K, t) =
1

2
√

2πKt

(
1

2
− log K

t

)
exp

(
−(log K)2

2t
− t

8

)
1[0,∞[×[0,∞[(K, t) (2.37)

=
1

2
√

2πt

(
1

2
+

log 1
K

t

)
exp

(
− 1

2t

(
log

1

K
− t

2

)2
)

1[0,∞[×[0,∞[(K, t)

iii) Consequently, if γ = γ+ − γ− is the decomposition of γ into its positive and negative
parts, we have :

γ+(dK, dt) = 1
(K≤e

t
2 )

γ(dK, dt) (2.38)

In particular :

γ+
|(K,t ; K≤1) = γ|(K,t) ; K≤1)

is a probability.

iv) Formula (2.31) may be synthetized as follows :

• if K < 1 :

γ(dK, dt) =
dK

2

{
P
(
G

( 1
2
)

log( 1
K

)
∈ dt

)
+ P

(
T

( 1
2
)

log( 1
K

)
∈ dt

)}
(2.39)

• if K > 1 :

γ(dK, dt) =
dK

2

{
P
(
G

( 1
2
)

log( 1
K

)
∈ dt

)
− P

(
T

( 1
2
)

log( 1
K

)
∈ dt

)}
(2.40)

Proof of Proposition 2.11
Points i) and ii) are easy to prove. Indeed, for every K ≥ 0 :

E
(
(K − Et)

+
)

=

∫ K

0

P (Et < x)dx =

∫ K

0

N
(√

t

2
+

log x√
t

)
dx

This last formula implies the existence of γ and the density fγ of γ is given by :

fγ(K, t) =
∂2

∂K∂t

∫ K

0

N
(√

t

2
+

log x√
t

)
dx

=
∂

∂t
N
(√

t

2
+

log K√
t

)

=
1

2
√

2πKt

(
1

2
− log K

t

)
exp

(
−(log K)2

2t
− t

8

)
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Point iii) follows immediately.
Formulae (2.39) and (2.40) are obtained as in (2.12). Moreover, this time, we also need to
use formulae from Theorem 1 of [6].

• If A > 1, then :

P (T
(ν)
log A ≤ t) = E(E (2ν)

t 1
E

(2ν)
t >A2ν ) + A2νP (E (2ν)

t > A2ν)

• If A < 1 :

P (T
(ν)
log A ≤ t) = E(E (2ν)

t 1
E

(2ν)
t <A2ν ) + A2νP (E (2ν)

t < A2ν)

(
see point iii) in Theorem 1 of [6]

)
. �
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