
HAL Id: hal-00324623
https://hal.science/hal-00324623v1

Submitted on 25 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reductions in computational complexity using Clifford
algebras

René Schott, Stacey Staples

To cite this version:
René Schott, Stacey Staples. Reductions in computational complexity using Clifford algebras.
Advances in Applied Clifford Algebras, 2010, 20, pp.121-140. �10.1007/s00006-008-0143-2�. �hal-
00324623�

https://hal.science/hal-00324623v1
https://hal.archives-ouvertes.fr

Reductions in Computational Complexity Using

Clifford Algebras

René Schott∗, G. Stacey Staples†

Abstract

A number of combinatorial problems are treated using properties of
abelian nilpotent- and idempotent-generated subalgebras of Clifford al-
gebras. For example, the problem of deciding whether or not a graph
contains a Hamiltonian cycle is known to be NP-complete. By consider-
ing entries of Λk, where Λ is an appropriate nilpotent adjacency matrix,
the k-cycles in any finite graph are recovered. Within the algebra context
(i.e., considering the number of multiplications performed within the al-
gebra), these problems are reduced to matrix multiplication, which is in
complexity class P. The Hamiltonian cycle problem is one of many prob-
lems moved from classes NP-complete and ♯P-complete to class P in this
context. Other problems considered include the set covering problem,
counting the edge-disjoint cycle decompositions of a finite graph, com-
puting the permanent of an arbitrary matrix, computing the girth and
circumference of a graph, and finding the longest path in a graph.

AMS subject classification: 68Q15, 05C38, 60B99, 81P68, 05C50
Key words: Hamiltonian cycles, traveling salesman problem, longest path,
NP-hard, NP-complete, cycle cover, set packing problem, set covering
problem, matrix permanent, quantum computing

1 Introduction

Clifford methods have already been applied to problems in computer vision [16]
and automated geometry theorem proving [18]. In work having applications
to computer vision, Clifford algebra methods have been employed to estimate
points, lines, circles, and spheres from uncertain data while keeping track of the
uncertainty [23].

Extending Clifford-algebraic methods to graph theory (cf. [27], [28], [25])
opens the door to applications in theoretical computer science, symbolic dy-
namics, and coding theory. The methods can be applied to a graph-theoretic

∗IECN and LORIA Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-lès-

Nancy, France, email: schott@loria.fr
†Department of Mathematics and Statistics, Southern Illinois University at Edwardsville,

Edwardsville, IL 62026-1653, email: sstaple@siue.edu

1

construction of multiple stochastic integrals from which stochastic integrals are
recovered from the limit in mean of a sequence of Berezin integrals in an as-
cending chain of Clifford algebras [29].

Clifford algebras have well-known connections with quantum physics and
quantum probability [3], [4], [5]. However, Aerts and Czachor have shown that
quantum-like computations can be performed within Clifford algebras without
the associated problem of noise and need for error-correction [2].

While Clifford algebra computations can be performed on general purpose
processors through the use of software libraries like CLU [21], GluCat [17],
GAIGEN[11], and the Maple package CLIFFORD [1], direct hardware imple-
mentations of data types and operators is the best way to exploit the compu-
tational power of Clifford algebras. To this end, a number of hardware imple-
mentations have been developed.

Perhaps the first such hardware implementation was a Clifford co-processor
design developed by Perwass, Gebken, and Sommer [22]. Implemented on a
Field Programmable Gate Array, the design is scalable in both the dimension
of the Clifford algebra and the bit width of the numerical factors.

To our knowledge, the second hardware design was the color edge detection
hardware developed by Mishra and Wilson [19], [20]. This focus of their work
was the introduction of a hardware architecture for applications involving image
processing.

More recently, Gentile, Segreto, Sorbello, Vassallo, Vitabile, and Vullo have
developed a parallel embedded coprocessing core that directly supports Clifford
algebra operators (cf. [12], [13], [14]). The prototype was implemented on
a Field Programmable Gate Array and initial tests showed a 4× speedup for
Clifford products over the analogous operations in GAIGEN.

Given a computing architecture based on Clifford algebras, the natural con-
text for determining an algorithm’s time complexity is in terms of the number
of geometric (Clifford) operations required. This paper assumes the existence
of such a processor and examines a number of combinatorial problems known
to be of NP time complexity.

For example, the problem of determining whether or not a graph contains a
Hamiltonian cycle is known to be NP-complete. By considering entries of Λk,
where Λ is an appropriate nilpotent adjacency matrix associated with a finite
graph on n vertices, the k-cycles in the graph are recovered.

The nilpotent adjacency matrix of a graph on n vertices is defined using
elements of an abelian algebra generated by the collection {ζi}, 1 ≤ i ≤ n
satisfying ζi

2 = 0. In terms of the number of multiplications performed within
the algebra, the cycle enumeration problem is reduced to matrix multiplication.
While the algebras used here are not Clifford algebras themselves, they are
constructed within Clifford algebras of appropriate signature.

1.1 Notational Preliminaries

Definition 1.1 (Clifford algebra of signature (p, q)). For fixed n ≥ 1, the
2n-dimensional algebra Cℓp,q (p + q = n) is defined as the associative algebra

2

generated by the collection {ei} (1 ≤ i ≤ n) along with the unit scalar e0 =
e∅ = 1 ∈ R, subject to the following multiplication rules:

ei ej = −ej ei for i 6= j, (1.1)

ei
2 =

{

1 1 ≤ i ≤ p, and

−1 p + 1 ≤ i ≤ n.
(1.2)

Products are multi-indexed by subsets of [n] = {1, . . . , n} according to

ei =
∏

ι∈i

eι, (1.3)

where i is an element of the power set 2[n].
By defining ζi = (ei + en+i) ∈ Cℓn,n for each 1 ≤ i ≤ n, the following useful

algebra is obtained.

Definition 1.2. Let Cℓn
nil denote the real abelian algebra generated by the

collection {ζi} (1 ≤ i ≤ n) along with the scalar 1 = ζ0 subject to the following
multiplication rules:

ζi ζj = ζj ζi for i 6= j, and (1.4)

ζi
2 = 0 for 1 ≤ i ≤ n. (1.5)

It is evident that a general element u ∈ Cℓn
nil can be expanded as

u =
∑

i∈2[n]

ui ζi , (1.6)

where i ∈ 2[n] is a subset of [n] = {1, 2, . . . , n} used as a multi-index, ui ∈ R,

and ζi =
∏

ι∈i

ζι.

Letting εi =
1

2
(1 + eien+i) ∈ Cℓn,n for each 1 ≤ i ≤ n gives the following

algebra.

Definition 1.3. Let Cℓn
idem denote the real abelian algebra generated by the

collection {εi} (1 ≤ i ≤ n) along with the scalar 1 = ε0 subject to the following
multiplication rules:

εi εj = εj εi for i 6= j, and (1.7)

εi
2 = εi for 1 ≤ i ≤ n. (1.8)

An element β ∈ Cℓn
idem can also be expanded as in (1.6); that is,

β =
∑

i∈2[n]

βi εi. (1.9)

3

Both algebras admit an inner product of the form

〈

∑

i∈2[n]

ui ζi,
∑

j∈2[n]

vj ζj

〉

=
∑

ℓ∈2[n]

uℓ vℓ. (1.10)

The degree-k part of u ∈ Cℓn
nil will be defined by

〈u〉k =
∑

i∈2[n]

|i|=k

ui ζi. (1.11)

Letting u denote an arbitrary element of Cℓn
nil, the scalar sum of coefficients

will be denoted by

〈〈u〉〉 =
∑

i∈2[n]

〈

u, ζi

〉

=
∑

i∈2[n]

ui. (1.12)

The definitions of scalar sum and degree-k part extend naturally to Cℓn
idem.

A number of norms can be defined on Cℓn
nil. One that will be used later is

the infinity norm, defined by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈2[n]

ui ζi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

= max
i∈2[n]

∣

∣ui

∣

∣ . (1.13)

Remark 1.4. The algebra Cℓn,n is canonically isomorphic to the fermion algebra
of quantum physics [3].

An algorithm’s time complexity is typically determined by counting the num-
ber of operations required to process a data set of size n in worst-, average-,
and best-case scenarios. The operation of multiplying two integers is typical.
Multiplying a pair of integers in classical computing is assumed to require a
constant interval of time, independent of the integers. The architecture of a
classical computer makes this assumption natural.

The existence of a processor whose registers accommodate storage and ma-

nipulation of elements of Cℓn
♦ is assumed through the remainder of this paper.

The Cℓ complexity of an algorithm will be determined by the required num-
ber of Cℓn

♦ operations, or Clops required by the algorithm. In other words,
multiplying (or adding) a pair of elements u, v ∈ Cℓn

♦ will require one Clop,
where ♦ can be replaced by either “nil” or “idem.”

Evaluation of the infinity norm is another matter. In one possible model of
such an evaluation, the scalar coefficients in the expansion of u ∈ Cℓn

♦ are first
paired off and all pairs are then compared in parallel. In this way, evaluation of
the infinity norm has complexity
O(log 2n) = O(n).

4

Let u ∈ Cℓp,q where p + q = n, and consider the following set of operations.

u† :=
∑

i∈2[n]

ui e[n]\i (1.14)

ι

∑

i∈2[n]

ui ei

 :=
∑

ui>0

ei, (1.15)

u · v :=
∑

i∈2[n]

uivi ei, (1.16)

〈u〉+ := u · ι(u) (1.17)

πk

∑

i∈2[n]

ui ei

 :=
∑

i∈2[k]

ui ei. (1.18)

Also, define the element

1[n] :=
∑

i∈2[n]

ei. (1.19)

Using these operations, an algorithm of Cℓ complexity O(n) can now be
written for computing the infinity norm.

procedure InfNorm(u: u ∈ Cℓp,q)
{Replace all scalar coefficients of u with their absolute values.}

u := 〈u〉+ + 〈−u〉+
for j := 1 to n
begin

{Get multi-vectors ei corresponding to ui ≥ u[n]\i}

x := 1[n−j+1] − ι
(

〈

u† − u
〉

+

)

u := u · x

{Now u has only half as many nonzero coefficients. Project down onto subalge-
bra of dimension 2n−j .}

u := πn−j (u) + πn−j

(

u†
)

{Note that in each case, either ei or e[n]\i is in the subalgebra, exclusively.
Hence, ui ≥ u[n]\i implies ui is assigned as the coefficient of the appropriate
multivector in the subalgebra.}
end

return[u]

Given a processor capable of natively performing the operations defined in
(1.14)-(1.18), construction of this algorithm establishes the following results.

5

Lemma 1.5. The Cℓ complexity of evaluating the infinity norm in Cℓn
♦ is

O(n).

Lemma 1.6. The Cℓ complexity of finding the maximum or minimum real

number in a list of size k is O(log k).

Proof. Using the algorithm, the complexity of finding the maximum or minimum
value in a list of size 2n is O(n).

Corollary 1.7. The Cℓ complexity of sorting a list of size k is O((log k)2).

Proof. In light of the lemma, the complexity of sorting a list of size 2n is

O

(

n
∑

k=1

k

)

= O

(

n2 + n

2

)

= O(n2). (1.20)

Hence, the result.

2 Graph Problems

A graph G = (V,E) is a collection of vertices V and a set E of unordered pairs
of vertices called edges. Two vertices vi, vj ∈ V are adjacent if there exists an
edge {vi, vj} ∈ E.

A k-walk {v0, . . . , vk} in a graph G is a sequence of vertices in G with initial

vertex v0 and terminal vertex vk such that there exists an edge {vj , vj+1} ∈ E
for each 0 ≤ j ≤ k − 1. Note that a k-walk contains k edges. A k-path is a
k-walk in which no vertex appears more than once. A closed k-walk is a k-walk
whose initial vertex is also its terminal vertex. A k-cycle (k ≥ 3) is a closed
k-path with v0 = vk. A Hamiltonian cycle is an n-cycle in a graph on n vertices;
i.e., it contains V.

When working with a graph G on n vertices, one often utilizes the adjacency

matrix A associated with G. If the vertices are labeled {1, . . . , n}, one defines
A by

Aij =

{

1 if vi, vj are adjacent

0 otherwise.
(2.1)

A simple but useful result of this definition, which can also be generalized
to directed graphs, is given here without proof.

Proposition 2.1. Let G be a graph on n vertices with associated adjacency

matrix A. Then for any positive integer k, the (i, j)th entry of Ak is the number

of k-walks i → j. In particular, the entries along the main diagonal of Ak are

the numbers of closed k-walks in G.

What the adjacency matrix fails to provide, however, is a method of counting
paths and cycles in G. For that, a “new” type of adjacency matrix is needed.

6

2.1 Nilpotent Adjacency Matrices

Definition 2.2. Let G be a graph on n vertices, either simple or directed with
no multiple edges, and let {ζi}, 1 ≤ i ≤ n denote the nilpotent generators of
Cℓn

nil. Define the nilpotent adjacency matrix associated with G by

Λij =

{

ζj , if {vi, vj} ∈ E(G)

0, otherwise.
(2.2)

It should be clear that Λ defined over Cℓn
nil implies Λk is the n × n zero

matrix for all k > n. Therefore (I − tΛ)−1 =

n
∑

k=0

tk Λk exists as a finite sum,

and one can recover

tr Λk = tr (I − tΛ)−1

∣

∣

∣

∣

tk

. (2.3)

In other words, the trace of the coefficient of tk in the power series expansion
of (I − tΛ)−1 is the trace of Λk.

Theorem 2.3. Let Λ be the nilpotent adjacency matrix of an n-vertex graph

G. For any m ≥ 3 and 1 ≤ i ≤ n, summing the coefficients of (Λm)ii yields the

number of m-cycles based at vi occurring in G.

Proof. The proof is by induction on m. First it will be shown that matrix entry
(Λm)ij corresponds to a sum of blades indexed by vertex sets on which there
exist m-step walks from vi to vj that revisit no vertex except possibly vi itself.
When m = 1, this is true by definition of Λ.

Now assuming the proposition holds for m and considering the case m + 1,

(

Λm+1
)

ij
= (Λm × Λ)ij =

n
∑

ℓ=1

(Λm)iℓ Λℓj . (2.4)

Considering a general term of the sum,

(Λm)iℓ =
∑

m-paths wm:vi→vℓ

wm, and (2.5)

Λℓi =
∑

1-paths w1:vℓ→vj

w1. (2.6)

Because the vertices are labeled with the null-square generators of Cℓn
nil, any

repeated vertex yields 0.
It should then be clear that terms of the product

(Λm)iℓ Λℓj (2.7)

are nonzero if and only if they correspond to (m + 1)-paths vi → vℓ → vj , with
the possible exception that if i 6= j, then vi could be revisited once. Summing

7

over all vertices vℓ gives the sum of all (m + 1)-walks based at vi that revisit no
vertex with only the specified exception possible.

Finally, when i = j, the null-square generator associated with vi appears as
the last factor in each product over the (m + 1)-walks. As a result, any walks
that revisit vi in an intermediate step are removed from (Λm+1)ii, leaving only
the (m + 1)-cycles based at vi.

In an undirected graph, two orientations are possible for each cycle. As a
result, each m-cycle is represented with multiplicity two along the diagonal of
Λm. Throughout the remainder of this paper, two cycles in an undirected graph
will be considered the “same” if they differ only by orientation or choice of base
point.

Remark 2.4. The nilpotent adjacency matrix associated with a finite graph can
be considered a quantum random variable whose mth moment corresponds to
the number of m-cycles occurring in the graph [26], [27].

Corollary 2.5. Let Λ be the nilpotent adjacency matrix of an n-vertex graph

G. Let Xm (m ≥ 3), denote the number of m-cycles appearing in the graph G.

Then

〈〈tr (Λm)〉〉 = 2mXm. (2.8)

Notation. To simplify notation, tr (Λm) is replaced by τm in the remainder of
the paper.

Corollary 2.6. Let Λ be the nilpotent adjacency matrix of an n-vertex graph

G. Let Hn denote the number of Hamiltonian cycles appearing in the graph G.

Then

〈〈τn〉〉 = 2nHn. (2.9)

Recall the stated assumption that addition of two arbitrary elements of Cℓn
nil

requires 1 Clop. It follows that computing tr(A), where A is an n × n matrix
having entries in Cℓn

nil, has Cℓ complexity O(n).
Using the Coppersmith-Winograd algorithm, multiplying two n×n matrices

can be done in O(n2.376) time [8]. It is not clear that the same asymptotic
speedup can be accomplished for the Cℓ case. However, in the remainder of the
paper, β will represent the exponent associated with matrix multiplication. In
the worst case, multiplication of n × n matrices with entries in Cℓn

nil has Cℓ
complexity O(n3), so that β ≤ 3.

Corollary 2.7. Enumerating the k-cycles in a finite graph on n vertices requires

O(nβ log k) Clops.

Corollary 2.8. Enumerating the Hamiltonian cycles in a finite graph on n
vertices requires O(nβ log n) Clops.

Corollary 2.9. Let Λ be the nilpotent adjacency matrix of an n-vertex graph G.

Let Xm,ℓ denote the number of ℓ-tuples of pairwise disjoint m-cycles appearing

in the graph G, where m ≥ 3 and 1 ≤ ℓ ≤ ⌊n/m⌋. Then
〈〈

(τm)
ℓ
〉〉

= (2m)ℓℓ!Xm,ℓ. (2.10)

8

Proof. Note that
τm

2m
is a sum of nilpotent multivectors associated with m-cycles

in the graph. By nilpotency, the nonzero terms of
(τm

2m

)ℓ

represent pairwise

disjoint m-cycles, and each term occurs ℓ! times.

Corollary 2.10. Counting the ℓ-tuples of pairwise disjoint m-cycles in a finite

graph on n vertices requires O(nβ log m) Clops.

Proof. As already seen, computing τm requires O(nβ log m) Clops. Computing
τm

ℓ then requires O(log ℓ) additional Clops. Hence, counting ℓ-tuples of m-
cycles requires O(max{log ℓ, nβ log m}), where ℓ is never larger than n/m.

The following proposition is an immediate corollary of Theorem 2.3.

Proposition 2.11 (Graph circumference). Let G be a graph on n vertices with

nilpotent adjacency matrix Λ. The length of the longest cycle in G is the largest

integer k such that

τk 6= 0. (2.11)

Corollary 2.12. Computing the circumference of a graph on n vertices requires

O(nβ+1 log n) Clops.

Proof. Cycles of length k must be counted for 3 ≤ k ≤ n, requiring O
(

nβ log k
)

for each 3 ≤ k ≤ n. Then,

n
∑

k=3

nβ log k = nβ log(n!/2) ≤ nβ log(nn) = nβ+1 log n. (2.12)

Corollary 2.13 (Graph girth). Let G be a graph on n vertices with nilpotent

adjacency matrix Λ. The length of the shortest cycle in G is the smallest integer

k such that

τk 6= 0. (2.13)

Corollary 2.14. Computing the girth of a graph on n vertices requires

O(nβ+1 log n) Clops.

Proof. Proof follows that of Corollary 2.12.

In the next proposition, C denotes the diagonal matrix Diag(ζ1, . . . , ζn). It
is used to account for the initial vertices of paths in G.

Proposition 2.15 (Longest path). Let G be a graph on n vertices with nilpotent

adjacency matrix Λ. The length of the longest path in G is the largest integer k
such that

CΛk 6= 0. (2.14)

Here, 0 denotes the n × n zero matrix.

9

Proof. This is a corollary of Theorem 2.3. Cycles are disregarded by removing
the diagonal entries of CΛk. Left multiplication by the matrix C is used to “sieve”
out k-walks that revisit their initial vertices.

Corollary 2.16. Computing the length of the longest path in a graph on n
vertices requires O(nβ log n log n) Clops.

Proof. The maximum possible path length is n. For each 1 ≤ k ≤ n, computing
CΛk requires O(nβ log k + n2) = O(nβ log n) Clops. Using binary search then
requires testing O(log n) values of k in Proposition 2.15.

Consider a directed, edge-weighted graph G on n vertices. When {vi, vj} is
an edge of G, let wij denote the weight or “cost” of the edge. The goal is to
compute the total additive weight of all k-cycles in G.

The infinity norm in the following theorem is the natural extension of that
found in (1.13).

Theorem 2.17 (Minimum cost of all k-cycles). Let G be a finite graph on n
vertices with m edges of weights w1, w2, . . . , wm. Let f : V (G)×V (G) → N be a

labeling of the edges of G with natural numbers. Label the vertices of G with the

nilpotent generators of Cℓn
nil and let edges of G be labeled with exp(−wij)γf(i,j),

where {γi} is the collection of nilpotent generators of Cℓ|E(G)|
nil. The nilpotent

adjacency matrix then has entries in Cℓn
nil ⊗ Cℓ|E(G)|

nil. The minimum cost

k-cycle in G has cost

Wmin = − ln

(∣

∣

∣

∣

∣

∣

∣

∣

1

2k
τk

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

. (2.15)

Proof. Analogous to the proof of Theorem 2.3, the trace of Λk consists of ele-
ments of the form

n
∑

i=1

∑

k-cycles ξ based at vi

exp

−
∑

vℓ∈ξ

wℓ

 ζi(ξ) γj(ξ). (2.16)

Here, i(ξ) denotes the subset of the n-set that corresponds to the vertices in
cycle ξ. Similarly, j(ξ) is a subset of {1, 2, . . . , |E(G)|} representing the edges
contained in cycle ξ. As seen previously, each cycle is represented with multi-
plicity 2k in the trace of Λk.

Clearly the maximum coefficient in the expansion of the trace corresponds to
the minimum sum of weights in the argument of the exponential function.

Corollary 2.18. The problem of determining the minimum cost associated with

a k-cycle in G has Cℓ complexity O(nβ log k).

Corollary 2.19 (Minimum cost Hamiltonian cycle). The problem of deter-

mining the minimum cost associated with a Hamiltonian cycle in G has Cℓ
complexity O(nβ log n).

10

2.2 Edge-disjoint Cycle Decompositions of Graphs

Consider the algebra R[s1, . . . , sn] of polynomials in commutative variables
s1, . . . , sn. Allowing these polynomials to have coefficients in Cℓn

nil ⊗ Cℓm
nil

generates the abelian algebra Cℓn
nil ⊗ Cℓm

nil[s1, . . . , sn].
Define the projection ϑ : Cℓn

nil ⊗ Cℓm
nil[s1, . . . , sn] → Cℓm

nil[s1, . . . , sn] by
linear extension of

ϑ
(

α ζj γi sj1
1 · · · sjn

n

)

= α γi sj1
1 · · · sjn

n , (2.17)

and define the evaluation 〈〈·〉〉 : Cℓm
nil[s1, . . . , sn] → R[s1, . . . , sn] by linear

extension of
〈〈

α γi sj1
1 · · · sjn

n

〉〉

= α sj1
1 · · · sjn

n , (2.18)

where α ∈ R.
The projection ϑ and the evaluation 〈〈·〉〉 will be assumed to have Cℓ com-

plexity O(1).

Definition 2.20. A finite graph G on n vertices will be said to have a cycle

decomposition if for some positive integer m there exists a collection of cycles
{Ci}1≤i≤m such that

V (G) =

m
⋃

i=1

V (Ci) (2.19)

E(G) =

m
⋃

i=1

E(Ci) (2.20)

E(Ci) ∩ E(Cj) = ∅ if i 6= j. (2.21)

The collection {Ci}1≤i≤m is called the cycle decomposition of G.

Theorem 2.21. Let G be a simple graph on n vertices and |E| edges with

nilpotent adjacency matrix over Cℓn
nil ⊗ Cℓ|E|

nil. Then G has a cycle decompo-

sition G = Cj1 ∪ · · · ∪ Cjm
,

∑

i ji = |E| if and only if the degree-m monomial

α sj1 · · · sjm
is a term in the expansion of

〈〈〈(

ϑ

(

n
∑

k=3

sk
τk

2k

))m〉

|E|

〉〉

(2.22)

where
α

m!
∈ N indicates the multiplicity of the decomposition.

Proof. Begin by letting Λ be the edge-labeled nilpotent adjacency matrix of an
n-vertex graph G = (V,E). From Theorem 2.3, it follows that for any k ≥ 3
and 1 ≤ i ≤ n, summing the coefficients of (Λk)ii yields the number of k-cycles
based at vi occurring in G.

Hence,
τk

2k
corresponds to the collection of k-cycles in G in one-to-one cor-

respondence.

11

It is now clear that

n
∑

k=3

sk
τk

2k
denotes the algebraic sum of all the cycles

contained in G. Projecting down onto Cℓ|E|
nil leaves each k-cycle represented

by a degree-k multivector γi, corresponding to the edges comprising the cycle.

By nilpotency, the nonzero terms of ϑ

(

n
∑

k=3

sk
τk

2k

)m

represent the collection

of all m-ensembles of pairwise edge-disjoint cycles, and each term occurs m!
times in the expansion. By considering only those terms of degree |E| in Cℓ|E|

nil,
one ensures that only cycle decompositions of G are obtained since all edges are
represented.

Corollary 2.22. Let G be a simple graph on n vertices and |E| edges with nilpo-

tent adjacency matrix over Cℓnil
n ⊗Cℓnil

|E|. Then, for any fixed m ≥ 1, determining

the decomposition of G into m edge-disjoint cycles requires O(nβ+1 log n) Clops.

Proof. As in the proof of Corollary 2.12, computing

n
∑

k=3

sk
τk

2k
has Cℓ com-

plexity O(nβ+1 log n). Then computing

(

ϑ

(

n
∑

k=3

sk
τk

2k

))m

has Cℓ complexity

O(nβ+1 log n + log m) = O(nβ+1 log n).

Example 2.23. The cycle decompositions of the complete graph K5 are recov-
ered.

•
ζ1

•
ζ2

•
ζ3

•
ζ4

•
ζ5

..

γ1

..

γ2

..

γ3

..

γ4

...

γ5

..

γ6

...
γ7

..
γ8

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
...........

γ9

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......

γ10

The nilpotent adjacency matrix is

Λ =

0 ζ2γ1 ζ3γ2 ζ4γ3 ζ5γ4

ζ1γ1 0 ζ3γ5 ζ4γ6 ζ5γ7

ζ1γ2 ζ2γ5 0 ζ4γ8 ζ5γ9

ζ1γ3 ζ2γ6 ζ3γ8 0 ζ5γ10

ζ1γ4 ζ2γ7 ζ3γ9 ζ4γ10 0

. (2.23)

12

Mathematica calculations yield the following:

〈〈

D
(1)
t

〈

exp

(

tϑ

(

5
∑

k=3

sk
τk

2k

))〉

10

∣

∣

∣

∣

t=0

〉〉

= 0 (2.24)

〈〈

D
(2)
t

〈

exp

(

tϑ

(

5
∑

k=3

sk
τk

2k

))〉

10

∣

∣

∣

∣

t=0

〉〉

= 12s5
2 (2.25)

〈〈

D
(3)
t

〈

exp

(

tϑ

(

5
∑

k=3

sk
τk

2k

))〉

10

∣

∣

∣

∣

t=0

〉〉

= 90s3
2s4 (2.26)

〈〈

D
(4)
t

〈

exp

(

tϑ

(

5
∑

k=3

sk
τk

2k

))〉

10

∣

∣

∣

∣

t=0

〉〉

= 0. (2.27)

The results are now interpreted:
K5 itself is not a cycle, so the first expression yields zero.
The only decompositions of K5 into pairs of cycles are 6 = 12/(2!) decom-

positions into pairs of five-cycles. That is, K5 = C5 ∪ C5 with multiplicity
six.

The only decompositions into triples of cycles are 15 = 90/(3!) decomposi-
tions of the form K5 = C3 ∪C3 ∪C4, i.e., a pair of three-cycles and a four-cycle.

There are no decompositions of K5 into four or more disjoint cycles.

Definition 2.24. A cycle cover of a graph G is defined as a pairwise disjoint
collection of cycles {Cj} such that each vertex of G is contained in exactly one
of the cycles.

Theorem 2.25. Let Λ be the nilpotent adjacency matrix of a finite graph G on

n vertices. Then, letting C denote the number of cycle covers of G,

〈

⌊n/3⌋
∑

ℓ=1

1

ℓ!
ϑ

(

n
∑

m=3

τm

2 m

)ℓ

 , γ[|E|]

〉

= C. (2.28)

Proof. For each 3 ≤ m ≤ n, τm

2 m denotes the algebraic sum of multivectors
representing m-cycles in G. Computing the ℓth power of the sum of these
reveals pairwise disjoint ℓ-tuples of cycles of all lengths, each appearing with
multiplicity ℓ!. Because G has n edges, the maximum number of ℓ-tuples of
disjoint cycles in G is ⌊n/3⌋. Summing over all admissible values of ℓ and
considering the coefficient of γ[|E|] to ensure that all edges of G are covered, the
number of cycle covers of G is recovered.

For each m = 3, . . . , n, computing τm requires O(nβ log m) Clops. Hence,

computing

n
∑

m=3

τm

2 m
requires O(nβ+1 log n) Clops. For each ℓ = 1, . . . , ⌊n/3⌋,

13

computing

(

n
∑

m=3

τm

2 m

)ℓ

then requires O(nβ+1 log n log ℓ) Clops. Finally, sum-

ming over ℓ,

⌊n/3⌋
∑

ℓ=1

1

ℓ!

(

n
∑

m=3

τm

2 m

)ℓ

requires O(nβ+2 log n log n) Clops. It there-

fore follows from the results obtained thus far that counting the disjoint cycle
covers of a graph on n vertices requires O(nβ+2 log n log n) Clops. In the next
section, this result is improved by another method.

3 Other Problems

In addition to graph problems, properties of Cℓn
nil and Cℓn

idem make them
useful for other types of combinatorial problems.

3.1 Computing the Permanent

The problem of computing the permanent of a matrix is known to be ♯P-
complete [31], [6]. Methods of approximating the permanent using Clifford
algebras have also been discussed [7].

The current authors’ methods allow one to directly compute the permanent
of a matrix with Cℓ computational complexity O(n).

Let M = (mij)n×n be an arbitrary matrix. Let {γi}1≤i≤n and {ζi}1≤i≤n

denote commutative nilpotent generators of Cℓn
nil ⊗ Cℓn

nil, and define

a =

n
∑

i,j=1

mij γi ζj ∈ Cℓn
nil ⊗ Cℓn

nil. (3.1)

Proposition 3.1. Let M , n, and a be defined as above. Then,

〈

an, γ[n]ζ[n]

〉

= n! Perm(M). (3.2)

Proof. Let M be an n × n matrix and consider the following definition of the
permanent:

Perm(M) =
∑

π∈Sn

n
∏

i=1

mi π(i). (3.3)

14

Now,

an =

n
∑

i,j=1

mij γi ζj

n

=

n
∑

i=1

n
∑

j=1

mij γi ζj

n

=
∑

k1+···+kn=n

(

n

k1, . . . , kn

) n
∏

i=1

γi

n
∑

j=1

mij ζj

ki

=

(

n

1, 1, . . . , 1

) n
∏

i=1

n
∑

j=1

mij γi ζj

= n!
∑

π∈Sn

n
∏

i=1

mi π(i) γi ζπ(i) = n! Perm(M) γ[n] ζ[n]. (3.4)

Corollary 3.2. Computing the permanent of an n×n matrix is of Cℓ complexity

O(n).

Corollary 3.3. Counting the perfect matchings of a bipartite graph is of Cℓ
complexity O(n).

Corollary 3.4 (Complexity of cycle covers). Counting the cycle covers of a

finite graph on n vertices is of Cℓ complexity O(n).

3.2 The Set Packing and Set Covering Problems

The following two problems are among the original 21 NP-complete problems
of Karp [15]. They are moved to class P in the Cℓ context.

Theorem 3.5 (Set packing problem). Let S = {S1, . . . , Sm} be a collection of

subsets of the n set {1, 2, . . . , n}. In the Cℓ context, the problem of determining

whether there exists a pairwise disjoint collection {Sj1 , . . . , Sjk
} ⊆ S has Cℓ

complexity O(log k).

Proof. Let α =

m
∑

j=1

ζSj
∈ Cℓn

nil. Then there exists a pairwise disjoint collection

{Sj1 , . . . , Sjk
} ⊆ S if and only if αk 6= 0.

Theorem 3.6 (Set covering problem). Let S = {S1, . . . , Sm} be a collection of

subsets of the n-set {1, 2, . . . , n}. In the Cℓ context, the problem of determining

the minimum value of k for which there exists a collection {Sj1 , . . . , Sjk
} ⊆ S

satisfying

k
⋃

ℓ=1

Sjℓ
= {1, 2, . . . , n} has Cℓ complexity O(m log k).

15

Proof. Let α =

m
∑

j=1

εSj
∈ Cℓn

idem. Then there exists a collection {Sj1 , . . . , Sjk
} ⊆

S such that

k
⋃

ℓ=1

Sjℓ
= {1, 2, . . . , n} if and only if

〈

αk, ε[n]

〉

6= 0. Checking each

k = 1, 2, . . . ,m requires at most m iterations.

Acknowledgment. The second author thanks Philip Feinsilver for useful dis-
cussion about the matrix permanent.

References

[1] R. AbÃlamowicz, B. Fauser, CLIFFORD - A Maple Package for Clifford Algebra
Computations. http://math.tntech.edu/rafal/

[2] D. Aerts, M. Czachor, Cartoon computation: quantum-like computing without
quantum mechanics, J. Phys. A: Math. Theor., 40 F259-F263, (2007).

[3] D. Applebaum, Fermion stochastic calculus in Dirac-Fock space, J. Phys. A., 28

257-270, (1995).

[4] D. Applebaum, R. Hudson, Fermion Itô’s formula and stochastic evolutions, Com-
mun. Math. Phys., 96 473-96, (1984).

[5] C. Barnett, R. Streater, I. Wilde, The Itô-Clifford integral I. J. Functional Anal-
ysis. 48 172-212, (1982).

[6] A. Ben-Dor, S. Halevi, Zero-one permanent is ♯P-complete, a simpler proof, Pro-
ceedings of the 2nd Israel Symposium on the Theory and Computing Systems,
(1993), 108-117.

[7] S. Chien, L. Rasmussen, A. Sinclair, Clifford algebras and approximating the
permanent, Journal of Computer and System Sciences, 67 (2003), 263-290.

[8] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions,
Journal of Symbolic Computation, 9 (1990), 251280.

[9] P. Flajolet, Singular combinatorics, Proceedings of the International Congress of
Mathematicians 2002 vol. III, World Scientific, (2002), 561-571.

[10] P. Flajolet, A. Odlyzko, Singularity analysis of generating functions, SIAM J.
Disc. Math., 3 (1990), 216-240.

[11] D. Fontijne, T. Bouma, L. Dorst, GAIGEN: a geometric algebra implementation
generator, Univeristy of Amsterdam, NL, July 2002. http://www.science.uva.
nl/ga/gaigen

[12] S. Franchini, A. Gentile, M. Grimaudo, C.A. Hung, S. Impastato, F. Sorbello,
G.Vassallo, S. Vitabile, A sliced coprocessor for native Clifford algebra opera-
tions, Proceedings of the 10th Euromicro Conference on Digital System Design
Architectures, Methods and Tools (DSD 2007), 436-439, (2007).

[13] A. Gentile, S. Segreto, F. Sorbello, G. Vassallo, S. Vitabile, V. Vuollo, Clif-
foSor, an innovative FPGA-based architecture for geometric algebra, Proceedings
of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA 2005), 211-217.

16

[14] A. Gentile, S. Segreto, F. Sorbello, G. Vassallo, S. Vitabile, V. Vuollo, CliffoSor:
a parallel embedded architecture for geometric algebra and computer graphics,
Proceedings of the IEEE International Workshop on Computer Architecture for
Machine Perception (CAMP 2005), 90-95, IEEE Computer Society Press.

[15] R. M. Karp, Reducibility among combinatorial problems, Complexity of Com-
puter Computations, Plenum, New York, 1972, 85-103.

[16] J. Lasenby, W. J. Fitzgerald, C. J. L. Doran, A.N. Lasenby, New geometric
methods for computer vision, Int. J. Comp. Vision, 36 191-213, (1998).

[17] P. Leopardi, The GluCat Home Page, http://glucat.sourceforge.net/

[18] H. Li, Clifford algebra approaches to automated geometry theorem proving, Mathe-
matics Mechanization and Applications, X.-S. Gao and D. Wang (eds.), Academic
Press, London, 2000, pp. 205-230.

[19] B. Mishra, P. Wilson, Color edge detection hardware based on geometric algebra,
http://eprints.ecs.soton.ac.uk/13188/

[20] B. Mishra, P. Wilson, Hardware implementation of a geometric algebra processor
core, Proceedings of ACA 2005, IMACS, Int. Conf. on Advancement of Computer
Algebra, Nara, Japan, 2005. http://eprints.ecs.soton.ac.uk/10957/

[21] C. Perwass, The CLU Project web page, http://www.perwass.de/cbup/clu.

html

[22] C. Perwass, C. Gebken, G. Sommer, Implementation of a Clifford algebra co-
processor design on a field programmable gate array, Clifford Algebras Appli-
cations to Mathematics, Physics, and Engineering, Progress in Mathematical
Physics 34, Birkhäuser, Boston, 2004.

[23] C. Perwass, C. Gebken, G. Sommer, Estimation of geometric entities and oper-
ators from uncertain data, Lecture Notes in Computer Science 3363, Springer,
Berlin, 2005.

[24] V. Puyhaubert, Generating functions and the satisfiability threshold, Disc. Math.
Th. Comp. Sci., 6 (2004), 425-436.

[25] R. Schott, G.S. Staples, Nilpotent adjacency matrices and random graphs, Ars
Combinatorica, To appear.

[26] R. Schott, G.S. Staples, Clifford algebras, random graphs, and quantum random
variables, presented at 27th International Conference on Quantum Probability,
Nottingham, England, July, 2006.

[27] R. Schott, G.S. Staples, Nilpotent adjacency matrices, random graphs, and
quantum random variables, Prépublications de l’Institut Élie Cartan 2007/n◦

8, (2007).

[28] G.S. Staples, Clifford-algebraic random walks on the hypercube, Advances in
Applied Clifford Algebras, 15 213-232, (2005).

[29] G.S. Staples, Graph-theoretic approach to stochastic integrals with Clifford alge-
bras, J. Theor. Prob., 20 257-274, (2007).

[30] G.S. Staples, Norms and generating functions in Clifford algebras, Advances in
Applied Clifford Algebras, 18 75-92, (2008).

[31] L. Valiant, The complexity of computing the permanent, Theoretical Computer
Science, 8 (1979), 189-201.

[32] D. West, Introduction to Graph Theory, Second Ed., Prentice Hall, Upper Saddle
River, 2001.

17

