René Schott
email: schott@loria.fr

G Stacey Staples
email: sstaple@siue.edu

Reductions in Computational Complexity Using Clifford Algebras

Keywords: AMS subject classification: 68Q15, 05C38, 60B99, 81P68, 05C50 Hamiltonian cycles, traveling salesman problem, longest path, NP-hard, NP-complete, cycle cover, set packing problem, set covering problem, matrix permanent, quantum computing

A number of combinatorial problems are treated using properties of abelian nilpotent-and idempotent-generated subalgebras of Clifford algebras. For example, the problem of deciding whether or not a graph contains a Hamiltonian cycle is known to be NP-complete. By considering entries of Λ k , where Λ is an appropriate nilpotent adjacency matrix, the k-cycles in any finite graph are recovered. Within the algebra context (i.e., considering the number of multiplications performed within the algebra), these problems are reduced to matrix multiplication, which is in complexity class P. The Hamiltonian cycle problem is one of many problems moved from classes NP-complete and ♯P-complete to class P in this context. Other problems considered include the set covering problem, counting the edge-disjoint cycle decompositions of a finite graph, computing the permanent of an arbitrary matrix, computing the girth and circumference of a graph, and finding the longest path in a graph.

Introduction

Clifford methods have already been applied to problems in computer vision [START_REF] Lasenby | New geometric methods for computer vision[END_REF] and automated geometry theorem proving [START_REF] Li | Clifford algebra approaches to automated geometry theorem proving, Mathematics Mechanization and Applications[END_REF]. In work having applications to computer vision, Clifford algebra methods have been employed to estimate points, lines, circles, and spheres from uncertain data while keeping track of the uncertainty [START_REF] Perwass | Estimation of geometric entities and operators from uncertain data[END_REF].

Extending Clifford-algebraic methods to graph theory (cf. [START_REF] Schott | Nilpotent adjacency matrices, random graphs, and quantum random variables[END_REF], [START_REF] Staples | Clifford-algebraic random walks on the hypercube[END_REF], [START_REF] Schott | Nilpotent adjacency matrices and random graphs[END_REF]) opens the door to applications in theoretical computer science, symbolic dynamics, and coding theory. The methods can be applied to a graph-theoretic construction of multiple stochastic integrals from which stochastic integrals are recovered from the limit in mean of a sequence of Berezin integrals in an ascending chain of Clifford algebras [START_REF] Staples | Graph-theoretic approach to stochastic integrals with Clifford algebras[END_REF].

Clifford algebras have well-known connections with quantum physics and quantum probability [START_REF] Applebaum | Fermion stochastic calculus in Dirac-Fock space[END_REF], [START_REF] Applebaum | Fermion Itô's formula and stochastic evolutions[END_REF], [START_REF] Barnett | The Itô-Clifford integral I[END_REF]. However, Aerts and Czachor have shown that quantum-like computations can be performed within Clifford algebras without the associated problem of noise and need for error-correction [START_REF] Aerts | Cartoon computation: quantum-like computing without quantum mechanics[END_REF].

While Clifford algebra computations can be performed on general purpose processors through the use of software libraries like CLU [START_REF] Perwass | The CLU Project web page[END_REF], GluCat [START_REF] Leopardi | The GluCat Home Page[END_REF], GAIGEN [START_REF] Fontijne | GAIGEN: a geometric algebra implementation generator[END_REF], and the Maple package CLIFFORD [START_REF] Ab Lamowicz | CLIFFORD -A Maple Package for Clifford Algebra Computations[END_REF], direct hardware implementations of data types and operators is the best way to exploit the computational power of Clifford algebras. To this end, a number of hardware implementations have been developed.

Perhaps the first such hardware implementation was a Clifford co-processor design developed by Perwass, Gebken, and Sommer [START_REF] Perwass | Implementation of a Clifford algebra coprocessor design on a field programmable gate array[END_REF]. Implemented on a Field Programmable Gate Array, the design is scalable in both the dimension of the Clifford algebra and the bit width of the numerical factors.

To our knowledge, the second hardware design was the color edge detection hardware developed by Mishra and Wilson [START_REF] Mishra | Color edge detection hardware based on geometric algebra[END_REF], [START_REF] Mishra | Hardware implementation of a geometric algebra processor core[END_REF]. This focus of their work was the introduction of a hardware architecture for applications involving image processing.

More recently, Gentile, Segreto, Sorbello, Vassallo, Vitabile, and Vullo have developed a parallel embedded coprocessing core that directly supports Clifford algebra operators (cf. [START_REF] Franchini | A sliced coprocessor for native Clifford algebra operations[END_REF], [START_REF] Gentile | Clif-foSor, an innovative FPGA-based architecture for geometric algebra[END_REF], [START_REF] Gentile | CliffoSor: a parallel embedded architecture for geometric algebra and computer graphics[END_REF]). The prototype was implemented on a Field Programmable Gate Array and initial tests showed a 4× speedup for Clifford products over the analogous operations in GAIGEN.

Given a computing architecture based on Clifford algebras, the natural context for determining an algorithm's time complexity is in terms of the number of geometric (Clifford) operations required. This paper assumes the existence of such a processor and examines a number of combinatorial problems known to be of NP time complexity.

For example, the problem of determining whether or not a graph contains a Hamiltonian cycle is known to be NP-complete. By considering entries of Λ k , where Λ is an appropriate nilpotent adjacency matrix associated with a finite graph on n vertices, the k-cycles in the graph are recovered.

The nilpotent adjacency matrix of a graph on n vertices is defined using elements of an abelian algebra generated by the collection

{ζ i }, 1 ≤ i ≤ n satisfying ζ i 2 = 0.
In terms of the number of multiplications performed within the algebra, the cycle enumeration problem is reduced to matrix multiplication. While the algebras used here are not Clifford algebras themselves, they are constructed within Clifford algebras of appropriate signature.

Notational Preliminaries

Definition 1.1 (Clifford algebra of signature (p, q)). For fixed n ≥ 1, the 2 n -dimensional algebra Cℓ p,q (p + q = n) is defined as the associative algebra 2 generated by the collection {e i } (1 ≤ i ≤ n) along with the unit scalar e 0 = e ∅ = 1 ∈ R, subject to the following multiplication rules:

e i e j = -e j e i for i = j, (1.1)

e i 2 = 1 1 ≤ i ≤ p, and -1 p + 1 ≤ i ≤ n. (1.2)
Products are multi-indexed by subsets of [n] = {1, . . . , n} according to

e i = ι∈i e ι , (1.3)
where i is an element of the power set 2 [n] . By defining ζ i = (e i + e n+i) ∈ Cℓ n,n for each 1 ≤ i ≤ n, the following useful algebra is obtained. Definition 1.2. Let Cℓ n nil denote the real abelian algebra generated by the collection {ζ i } (1 ≤ i ≤ n) along with the scalar 1 = ζ 0 subject to the following multiplication rules:

ζ i ζ j = ζ j ζ i for i = j, and (1.4)
ζ i 2 = 0 for 1 ≤ i ≤ n. (1.5)
It is evident that a general element u ∈ Cℓ n nil can be expanded as

u = i∈2 [n] u i ζ i , (1.6)
where i ∈ 2 [n] is a subset of [n] = {1, 2, . . . , n} used as a multi-index, u i ∈ R, and

ζ i = ι∈i ζ ι .
Letting

ε i = 1 2
(1 + e i e n+i) ∈ Cℓ n,n for each 1 ≤ i ≤ n gives the following algebra.

Definition 1.3. Let Cℓ n idem denote the real abelian algebra generated by the collection {ε i } (1 ≤ i ≤ n) along with the scalar 1 = ε 0 subject to the following multiplication rules:

ε i ε j = ε j ε i for i = j, and (1.7)
ε i 2 = ε i for 1 ≤ i ≤ n. (1.8)
An element β ∈ Cℓ n idem can also be expanded as in (1.6); that is,

β = i∈2 [n] β i ε i . (1.9)
Both algebras admit an inner product of the form

i∈2 [n] u i ζ i , j∈2 [n] v j ζ j = ℓ∈2 [n]
u ℓ v ℓ .

(1.10)

The degree-k part of u ∈ Cℓ n nil will be defined by

u k = i∈2 [n] |i|=k u i ζ i . (1.11)
Letting u denote an arbitrary element of Cℓ n nil , the scalar sum of coefficients will be denoted by

u = i∈2 [n] u, ζ i = i∈2 [n] u i . (1.
12)

The definitions of scalar sum and degree-k part extend naturally to Cℓ n idem . A number of norms can be defined on Cℓ n nil . One that will be used later is the infinity norm, defined by

i∈2 [n] u i ζ i ∞ = max i∈2 [n] u i . (1.13)
Remark 1.4. The algebra Cℓ n,n is canonically isomorphic to the fermion algebra of quantum physics [START_REF] Applebaum | Fermion stochastic calculus in Dirac-Fock space[END_REF].

An algorithm's time complexity is typically determined by counting the number of operations required to process a data set of size n in worst-, average-, and best-case scenarios. The operation of multiplying two integers is typical. Multiplying a pair of integers in classical computing is assumed to require a constant interval of time, independent of the integers. The architecture of a classical computer makes this assumption natural.

The existence of a processor whose registers accommodate storage and manipulation of elements of Cℓ n ♦ is assumed through the remainder of this paper. The Cℓ complexity of an algorithm will be determined by the required number of Cℓ n ♦ operations, or Clops required by the algorithm. In other words, multiplying (or adding) a pair of elements u, v ∈ Cℓ n ♦ will require one Clop, where ♦ can be replaced by either "nil" or "idem."

Evaluation of the infinity norm is another matter. In one possible model of such an evaluation, the scalar coefficients in the expansion of u ∈ Cℓ n ♦ are first paired off and all pairs are then compared in parallel. In this way, evaluation of the infinity norm has complexity O(log

2 n) = O(n).
Let u ∈ Cℓ p,q where p + q = n, and consider the following set of operations.

u † := i∈2 [n] u i e [n]\i (1.14) ι   i∈2 [n] u i e i   := ui>0 e i , (1.15)
u • v := i∈2 [n] u i v i e i , (1.16
)

u + := u • ι(u) (1.17) π k   i∈2 [n] u i e i   := i∈2 [k]
u i e i .

(1.18) Also, define the element

1 [n] := i∈2 [n] e i . (1.19)
Using these operations, an algorithm of Cℓ complexity O(n) can now be written for computing the infinity norm.

procedure InfNorm(u: u ∈ Cℓ p,q) {Replace all scalar coefficients of u with their absolute values.} u := u + + -u + for j := 1 to n begin {Get multi-vectors e i corresponding to

u i ≥ u [n]\i } x := 1 [n-j+1] -ι u † -u + u := u • x
{Now u has only half as many nonzero coefficients. Project down onto subalgebra of dimension 2 n-j .} u := π n-j (u) + π n-j u † {Note that in each case, either e i or e [n]\i is in the subalgebra, exclusively. Hence, u i ≥ u [n]\i implies u i is assigned as the coefficient of the appropriate multivector in the subalgebra.} end return [u] Given a processor capable of natively performing the operations defined in (1.14)-(1.18), construction of this algorithm establishes the following results.

Lemma 1.5. The Cℓ complexity of evaluating the infinity norm in Cℓ

n ♦ is O(n).
Lemma 1.6. The Cℓ complexity of finding the maximum or minimum real number in a list of size k is O(log k).

Proof. Using the algorithm, the complexity of finding the maximum or minimum value in a list of size 2 n is O(n).

Corollary 1.7. The Cℓ complexity of sorting a list of size k is O((log k) 2).

Proof. In light of the lemma, the complexity of sorting a list of size 2 n is

O n k=1 k = O n 2 + n 2 = O(n 2). (1.20)
Hence, the result.

Graph Problems

A graph G = (V, E) is a collection of vertices V and a set E of unordered pairs of vertices called edges. Two vertices v i , v j ∈ V are adjacent if there exists an edge {v i , v j } ∈ E. A k-walk {v 0 , . . . , v k } in a graph G is a sequence of vertices in G with initial vertex v 0 and terminal vertex v k such that there exists an edge {v j , v j+1 } ∈ E for each 0 ≤ j ≤ k -1. Note that a k-walk contains k edges. A k-path is a k-walk in which no vertex appears more than once. A closed k-walk is a k-walk whose initial vertex is also its terminal vertex. A k-cycle (k ≥ 3) is a closed k-path with v 0 = v k . A Hamiltonian cycle is an n-cycle in a graph on n vertices; i.e., it contains V.
When working with a graph G on n vertices, one often utilizes the adjacency matrix A associated with G. If the vertices are labeled {1, . . . , n}, one defines A by

A ij = 1 if v i , v j are adjacent 0 otherwise. (2.1)
A simple but useful result of this definition, which can also be generalized to directed graphs, is given here without proof.

Proposition 2.1. Let G be a graph on n vertices with associated adjacency matrix A. Then for any positive integer k, the (i, j) th entry of A k is the number of k-walks i → j. In particular, the entries along the main diagonal of A k are the numbers of closed k-walks in G.

What the adjacency matrix fails to provide, however, is a method of counting paths and cycles in G. For that, a "new" type of adjacency matrix is needed.

Nilpotent Adjacency Matrices

Definition 2.2. Let G be a graph on n vertices, either simple or directed with no multiple edges, and let {ζ i }, 1 ≤ i ≤ n denote the nilpotent generators of Cℓ n nil . Define the nilpotent adjacency matrix associated with G by

Λ ij = ζ j , if {v i , v j } ∈ E(G) 0, otherwise. (2.
2)

It should be clear that Λ defined over Cℓ n nil implies Λ k is the n × n zero matrix for all k > n. Therefore (I -tΛ) -1 = n k=0 t k Λ k exists as a finite sum, and one can recover

tr Λ k = tr (I -tΛ) -1 t k . (2.3)
In other words, the trace of the coefficient of t k in the power series expansion of (I -tΛ) -1 is the trace of Λ k .

Theorem 2.3. Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. For any m ≥ 3 and 1 ≤ i ≤ n, summing the coefficients of (Λ m) ii yields the number of m-cycles based at v i occurring in G.

Proof. The proof is by induction on m. First it will be shown that matrix entry (Λ m) ij corresponds to a sum of blades indexed by vertex sets on which there exist m-step walks from v i to v j that revisit no vertex except possibly v i itself. When m = 1, this is true by definition of Λ. Now assuming the proposition holds for m and considering the case m + 1,

Λ m+1 ij = (Λ m × Λ) ij = n ℓ=1 (Λ m) iℓ Λ ℓj . (2.4)
Considering a general term of the sum,

(Λ m) iℓ = m-paths wm:vi→v ℓ w m , and (2.5)
Λ ℓi = 1-paths w1:v ℓ →vj w 1 . (2.6)
Because the vertices are labeled with the null-square generators of Cℓ n nil , any repeated vertex yields 0.

It should then be clear that terms of the product

(Λ m) iℓ Λ ℓj (2.7)
are nonzero if and only if they correspond to (m + 1)-paths v i → v ℓ → v j , with the possible exception that if i = j, then v i could be revisited once. Summing over all vertices v ℓ gives the sum of all (m + 1)-walks based at v i that revisit no vertex with only the specified exception possible. Finally, when i = j, the null-square generator associated with v i appears as the last factor in each product over the (m + 1)-walks. As a result, any walks that revisit v i in an intermediate step are removed from (Λ m+1) ii , leaving only the (m + 1)-cycles based at v i .

In an undirected graph, two orientations are possible for each cycle. As a result, each m-cycle is represented with multiplicity two along the diagonal of Λ m . Throughout the remainder of this paper, two cycles in an undirected graph will be considered the "same" if they differ only by orientation or choice of base point. Remark 2.4. The nilpotent adjacency matrix associated with a finite graph can be considered a quantum random variable whose m th moment corresponds to the number of m-cycles occurring in the graph [START_REF] Schott | Clifford algebras, random graphs, and quantum random variables[END_REF], [START_REF] Schott | Nilpotent adjacency matrices, random graphs, and quantum random variables[END_REF].) time [START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF]. It is not clear that the same asymptotic speedup can be accomplished for the Cℓ case. However, in the remainder of the paper, β will represent the exponent associated with matrix multiplication. In the worst case, multiplication of n × n matrices with entries in Cℓ n nil has Cℓ complexity O(n 3), so that β ≤ 3. Proof. Cycles of length k must be counted for 3 Consider a directed, edge-weighted graph G on n vertices. When {v i , v j } is an edge of G, let w ij denote the weight or "cost" of the edge. The goal is to compute the total additive weight of all k-cycles in G.

≤ k ≤ n, requiring O n β log k for each 3 ≤ k ≤ n. Then, n k=3 n β log k = n β log(n!/2) ≤ n β log(n n) = n β+1 log n. (2
The infinity norm in the following theorem is the natural extension of that found in (1.13).

Theorem 2.17 (Minimum cost of all k-cycles). Let G be a finite graph on n vertices with m edges of weights w 1 , w 2 , . . . , w m . Let f :

V (G) × V (G) → N
W min = -ln 1 2k τ k ∞ . (2.15)
Proof. Analogous to the proof of Theorem 2.3, the trace of Λ k consists of elements of the form

n i=1 k-cycles ξ based at vi exp   - v ℓ ∈ξ w ℓ   ζ i(ξ) γ j(ξ) . (2.16)
Here, i(ξ) denotes the subset of the n-set that corresponds to the vertices in cycle ξ. Similarly, j(ξ) is a subset of {1, 2, . . . , |E(G)|} representing the edges contained in cycle ξ. As seen previously, each cycle is represented with multiplicity 2k in the trace of Λ k . Clearly the maximum coefficient in the expansion of the trace corresponds to the minimum sum of weights in the argument of the exponential function.

Edge-disjoint Cycle Decompositions of Graphs

ϑ α ζ j γ i s j1 1 • • • s jn n = α γ i s j1 1 • • • s jn n , (2.17)
and define the evaluation

• : Cℓ m nil [s 1 , . . . , s n] → R[s 1 , . . . , s n] by linear extension of α γ i s j1 1 • • • s jn n = α s j1 1 • • • s jn n , (2.18)
where α ∈ R.

The projection ϑ and the evaluation • will be assumed to have Cℓ complexity O(1). Definition 2.20. A finite graph G on n vertices will be said to have a cycle decomposition if for some positive integer m there exists a collection of cycles

{C i } 1≤i≤m such that V (G) = m i=1 V (C i) (2.19) E(G) = m i=1 E(C i) (2.20) E(C i) ∩ E(C j) = ∅ if i = j. (2
G = C j1 ∪ • • • ∪ C jm , i j i = |E| if and only if the degree-m monomial α s j1 • • • s jm is a term in the expansion of ϑ n k=3 s k τ k 2k m |E| (2.22)
where α m! ∈ N indicates the multiplicity of the decomposition.

Proof. Begin by letting Λ be the edge-labeled nilpotent adjacency matrix of an n-vertex graph G = (V, E). From Theorem 2.3, it follows that for any k ≥ 3 and 1 ≤ i ≤ n, summing the coefficients of (Λ k) ii yields the number of k-cycles based at v i occurring in G.

Hence, τ k 2k corresponds to the collection of k-cycles in G in one-to-one correspondence. Proof. As in the proof of Corollary 2.12, computing

It is now clear that

n k=3 s k τ k 2k has Cℓ com- plexity O(n β+1 log n). Then computing ϑ n k=3 s k τ k 2k m has Cℓ complexity O(n β+1 log n + log m) = O(n β+1 log n).
Example 2.23. The cycle decompositions of the complete graph K 5 are recovered. The nilpotent adjacency matrix is The results are now interpreted: K 5 itself is not a cycle, so the first expression yields zero. The only decompositions of K 5 into pairs of cycles are 6 = 12/(2!) decompositions into pairs of five-cycles. That is, K 5 = C 5 ∪ C 5 with multiplicity six.

• ζ 1 • ζ 2 • ζ 3 • ζ 4 • ζ 5 . . .
Λ =       0 ζ 2 γ 1 ζ 3 γ 2 ζ 4 γ 3 ζ 5 γ 4 ζ 1 γ 1 0 ζ 3 γ 5 ζ 4 γ 6 ζ 5 γ 7 ζ 1 γ 2 ζ 2 γ 5 0 ζ 4 γ 8 ζ 5 γ 9 ζ 1 γ 3 ζ 2 γ 6 ζ 3 γ 8 0 ζ 5 γ 10 ζ 1 γ 4 ζ 2 γ 7 ζ 3 γ 9 ζ 4 γ 10 0       . (2
The only decompositions into triples of cycles are 15 = 90/(3!) decompositions of the form K 5 = C 3 ∪ C 3 ∪ C 4 , i.e., a pair of three-cycles and a four-cycle.

There are no decompositions of K 5 into four or more disjoint cycles.

Definition 2.24. A cycle cover of a graph G is defined as a pairwise disjoint collection of cycles {C j } such that each vertex of G is contained in exactly one of the cycles. 3 Other Problems

In addition to graph problems, properties of Cℓ n nil and Cℓ n idem make them useful for other types of combinatorial problems.

Computing the Permanent

The problem of computing the permanent of a matrix is known to be ♯Pcomplete [START_REF] Valiant | The complexity of computing the permanent[END_REF], [START_REF] Ben-Dor | Zero-one permanent is ♯P-complete, a simpler proof[END_REF]. Methods of approximating the permanent using Clifford algebras have also been discussed [START_REF] Chien | Clifford algebras and approximating the permanent[END_REF].

The current authors' methods allow one to directly compute the permanent of a matrix with Cℓ computational complexity O(n).

Let M = (m ij) n×n be an arbitrary matrix. Let {γ i } 1≤i≤n and {ζ i } 1≤i≤n denote commutative nilpotent generators of

The Set Packing and Set Covering Problems

The following two problems are among the original 21 NP-complete problems of Karp [START_REF] Karp | Reducibility among combinatorial problems, Complexity of Computer Computations[END_REF]. They are moved to class P in the Cℓ context.

Corollary 2 . 5 .Corollary 2 . 6 .

 2526 Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. Let X m (m ≥ 3), denote the number of m-cycles appearing in the graph G. Then tr (Λ m) = 2m X m . (2.8) Notation. To simplify notation, tr (Λ m) is replaced by τ m in the remainder of the paper. Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. Let H n denote the number of Hamiltonian cycles appearing in the graph G. Then τ n = 2n H n . (2.9) Recall the stated assumption that addition of two arbitrary elements of Cℓ n nil requires 1 Clop. It follows that computing tr(A), where A is an n × n matrix having entries in Cℓ n nil , has Cℓ complexity O(n). Using the Coppersmith-Winograd algorithm, multiplying two n × n matrices can be done in O(n 2.376

Corollary 2 . 7 .Corollary 2 . 8 .

 2728 Enumerating the k-cycles in a finite graph on n vertices requires O(n β log k) Clops. Enumerating the Hamiltonian cycles in a finite graph on n vertices requires O(n β log n) Clops.Corollary 2.9. Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. Let X m,ℓ denote the number of ℓ-tuples of pairwise disjoint m-cycles appearing in the graph G, where m ≥ 3 and 1 ≤ ℓ ≤ ⌊n/m⌋. Then(τ m) ℓ = (2m) ℓ ℓ!X m,ℓ . (2.10) Proof. Note that τ m 2m is a sum of nilpotent multivectors associated with m-cycles in the graph. By nilpotency, the nonzero terms of τ m 2m ℓ represent pairwise disjoint m-cycles, and each term occurs ℓ! times. Corollary 2.10. Counting the ℓ-tuples of pairwise disjoint m-cycles in a finite graph on n vertices requires O(n β log m) Clops. Proof. As already seen, computing τ m requires O(n β log m) Clops. Computing τ m ℓ then requires O(log ℓ) additional Clops. Hence, counting ℓ-tuples of mcycles requires O(max{log ℓ, n β log m}), where ℓ is never larger than n/m.The following proposition is an immediate corollary of Theorem 2.3. Proposition 2.11 (Graph circumference). Let G be a graph on n vertices with nilpotent adjacency matrix Λ. The length of the longest cycle in G is the largest integer k such that τ k = 0. (2.11) Corollary 2.12. Computing the circumference of a graph on n vertices requires O(n β+1 log n) Clops.

Corollary 2 . 18 .

 218 The problem of determining the minimum cost associated with a k-cycle in G has Cℓ complexity O(n β log k).

Corollary 2 . 19 (

 219 Minimum cost Hamiltonian cycle). The problem of determining the minimum cost associated with a Hamiltonian cycle in G has Cℓ complexity O(n β log n).

 sum of all the cycles contained in G. Projecting down onto Cℓ |E| nil leaves each k-cycle represented by a degree-k multivector γ i , corresponding to the edges comprising the cycle. By nilpotency, the nonzero terms of ϑ of all m-ensembles of pairwise edge-disjoint cycles, and each term occurs m! times in the expansion. By considering only those terms of degree |E| in Cℓ |E| nil , one ensures that only cycle decompositions of G are obtained since all edges are represented. Corollary 2.22. Let G be a simple graph on n vertices and |E| edges with nilpotent adjacency matrix over Cℓ nil n ⊗Cℓ nil |E| . Then, for any fixed m ≥ 1, determining the decomposition of G into m edge-disjoint cycles requires O(n β+1 log n) Clops.

γ 2 . 3 .

 23 . γ .

γ 4 . 5 . 6 .

 456 . γ . γ .

 γ

Theorem 2 . 25 .

 225 Let Λ be the nilpotent adjacency matrix of a finite graph G on n vertices. Then, letting C denote the number of cycle covers of G, [|E|] = C.(2.28)Proof. For each 3 ≤ m ≤ n, τm 2 m denotes the algebraic sum of multivectors representing m-cycles in G. Computing the ℓ th power of the sum of these reveals pairwise disjoint ℓ-tuples of cycles of all lengths, each appearing with multiplicity ℓ!. Because G has n edges, the maximum number of ℓ-tuples of disjoint cycles in G is ⌊n/3⌋. Summing over all admissible values of ℓ and considering the coefficient of γ[|E|] to ensure that all edges of G are covered, the number of cycle covers of G is recovered.For each m = 3, . . . , n, computing τ m requires O(n β log m) Clops. Hence, n β+1 log n) Clops. For each ℓ = 1, . . . , ⌊n/3⌋, O(n β+1 log n log ℓ) Clops. Finally, summing over ℓ, n β+2 log n log n) Clops. It therefore follows from the results obtained thus far that counting the disjoint cycle covers of a graph on n vertices requires O(n β+2 log n log n) Clops. In the next section, this result is improved by another method.

m. 1) 3 . 1 .mCorollary 3 . 3 .

 13133 ij γ i ζ j ∈ Cℓ n nil ⊗ Cℓ n nil . (3Proposition Let M , n, and a be defined as above. Then,a n , γ [n] ζ [n] = n! Perm(M). (3.2)Proof. Let M be an n × n matrix and consider the following definition of the permanent:i π(i) γ i ζ π(i) = n! Perm(M) γ [n] ζ [n] . (3.4) Corollary 3.2. Computing the permanent of an n×n matrix is of Cℓ complexity O(n). Counting the perfect matchings of a bipartite graph is of Cℓ complexity O(n).

Corollary 3 . 4 (

 34 Complexity of cycle covers).Counting the cycle covers of a finite graph on n vertices is of Cℓ complexity O(n).

Theorem 3 . 5 (ζTheorem 3 . 6 (ε

 3536 Set packing problem). Let S = {S 1 , . . . , S m } be a collection of subsets of the n set {1, 2, . . . , n}. In the Cℓ context, the problem of determining whether there exists a pairwise disjoint collection {S j1 , . . . , S j k } ⊆ S has Cℓ complexity O(log k). Proof. Let α = m j=1 Sj ∈ Cℓ n nil . Then there exists a pairwise disjoint collection {S j1 , . . . , S j k } ⊆ S if and only if α k = 0. Set covering problem). Let S = {S 1 , . . . , S m } be a collection of subsets of the n-set {1, 2, . . . , n}. In the Cℓ context, the problem of determining the minimum value of k for which there exists a collection {S j1 , . . . , S j k } ⊆ S satisfying k ℓ=1 S j ℓ = {1, 2, . . . , n} has Cℓ complexity O(m log k). Proof. Let α = m j=1 Sj ∈ Cℓ n idem . Then there exists a collection {S j1 , . . . , S j k } ⊆ S such that k ℓ=1 S j ℓ = {1, 2, . . . , n} if and only if α k , ε [n] = 0. Checking each k = 1, 2, . . . , m requires at most m iterations.

 In the next proposition, C denotes the diagonal matrix Diag(ζ 1 , . . . , ζ n). It is used to account for the initial vertices of paths in G.Proposition 2.15 (Longest path). Let G be a graph on n vertices with nilpotent adjacency matrix Λ. The length of the longest path in G is the largest integer k This is a corollary of Theorem 2.3. Cycles are disregarded by removing the diagonal entries of CΛ k . Left multiplication by the matrix C is used to "sieve" out k-walks that revisit their initial vertices. Corollary 2.16. Computing the length of the longest path in a graph on n vertices requires O(n β log n log n) Clops. Proof. The maximum possible path length is n. For each 1 ≤ k ≤ n, computing CΛ k requires O(n β log k + n 2) = O(n β log n) Clops. Using binary search then requires testing O(log n) values of k in Proposition 2.15.

	Proof.	
	such that	
	CΛ k = 0.	(2.14)
	Here, 0 denotes the n × n zero matrix.	

.12) Corollary 2.13 (Graph girth). Let G be a graph on n vertices with nilpotent adjacency matrix Λ. The length of the shortest cycle in G is the smallest integer k such that τ k = 0. (2.13) Corollary 2.14. Computing the girth of a graph on n vertices requires O(n β+1 log n) Clops.

Proof. Proof follows that of Corollary 2.12.

 be a labeling of the edges of G with natural numbers. Label the vertices of G with the nilpotent generators of Cℓ n

nil and let edges of G be labeled with exp(-w ij)γ f (i,j) , where {γ i } is the collection of nilpotent generators of Cℓ |E(G)| nil . The nilpotent adjacency matrix then has entries in Cℓ n nil ⊗ Cℓ |E(G)| nil . The minimum cost k-cycle in G has cost

 Consider the algebra R[s 1 , . . . , s n] of polynomials in commutative variables s 1 , . . . , s n . Allowing these polynomials to have coefficients in Cℓ n nil ⊗ Cℓ m nil generates the abelian algebra Cℓ n nil ⊗ Cℓ m nil [s 1 , . . . , s n]. Define the projection ϑ : Cℓ n nil ⊗ Cℓ m nil [s 1 , . . . , s n] → Cℓ m nil [s 1 , . . . , s n] by linear extension of

 7 .

	γ 9	γ 10
	γ 8	

.

.

. γ 1 . Acknowledgment. The second author thanks Philip Feinsilver for useful discussion about the matrix permanent.