Automorphic orbits in free groups: words versus subgroups

Pedro Silva, Pascal Weil

To cite this version:

Pedro Silva, Pascal Weil. Automorphic orbits in free groups: words versus subgroups. 2009. hal00324544v2

HAL Id: hal-00324544
https://hal.science/hal-00324544v2
Preprint submitted on 23 Apr 2009 (v2), last revised 2 Apr 2010 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Automorphic orbits in free groups: words versus subgroups *

Pedro V. Silva, pvsilva@fc.up.pt
Centro de Matemática, Universidade do Porto ${ }^{\dagger}$

Pascal Weil, pascal.weil@labri.fr
LaBRI, Université de Bordeaux and CNRS ${ }^{\ddagger}$
and Department CSE, IIT Delhi
21 April, 2009

Abstract

We show that the following problems are decidable in a rank 2 free group F_{2} : does a given finitely generated subgroup H contain primitive elements? and does H meet the orbit of a given word u under the action of G, the group of automorphisms of F_{2} ? Moreover, decidability subsists even if we restrict G to be a rational subset of the set of invertible substitutions (a.k.a. positive automorphisms). In higher rank, the following weaker problem is decidable: given a finitely generated subgroup H, a word u and an integer k, does H contain the image of u by some k-almost bounded automorphism? An automorphism is k-almost bounded if at most one of the letters has an image of length greater than k.

2000 Mathematics Subject Classification: 20E05

[^0]Orbit problems in general concern the orbit of an element u or a subgroup H of a group F, under the action of a subset G of Aut F. Conjugacy problems are a special instance of such problems, where G consists of the inner automorphisms of F. In this paper, we restrict our attention to the case where F is the free group F_{A} with finite basis A.

In this context, orbit problems were maybe first considered by Whitehead [23], who proved that membership in the orbit of u under the action of Aut F_{A} is decidable. The analogous result regarding the orbit of a finitely generated subgroup H was established by Gersten [6]. Much literature has been devoted as well to the case where $G=\langle\varphi\rangle$ is a cyclic subgroup of Aut F_{A}, e.g. Myasnikov and Shpilrain's work 13] on finite orbits of the form $\langle\varphi\rangle \cdot u$ and Brinkmann's recent proof [2] of the decidability of membership in $\langle\varphi\rangle \cdot u$.

The orbit problems considered in this paper are of the following form: given an element $u \in F_{A}$, a finitely generated subgroup H of F_{A} and a subset G of Aut F_{A}, does H meet the orbit of u under the action of G; that is: does H contain $\varphi(u)$ for some automorphism $\varphi \in G$? A particular instance of this problem, when $G=$ Aut F_{A}, is the question whether H contains a primitive element, since the set of primitive elements of F_{A} is the automorphic orbit of each letter $a \in A$.

Our main results state that these problems are decidable in the rank 2 free group F_{2}, if $G=$ Aut F_{2} (Theorem 4.1) or if G belongs to a certain family of rational subsets of Aut F_{2}, which includes the rational subsets of invertible substitutions (a.k.a. positive automorphisms, which map each letter to a positive word) or of inverses of invertible substitutions, see Sections 4.2 and 4.3. For these rational values of G, we also show the decidability of subgroup orbit problems: given two finitely generated subgroups H, K of \mathcal{F}_{2}, does there exist $\mu \in G$ such that K is contained in (resp. equal to) $\mu(G)$.

In free groups with larger rank, we are only able to decide a weaker problem. Say that an automorphism φ of F_{A} is k-almost bounded if $|\varphi(a)|>$ k for at most one letter $a \in A$. We show that given $k>0, u \in F_{A}$ and H a finitely generated subgroup of F_{A}, one can decide whether there exists a k-almost bounded automorphism μ such that $\mu(u) \in H$. The same holds if we replace the subgroup H by a rational subset of F_{A}, see Section 5 .

Returning to rank 2, it turns out that the decidability result concerning $G=$ Aut F_{2} can be derived from general results on the decidability of the solvability of equations with rational constraints in free groups (Diekert, Gutiérrez and Hagenah [5], building on Makanin's famous result (11]). We give a direct proof which we believe is interesting in its own right, and whose
elements are used for the solution of the problem when G is restricted to certain rational subsets of Aut F_{2}.

We use a particular factorization of the automorphism group Aut F_{2} (Theorem 2.3) and a detailed combinatorial analysis of the effect of certain simple automorphisms on the graphical representation of the subgroup H (the representation by means of so-called Stallings foldings [21, 8], see Section (1.2). The set of these automorphisms is $\Sigma=\left\{\varphi_{a, b a}, \varphi_{b^{-1}, a^{-1}}, \varphi_{b, a}\right\}$ ($\varphi_{u, v}$ maps generator a to u and generator b to v).

This combinatorial analysis leads to the definition of a (large but finite) automaton whose vertices are finite automata associated with the Stallings automata of the subgroups in the Σ^{*}-orbit of H. The construction of this automaton exploits the fact that a certain combinatorial parameter of Stallings automata (which we call the number of singularities) is preserved under the action of automorphisms in Σ. And it is the possibility of reading these actions on this finite automaton which yields our decidability results for the cases where G is a rational subset of Σ^{*}. Invertible substitutions form a particular rational submnoid of Σ^{*}.

Interesting intermediary results state that the set of primitive elements in F_{2} is a context-sensitive language (Proposition (2.6) and that if $|A|=m$ and $v_{1}, \ldots, v_{m-1} \in F_{A}$, then the set of elements x such that $v_{1}, \ldots, v_{m-1}, x$ form a basis of F_{A} is a constructible rational set (Proposition 5.3).

1 Preliminaries

1.1 Free groups

Let A denote a finite alphabet. The free monoid on A, written A^{*}, is the set of all finite sequences of elements of A (including the empty sequence, written 1), under the operation of concatenation. We also write A^{+}for the set of non-empty sequences of elements of A.

Let A^{-1} be a disjoint set of formal inverses of A and let $\tilde{A}=A \cup A^{-1}$. The operation $u \mapsto u^{-1}$ is extended to \tilde{A}^{*} as usual, by letting $\left(a^{-1}\right)^{-1}=a$ and $(u a)^{-1}=a^{-1} u^{-1}$ for all $a \in A$ and $u \in \tilde{A}^{*}$.

The free group on A is the quotient F_{A} of \tilde{A}^{*} by the congruence generated by the pairs $\left(a a^{-1}, 1\right), a \in \tilde{A}$, and we write $\pi: \tilde{A}^{*} \rightarrow F_{A}$ for the canonical projection. A word $u \in \tilde{A}^{*}$ is reduced if it does not contain a factor $a a^{-1}$ ($a \in \tilde{A}$) and we denote by R_{A} the set of reduced words. We also say that $u \in R_{A}$ is cyclically reduced if $u u$ is reduced as well.

We write $u \mapsto \bar{u}$ the reduction map, where \bar{u} is the (uniquely defined) word obtained from u by iteratively deleting factors of the form $a a^{-1}(a \in \tilde{A})$
until none is left. It is well-known that the reduction map is well defined, and that the restriction $\pi: R_{A} \rightarrow F_{A}$ is a bijection. To simplify notation, if $g \in F_{A}$, we also write \bar{g} for the reduced word such that $\pi(\bar{g})=g$, and we let the length of g be $|g|=|\bar{g}|$.

Given $X \subseteq F_{A}$, we denote by $\langle X\rangle$ the subgroup of F_{A} generated by X. We also let Aut F_{A} denote the automorphism group of F_{A}. If $\varphi \in \operatorname{Aut} F_{A}$ and no confusion arises, we shall denote also by φ the corresponding bijection of R_{A}.

Given $B \subseteq F_{A}$, we say that B is a basis of F_{A} if the homomorphism from F_{B} to F_{A} induced by the inclusion map $B \rightarrow F_{A}$ is an isomorphism. Equivalently, B is a basis of F_{A} if and only if $B=\varphi(A)$ for some $\varphi \in$ Aut F_{A}.

In much of this paper, we shall be discussing the free group on 2 generators. We fix the alphabet $A_{2}=\{a, b\}$ and use the notation $F_{2}=F_{A}$, $R_{2}=R_{A}$.

1.2 Automata and rational subsets

The product of two subsets K, L of a monoid M is the subset $K L=\{x y \mid$ $x \in K, y \in L\}$. The star operator on subsets is defined by $L^{*}=\bigcup_{n \geq 0} L^{n}$, where $L^{0}=\{1\}$. A subset L of a monoid is said to be rational if L can be obtained from finite subsets using finitely many times the operators union, product and star. We denote by Rat M the set of rational subsets of M. If M is the free monoid A^{*} on a finite alphabet A, subsets of A^{*} are called languages, and elements of Rat A^{*} are called rational languages.

Note that if $\varphi: A^{*} \rightarrow M$ is an onto morphism (that is: $\varphi(A)$ is a set of generators of M), then Rat M is the set of all $\varphi(L)$ where $L \in \operatorname{Rat} A^{*}$.

It is well-known that rational languages can be characterized by means of finite automata. A (finite) A-automaton is a tuple $\mathcal{A}=\left(Q, q_{0}, T, E\right)$ where Q is a (finite) set, $q_{0} \in Q, T \subseteq Q$ and $E \subseteq Q \times A \times Q$. It can be viewed as a graph with vertex set Q (the states), with a designated vertex q_{0} (the initial state) and a set of designated vertices T (the terminal states), whose edges are labeled by letters in A, and are given by the set E (the transitions).

A nontrivial path in \mathcal{A} is a sequence

$$
p_{0} \xrightarrow{a_{1}} p_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} p_{n}
$$

with $n \geq 1,\left(p_{i-1}, a_{i}, p_{i}\right) \in E$ for $i=1, \ldots, n$. Its label is the word $a_{1} \ldots a_{n} \in$ A^{+}. We consider also the trivial path $p_{0} \xrightarrow{1} p_{0}$ for each $p_{0} \in Q$, whose label is the empty word. A path is said to be successful if $p_{0}=q_{0}$ and $p_{n} \in T$. The language $L(\mathcal{A})$ recognized by \mathcal{A} is the set of all labels of successful paths in \mathcal{A}.

The automaton $\mathcal{A}=\left(Q, q_{0}, T, E\right)$ is said to be deterministic if, for all $p \in Q$ and $a \in A$, there is at most one edge of the form (p, a, q). In that case, we write $q=p \cdot a$. We say that \mathcal{A} is trim if every $q \in Q$ lies in some successful path.

Kleene's theorem states that a language is rational if and only if it is accepted by a finite automaton, which can be required to be deterministic and trim. In the context of a particular result or claim, we say that a rational language L is effectively constructible if there exists an algorithm to produce a finite automaton recognizing L from the concrete structures containing the input. More generally, if $\varphi: A^{*} \rightarrow M$ is an onto morphism, we say that a rational subset of M is effectively constructible (with respect to A) if it the image of an effectively constructible rational language over A.

Finally, we record the classical Benois Theorem (1):
Theorem 1.1 If $L \in \operatorname{Rat} \tilde{A}^{*}$, then $\bar{L} \in \operatorname{Rat} \tilde{A}^{*}$ and is effectively constructible.

1.3 Automata and subgroups of F_{A}

To discuss subgroups of free groups, we use inverse automata. In an \tilde{A} automaton $\mathcal{A}=\left(Q, q_{0}, T, E\right)$, the dual of an edge $(p, a, q) \in E$ is $\left(q, a^{-1}, p\right)$. Then \mathcal{A} is said to be dual if E contains the duals of all edges, and inverse if it is dual, deterministic, trim and $|T|=1$.

Given a finitely generated subgroup H of F_{A} (we write $H \leq_{f . g .}, F_{A}$), we denote by $\mathcal{A}(H)$ the Stallings automaton associated to H by the construction often referred to as Stallings foldings. This construction, that can be traced back to the early part of the twentieth century [17, Chapter 11], was made explicit by Serre [18] and Stallings [2] (see also [8]).

A brief description is as follows. If $h_{1}, \ldots, h_{r} \in R_{A}$ is a set of generators of the subgroup H (that is, $H=\left\langle\pi\left(h_{1}\right), \ldots, \pi\left(h_{r}\right)\right\rangle$), one constructs a dual automaton in the form of r subdivided circles around a common distinguished vertex 1 , each labeled by one of the h_{i}. Then we iteratively identify identically labeled pairs of edges starting (resp. ending) at the same vertex (this is called the folding process, see Figure [1), until no further folding is possible.

The following proposition summarizes important properties, see [$\mathbb{Z}]$.
Proposition 1.2 Let $H \leq_{\text {f.g. }} F_{A}$. Then:
(i) $\mathcal{A}(H)$ is a finite inverse automaton, which does not depend on the finite reduced generating set chosen;

Figure 1: A folding step, with $a \in \tilde{A}$
(ii) if $p \xrightarrow{u} q$ is a path in $\mathcal{A}(H)$, so is $p \xrightarrow{\bar{u}} q$;
(iii) for every $u \in R_{A}, u \in L(\mathcal{A}(H))$ if and only if $\pi(u) \in H$; in particular, $L(\mathcal{A}(H)) \subseteq \pi^{-1}(H) ;$
(iv) for every cyclically reduced $u \in F_{A}$, wuw ${ }^{-1} \in H$ for some $w \in F_{A}$ if and only if u labels some loop in $\mathcal{A}(H)$.

We will use the following corollary.
Corollary 1.3 Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $u \in R_{A}$. Then $\left\{a_{1}, \ldots, a_{m-1}, u\right\}$ is a basis of F_{A} if and only if $u=v a_{m}^{\varepsilon} w$ for some $v, w \in R_{\left\{a_{1}, \ldots, a_{m-1}\right\}}$ and $\varepsilon \in\{1,-1\}$.

Proof. It is immediate that if $u=v a_{m}^{\varepsilon} w$ with $v, w \in R_{\left\{a_{1}, \ldots, a_{m-1}\right\}}$, then $\left\{a_{1}, \ldots, a_{m-1}, u\right\}$ generates F_{A}, and by the Hopfian property of free groups (see [10, Prop. I.3.5]), $\left\{a_{1}, \ldots, a_{m-1}, u\right\}$ is a basis of F_{A}.

Conversely, let $u \in R_{A}$ contain an occurrence of a_{m} or a_{m}^{-1}, and let $u=v z w$ be the factorization with $v, w \in R_{\left\{a_{1}, \ldots, a_{m-1}\right\}}$ of maximal length. It is immediate that if $H=\left\langle a_{1}, \ldots, a_{m-1}, u\right\rangle$, then $H=\left\langle a_{1}, \ldots, a_{m-1}, z\right\rangle$ and $\mathcal{A}(H)$ is equal to $\mathcal{A}(\langle z\rangle)$ with loops labelled a_{1}, \ldots, a_{m-1} attached at the origin. Thus, if $\left\{a_{1}, \ldots, a_{m-1}, u\right\}$ is a basis of F_{A}, then $\mathcal{A}(\langle z\rangle)$ must consist of a single loop labeled a_{m}, and hence z must be equal to a_{m} or a_{m}^{-1}.

1.4 Automorphisms of F_{2}

Given a basis $\{u, v\}$ of F_{2}, we let $\varphi_{u, v}$ be the automorphism defined by $\varphi_{u, v}(a)=u$ and $\varphi_{u, v}(b)=v$. For every $w \in F_{2}$, we denote by $\lambda_{w}=$ $\varphi_{w a w^{-1}, w b w^{-1}}$ the inner automorphism defined by w. We introduce the following subsets of Aut F_{2}.

$$
\begin{aligned}
& \Sigma_{0}=\left\{\varphi_{a, b a}, \varphi_{b^{-1}, a^{-1}}\right\} \text { and } \Sigma=\Sigma_{0} \cup\left\{\varphi_{b, a}\right\} ; \\
& \Phi=\left\{\varphi_{a, b a}, \varphi_{a b, b}, \varphi_{a, a b}, \varphi_{b a, b}\right\} ;
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=\left\{\varphi_{a, a^{m} b^{\varepsilon} a^{n}} \mid m, n \in \mathbb{Z}, \varepsilon \in\{1,-1\}\right\} ; \\
& \Psi=\left\{\varphi \in \operatorname{Aut} F_{2}| | \varphi(a)|=|\varphi(b)|=1\} \text { and } \Lambda=\left\{\lambda_{w} \mid w \in R_{A}\right\} .\right.
\end{aligned}
$$

The following will be useful in the sequel.
Proposition 1.4 (i) $X \Lambda=\Lambda X$ for every $X \subseteq$ Aut F_{2};
(ii) $\Lambda \Psi \Phi^{*} \subseteq \Lambda \Psi\left(\Sigma_{0}^{-1}\right)^{*} \varphi_{a^{-1}, b}$;
(iii) $\Delta \subseteq \Lambda\left(\varphi_{a, b a}^{*} \cup \varphi_{a^{-1}, b} \varphi_{a, b a}^{*} \varphi_{a^{-1}, b}\right)\left(1 \cup \varphi_{a, b^{-1}}\right)$.

Proof. (i) follows from the fact that $\theta \lambda_{w}=\lambda_{\theta(w)} \theta$ for each $w \in F_{2}$ and $\theta \in \operatorname{Aut} F_{2}$.
(ii) Notice that $\varphi_{a b, b}=\varphi_{b, a} \varphi_{a, b a} \varphi_{b, a}, \varphi_{a, a b}=\lambda_{a} \varphi_{a, b a}$ and $\varphi_{b a, b}=\lambda_{b} \varphi_{a b, b}$. It follows that $\Lambda \Psi \Phi^{*} \subseteq \Lambda \Psi\left\{\varphi_{a, b a}, \varphi_{b, a}\right\}^{*}$.

Observe also that $\varphi_{a, b a}=\varphi_{a^{-1}, b} \varphi_{a, b a}^{-1} \varphi_{a^{-1}, b}, \varphi_{b, a}=\varphi_{a^{-1}, b} \varphi_{b^{-1}, a^{-1}}^{-1} \varphi_{a^{-1}, b}$ and $\varphi_{a^{-1}, b}^{2}=1$. So we have

$$
\left\{\varphi_{a, b a}, \varphi_{b, a}\right\}^{*}=\varphi_{a^{-1}, b}\left\{\varphi_{a, b a}^{-1}, \varphi_{b^{-1}, a^{-1}}^{-1}\right\}^{*} \varphi_{a^{-1}, b}=\varphi_{a^{-1}, b}\left(\Sigma_{0}^{-1}\right)^{*} \varphi_{a^{-1}, b} .
$$

Therefore $\Lambda \Psi \Phi^{*} \subseteq \Lambda \Psi \varphi_{a^{-1}, b}\left(\Sigma_{0}^{-1}\right)^{*} \varphi_{a^{-1}, b}=\Lambda \Psi\left(\Sigma_{0}^{-1}\right)^{*} \varphi_{a^{-1}, b}$.
(iii) Observe that if $m, n \in \mathbb{Z}$, then $\varphi_{a, a^{m} b a^{n}}=\lambda_{a^{m}} \varphi_{a, b a^{m+n}}=\lambda_{a^{m}} \varphi_{a, b a}^{m+n}$, so that $\varphi_{a, a^{m} b a^{n}} \in \Lambda\left(\varphi_{a, b a}^{*} \cup\left(\varphi_{a, b a}^{-1}\right)^{*}\right)$. We already noted that $\varphi_{a, b a}^{-1}=$ $\varphi_{a^{-1}, b} \varphi_{a, b a} \varphi_{a^{-1}, b}$ and $\varphi_{a^{-1}, b}^{2}=1$, so

$$
\varphi_{a, a^{m} b a^{n}} \in \Lambda\left(\varphi_{a, b a}^{*} \cup \varphi_{a^{-1}, b} \varphi_{a, b a}^{*} \varphi_{a^{-1}, b}\right) .
$$

Similarly, $\varphi_{a, a^{m} b^{-1} a^{n}}=\lambda_{a^{-n}} \varphi_{a, b a}^{-(m+n)} \varphi_{a, b^{-1}}$ and hence

$$
\varphi_{a, a^{m} b^{-1} a^{n}} \in \Lambda\left(\varphi_{a, b a}^{*} \cup \varphi_{a^{-1}, b} \varphi_{a, b a}^{*} \varphi_{a^{-1}, b}\right) \varphi_{a, b^{-1}},
$$

which concludes the proof.

2 Primitive words

Let us first consider a particular automorphic orbit in F_{A}, namely the set P_{A} of primitive words. Recall that a word is primitive if it belongs to some basis of F_{A}. In particular, P_{A} is the automorphic orbit of each letter from A. We shall often view P_{A} as a subset of R_{A}. We denote by P_{2} the set of all primitive words in F_{2}.

We use a known characterization of the words in P_{2} to derive a technical factorization of the group Aut F_{2} of automorphisms of F_{2}, that will be used in Section 7. We further exploit this characterization to point out certain language-theoretic properties of P_{2}.

2.1 Primitive words and a factorization of Aut F_{2}

Proposition 2.1 reports two results: the first is due to Nielsen [14] (see also [4, 2.2] and [15]) and the second is due to Wen and Wen [22]. An interesting perspective on either is offered in [9, Chapter 2] and [3, Chapter I-5].

Proposition 2.1 (i) Up to conjugation, every primitive element $u \in P_{2}$ is either a letter, or of the form $u=a^{n_{1}} b^{m_{1}} \ldots a^{n_{k}} b^{m_{k}}$ where

- either $n_{1}=\ldots=n_{k} \in\{1,-1\}$ and $\left\{m_{1}, \ldots, m_{k}\right\} \subseteq\{n, n+1\}$ for some integer n,
- or $m_{1}=\ldots=m_{k} \in\{1,-1\}$ and $\left\{n_{1}, \ldots, n_{k}\right\} \subseteq\{n, n+1\}$ for some integer n.
(ii) The set of positive primitive words $P_{2} \cap\{a, b\}^{+}$is equal to $\Phi^{*}(\{a, b\})=$ $b \cup \Phi^{*}(a)$.

Corollary 2.2 $P_{2}=\Lambda \Psi \Phi^{*}(a)$.
Proof. By Proposition 2.1 (i), every primitive element of F_{2} is a conjugate of $\psi\left(a b^{m_{1}} \ldots a b^{m_{k}}\right)$, where $\left\{m_{1}, \ldots, m_{k}\right\} \subseteq\{n, n+1\}$ for some integer $n \geq 0$ and $\psi \in \Psi$. That is, $P_{2}=\Lambda \Psi\left(P_{2} \cap\{a, b\}^{+}\right)$. By Proposition 2.1 (ii), it follows that $P_{2}=\Lambda \Psi\left(b \cup \Phi^{*}(a)\right)=\Lambda \Psi \Phi^{*}(a)$.

We can now prove a useful decomposition result for Aut F_{2}.
Theorem 2.3 Aut $F_{2}=\Lambda \Psi \Phi^{*} \Delta=\Psi\left(\Sigma_{0}^{-1}\right)^{*} \Lambda \varphi_{a, b a}^{*}\left(\varphi_{a^{-1}, b} \cup \varphi_{a^{-1}, b^{-1}}\right)$.
Proof. To establish the first equality, we consider $\theta \in$ Aut F_{2}. Then $\theta(a) \in$ P_{2} and so $\theta(a)=\sigma(a)$ for some $\sigma \in \Lambda \Psi \Phi^{*}$ by Corollary 2.2. Corollary 1.3 then shows that $\sigma^{-1} \theta=\varphi_{a, a^{m} b^{\varepsilon} a^{n}}$ for some $m, n \in \mathbb{Z}$ and $\varepsilon \in\{1,-1\}$. So $\sigma^{-1} \theta \in \Delta$ and $\theta \in \Lambda \Psi \Phi^{*} \Delta$. It follows that

$$
\text { Aut } \begin{aligned}
F_{2} & \subseteq \Lambda \Psi \Phi^{*}\left(\varphi_{a, b a}^{*} \cup \varphi_{\left.a^{-1}, b \varphi_{a, b a}^{*} \varphi_{a^{-1}, b}\right)\left(1 \cup \varphi_{a, b^{-1}}\right) \text { by Proposition } 1.4}\right. \\
& \subseteq \Lambda \Psi \Phi^{*}\left(1 \cup \varphi_{a^{-1}, b}^{*} \varphi_{a, b a}^{*} \varphi_{a^{-1}, b}\right)\left(1 \cup \varphi_{a, b-1}\right) \text { since } \varphi_{a, b a} \in \Phi \\
& \subseteq \Lambda \Psi \Phi^{*}\left(\varphi_{\left.a^{-1}, b \varphi_{a, b a}^{*} \varphi_{a^{-1}, b}\right)\left(1 \cup \varphi_{a, b^{-1}}\right) \text { since } \varphi_{a^{-1}, b}^{2}=1}\right. \\
& \subseteq \Lambda \Psi\left(\Sigma_{0}^{-1}\right)^{*} \varphi_{a, b a}^{*} \varphi_{a^{-1}, b}\left(1 \cup \varphi_{a, b^{-1}}\right) \text { by Proposition (ii) } \\
& \subseteq \Psi\left(\Sigma_{0}^{-1}\right)^{*} \Lambda \varphi_{a, b a}^{*}\left(\varphi_{a^{-1}, b} \cup \varphi_{a^{-1}, b^{-1}}\right) .
\end{aligned}
$$

The converse inclusion is of course trivial.

2.2 The language $\overline{P_{2}}$

Recall that a context-sensitive A-grammar is a triple $\mathcal{G}=(V, P, S)$ where V is a finite set containing A, S is an element of V that is not in A and P is the set of rules of the grammar: a finite set of pairs $(\ell, r) \in V^{+} \times V^{+}$such that

$$
\ell \notin A^{+} \text {and }|\ell| \leq|r| .
$$

For all $x, y \in V^{+}$, we write $x \Rightarrow y$ if there exist $u, v \in V^{*}$ and $(\ell, r) \in P$ such that $x=u \ell v$ and $y=u r v$. We denote by $\stackrel{*}{\Rightarrow}$ the transitive and reflexive closure of \Rightarrow. The language generated by \mathcal{G} is

$$
L(\mathcal{G})=\left\{w \in A^{+} \mid S \stackrel{*}{\Rightarrow} w\right\} .
$$

A language $L \subseteq A^{+}$is said to be context-sensitive if it is generated by some context-sensitive A-grammar. As usual, a language $L \subseteq A^{*}$ is called context-sensitive if $L \cap A^{+}$is context-sensitive.

Lemma 2.4 The class of context-sensitive languages is closed under union, intersection, concatenation, right and left quotient by a word, 1-free substitutions, inverse morphisms and non-erasing morphisms (that is, homomorphisms in which every letter is mapped to a non-empty word).

Proof. Closure under union, intersection, concatenation, 1-free substitutions, inverse homomorphisms and non-erasing morphisms is well-known $\sqrt{7}$, Exercise 9.10]. In particular, the family of context-sensitive languages forms a trio [$\overline{7}$, Section 11.1] and as such, it is closed under limited erasing [7], Lemma 11.2]. By definition, this means that if $k \geq 1, L$ is context-sensitive and φ is a morphism such that $\varphi(v) \neq 1$ for each $u \in L$ and each factor v of u of length greater than k, then $\varphi(L)$ is context-sensitive as well.

Now let $L \subseteq A^{*}, a \in A$ and $\$ \notin A$. Let σ be the substitution that maps a to $\sigma(a)=\{a, \$\}$ and which fixes every other letter of A. Let also $\varphi:(A \cup\{\$\})^{*} \rightarrow A^{*}$ be the morphism which fixes every letter of A and erases $\$$. Then $a \backslash L=\varphi\left(\sigma(L) \cap \$ A^{*}\right)$ and $L / a=\varphi\left(\sigma(L) \cap A^{*} \$\right)$. Since the σ-images of the letters are finite, and hence context-sensitive, the languages $\sigma(L) \cap \$ A^{*}$ and $\sigma(L) \cap A^{*} \$$ are context-sensitive; moreover φ exhibits limited erasing on these languages, so $a \backslash L$ and L / a are context-sensitive as well.

Proposition 2.5 Let A be a finite alphabet and let Γ be a finite set of endomorphisms of A^{+}. For every $u \in A^{+}, \Gamma^{*}(u)$ is a context-sensitive language.

Proof. Take $b \notin A$. We define a context-sensitive $(A \cup\{b\})$-grammar $\mathcal{G}=$ (V, P, S) by $V=A \cup\{R, S, T\} \cup\left\{F_{\varphi} \mid \varphi \in \Gamma\right\}$ and

$$
\begin{aligned}
P= & \left\{S \rightarrow b F_{\varphi} u R, S \rightarrow b u b^{2}, F_{\varphi} a \rightarrow \varphi(a) F_{\varphi}, F_{\varphi} R \rightarrow T R,\right. \\
& \left.F_{\varphi} R \rightarrow b^{2}, a T \rightarrow T a, b T \rightarrow b F_{\varphi} ; a \in A, \varphi \in \Gamma\right\} .
\end{aligned}
$$

We show that $L(\mathcal{G})=b \Gamma^{*}(u) b^{2}$.
Clearly, $F_{\varphi} v \stackrel{*}{\Rightarrow} \varphi(v) F_{\varphi}$ for all $\varphi \in \Gamma$ and $v \in A^{*}$ and so

$$
b v T R \stackrel{*}{\Rightarrow} b T v R \Rightarrow b F_{\varphi} v R \stackrel{*}{\Rightarrow} b \varphi(v) F_{\varphi} R \Rightarrow b \varphi(v) T R .
$$

Since $S \Rightarrow b F_{\varphi} u R \stackrel{*}{\Rightarrow} b \varphi(u) F_{\varphi} R \Rightarrow b \varphi(u) T R$ for every $\varphi \in \Gamma$, it follows that $S \stackrel{*}{\Rightarrow} b \theta(u) F_{\varphi} R \Rightarrow b \theta(u) b^{2}$ for every $\theta \in \Gamma^{+}$. Together with $S \Rightarrow b u b^{2}$, this yields $b \Gamma^{*}(u) b^{2} \subseteq L(\mathcal{G})$.

To prove the opposite inclusion, let

$$
Z=\{S\} \cup\left\{b x y b^{2}, b x T y R, b \varphi(x) F_{\varphi} y R \mid x y \in \Gamma^{*}(u)\right\} .
$$

Then Z is closed under \Rightarrow. That is: if $X \in Z$ and $X \Rightarrow Y$, then $Y \in Z$.
Since $S \in Z$, it follows that $L(\mathcal{G}) \subseteq Z \cap A^{*}=b \Gamma^{*}(u) b^{2}$ and so $L(\mathcal{G})=$ $b \Gamma^{*}(u) b^{2}$. Thus $b \Gamma^{*}(u) b^{2}$ is context-sensitive and by Lemma 2.4, $\Gamma^{*}(u)=$ $b \backslash\left(b \Gamma^{*}(u) b^{2}\right) / b^{2}$ is context-sensitive as well.

Theorem 2.6 $\overline{P_{2}}$ is a context-sensitive language.
Proof. Since the class of context-sensitive languages is closed under union (Lemma 2.4), it follows from Proposition 2.1 (ii) and Proposition 2.5 that $P_{2} \cap\{a, b\}^{+}=\overline{P_{2}} \cap\{a, b\}^{+}$is context-sensitive. Moreover, Proposition 2.1(i) shows that $P_{2}=\Lambda \Psi\left(P_{2} \cap \underline{\left.\{a, b\}^{+}\right)=\Psi \Lambda\left(P_{2} \cap\{a, b\}^{+}\right) \text {. Since } \Psi \text { is finite, we }}\right.$ need only prove that each $\overline{\psi \Lambda\left(P_{2} \cap\{a, b\}^{+}\right)}, \psi \in \Psi$, is context-sensitive.

Notice for each $\psi \in \Psi$ and each word $w, \overline{\psi(w)}=\psi(\bar{w})$. By Lemma 2.4 again, we need only to prove that $\overline{\Lambda\left(P_{2} \cap\{a, b\}^{+}\right)}$is context-sensitive.

Let $w \in R_{2}$ and $p \in P_{2} \cap\{a, b\}^{+}$. If $w p w^{-1}$ is not reduced, then one of $w p$ and $p w^{-1}$ is not reduced. In the first case, let q be the longest prefix of p such that q^{-1} is a suffix of w, say $p=q r$ and $w=v q^{-1}$. Then $\overline{w p w^{-1}}=\overline{v q^{-1} q r q v^{-1}}=\overline{v r q v^{-1}}$. The second case (if $w p$ is reduced but $p w^{-1}$ is not) is treated similarly. Iterating this reasoning, we find that $\overline{w p w^{-1}}=v p^{\prime} v^{-1}$, where v is a prefix of w and p^{\prime} is a cyclic shift of the word p - that is, there are words q, r such that $p=q r$ and $p^{\prime}=r q$.

Since $P_{2} \cap\{a, b\}^{+}$is closed under taking cyclic shifts, it follows that $\overline{\Lambda\left(P_{2} \cap\{a, b\}^{+}\right)}$is the set of reduced words of the form $v p v^{-1}$ with $p \in$ $P_{2} \cap\{a, b\}^{+}$.

Thus, if $\mathcal{G}=(V, P, S)$ is a context-sensitive A-grammar generating $P_{2} \cap$ $\{a, b\}^{+}$, then $\overline{\Lambda\left(P_{2} \cap\{a, b\}^{+}\right)}=L\left(\mathcal{G}^{\prime}\right) \cap R_{2}$, where $\mathcal{G}^{\prime}=\left(V^{\prime}, P^{\prime}, S^{\prime}\right)$ is the context-sensitive A-grammar given by $S^{\prime} \notin V, V^{\prime}=\left\{S^{\prime}\right\} \cup V$ and $P^{\prime}=$ $P \cup\left\{S^{\prime} \rightarrow S\right\} \cup\left\{S^{\prime} \rightarrow c S^{\prime} c^{-1} ; c \in A_{2} \cup A_{2}^{-1}\right\}$. In view of the closure properties in Lemma 2.4, $\overline{\Lambda\left(P_{2} \cap\{a, b\}^{+}\right)}$is context-sensitive, and hence so is P_{2}.

This result cannot be improved to the next level of Chomsky's hierarchy:
Proposition 2.7 $\overline{P_{2}}$ is not a context-free language.
Proof. We show that $P_{2} \cap a b^{+} a b^{+} a b^{+}$is not a context-free language. Since the class of context-free languages is closed under intersection with rational languages, it shows that P_{2} is not context-free either.

It follows easily from Proposition 2.1(i) that $P_{2} \cap a b^{*} a b^{*} a b^{*}$ is equal to

$$
\begin{equation*}
\left\{a b^{m} a b^{n} a b^{k} \mid m, n, k \in \mathbb{N}, \max (m, n, k)=\min (m, n, k)+1\right\} . \tag{1}
\end{equation*}
$$

It is now a classical exercise to show that $P_{2} \cap a b^{+} a b^{+} a b^{+}$is not context-free since it fails the Pumping Lemma for context-free languages [7, Section 6.1].

3 Singularities, bridges and automorphisms in Σ

We discuss now the evolution of the Stallings automaton of a subgroup under the influence of the automorphisms in Σ^{*}. The developments in this section are quite technical. They lead, in Section 3.3, to the definition of the truncature of automata of the form $\mathcal{A}(\varphi(H)), \varphi \in \Sigma^{*}$, which will be a crucial tool in the proof of our main results, in Section 0 .

Given $H \leq_{\text {f.g. }} . F_{2}$, we say that a state q of $\mathcal{A}(H)$ is a

- source if $q \cdot a, q \cdot b \neq \emptyset$,

$$
\stackrel{a}{\longleftrightarrow} q \xrightarrow{b}
$$

- sink if $q \cdot a^{-1}, q \cdot b^{-1} \neq \emptyset$.

$$
\xrightarrow{a} q \stackrel{b}{\longleftrightarrow}
$$

We use the general term singularities to refer to both sources and sinks and we denote by $\operatorname{Sing}(H)$ the set of all singularities of $\mathcal{A}(H)$ plus the origin.

If we emphasize the vertices of $\operatorname{Sing}(H)$ in $\mathcal{A}(H)$, it is immediate that $\mathcal{A}(H)$ can be described as the union of positive paths, i.e. paths with label in $(a \cup b)^{+}$, between the vertices of $\operatorname{Sing}(H)$, and these positive paths do not intersect each other except at $\operatorname{Sing}(H)$. We call such paths bridges. Note that every positive path whose internal states are not singularities can be extended into a uniquely determined bridge.

3.1 Bridges in $\mathcal{A}(H)$

The next two results are easily verified.
Fact 3.1 The automaton $\mathcal{A}\left(\varphi_{b^{-1}, a^{-1}}(H)\right)$ has the same vertex set as $\mathcal{A}(H)$, edges are reverted and labels changed. In particular, sources and sinks are exchanged. If β is a bridge in $\mathcal{A}(H), \beta=p \xrightarrow{w} q$, then there is a bridge of equal length $q \longrightarrow p$ in $\mathcal{A}\left(\varphi_{b^{-1}, a^{-1}}(H)\right)$, labeled $\varphi_{b^{-1}, a^{-1}}\left(w^{-1}\right)$, which we denote by $\varphi_{b^{-1}, a^{-1}}(\beta)$.

Fact 3.2 The automaton $\mathcal{A}\left(\varphi_{b, a}(H)\right)$ has the same vertex set as $\mathcal{A}(H)$ and labels are exchanged. Sources and sinks remain the same. If β is a bridge in $\mathcal{A}(H), \beta=p \xrightarrow{w} q$, then there is a bridge of equal length $p \longrightarrow q$ in $\mathcal{A}\left(\varphi_{b, a}(H)\right)$, labeled $\varphi_{b, a}(w)$, which we denote by $\varphi_{b, a}(\beta)$.

Dealing with $\varphi_{a, b a}$ is naturally a little more complex.
Fact 3.3 The automaton $\mathcal{A}\left(\varphi_{a, b a}(H)\right)$ is obtained from $\mathcal{A}(H)$ by the following 3 steps:
(S1) If $p \xrightarrow{b} q$ is an edge of $\mathcal{A}(H)$ and q is not a sink, we replace that edge by a path $p \xrightarrow{b} \bullet{ }^{a} q$, adding a new intermediate vertex for each such edge.
(S2) If $p \xrightarrow{b} q \stackrel{a}{\longleftrightarrow} r$ is a sink in $\mathcal{A}(H)$, we replace this configuration by

(S3) We successively remove all the vertices of degree 1 different from the origin.

Proof. Following [16, Subsection 1.2], the automaton $\mathcal{A}(\varphi(H))$ may be obtained from $\mathcal{A}(H)$ in three steps:
(1) We replace each edge labelled by b by a path labelled $b a$ (introducing a new intermediate vertex for each such edge), producing a dual automaton \mathcal{B}.
(2) We execute the complete folding of \mathcal{B}.
(3) We successively remove all the vertices of degree 1 different from the origin.

How much folding is involved in the process? Let us consider the first level of folding, i.e. those pairs of edges that can be immediately identified in \mathcal{B}.

- There are no b-edges involved in the first level of folding: indeed, the b-edges keep their origin when we go from $\mathcal{A}(H)$ to \mathcal{B}, and their target is always a new vertex where folding cannot take place.
- If we have a $\operatorname{sink} p \stackrel{b}{\longrightarrow} q \stackrel{a}{\longleftrightarrow} r$ in $\mathcal{A}(H)$, we get

$$
p \xrightarrow{b} \bullet \xrightarrow{a} q \stackrel{a}{\longleftrightarrow} r
$$

in \mathcal{B} and therefore an instance of first level folding, yielding

- These are the only instances of first level folding: we cannot fold two "new" a-edges $\xrightarrow{a} q \stackrel{a}{\longleftrightarrow}$ in \mathcal{B} since that would imply the existence of two b-edges $\xrightarrow{b} q \stackrel{b}{\longleftrightarrow}$ in $\mathcal{A}(H)$.

Let \mathcal{C} denote the automaton obtained by performing all the instances of first level folding in \mathcal{B}. It follows from the above remarks that \mathcal{C} can be obtained from $\mathcal{A}(H)$ by application of (S1) and (S2).

We actually need no second level of folding because \mathcal{C} is already deterministic. Indeed, it is clear from (S1) and (S2) that configurations such as $\stackrel{a}{\longleftrightarrow} q \xrightarrow{a}$ or $\stackrel{b}{\longleftarrow} q \xrightarrow{b}$ cannot occur in \mathcal{C}.

Suppose that $\stackrel{b}{\longrightarrow} q \stackrel{b}{\longleftarrow}$ does occur. Then both edges must have been obtained through (S2) which is impossible since $p \cdot a$ is uniquely determined in $\mathcal{A}(H)$.

Finally, suppose that $\xrightarrow{a} q \stackrel{a}{\longleftrightarrow}$ does occur. At least one of these edges must have been obtained through (S1), but not both, otherwise we would have a configuration $\xrightarrow{b} q \stackrel{b}{\longleftrightarrow}$ in $\mathcal{A}(H)$. But then we would have a configuration $\xrightarrow{a} q \stackrel{{ }^{b}}{ }$ in $\mathcal{A}(H)$ and q would be a sink, contradicting the application of (S1). Thus \mathcal{C} is deterministic and so $\mathcal{A}(\varphi(H)$) is obtained from $\mathcal{A}(H)$ by successive application of (S1), (S2) and (S3).

Fact 3.4 (i) When applying $\varphi_{a, b a}$, a state of $\mathcal{A}(H)$ is trimmed in step (S3) if and only if it is a sink of $\mathcal{A}(H)$ without outgoing edges. Moreover, no consecutive states can be trimmed.
(ii) The sources of $\mathcal{A}\left(\varphi_{a, b a}(H)\right)$ are precisely the sources p of $\mathcal{A}(H)$ such that $p \cdot a$ is not a sink or has outgoing edges in $\mathcal{A}(H)$.
(iii) The sinks of $\mathcal{A}\left(\varphi_{a, b a}(H)\right)$ are precisely the states p of $\mathcal{A}(H)$ with incoming edges such that $p \cdot a$ is a sink of $\mathcal{A}(H)$.

Proof. (i) The origin cannot be trimmed and the number of outgoing edges never decreases, so the only possible candidates to (S3) are the states that see a decrease in their number of incoming edges, which are precisely the sinks of $\mathcal{A}(H)$. Their fate will then depend on the previous existence of some outgoing edge. Note that $\mathcal{A}(H)$ cannot possess two consecutive sinks with no outgoing edges, hence the trimming of a vertex will not be followed by the trimming of any of its neighbours.
(ii) Since outgoing edges can be at most redirected through (S1) and (S2), it is clear that every source p of $\mathcal{A}\left(\varphi_{a, b a}(H)\right)$ must be a source of $\mathcal{A}(H)$. Thus everything will depend on $p \cdot a$ being trimmed or not, and part (i) yields the claim.
(iii) No new intermediate vertex obtained through (S1) can become a sink, and any sink of $\mathcal{A}(H)$ will not remain such after application of (S2). Thus the only remaining candidates are the non-sinks of $\mathcal{A}(H)$ that see an increase of their number of incoming edges, which are precisely those of the form $q \cdot a^{-1}$, where q is a sink of $\mathcal{A}(H)$. Clearly, to have two distinct incoming edges in $\mathcal{A}\left(\varphi_{a, b a}(H)\right), p=q \cdot a^{-1}$ must have at least one incoming edge in $\mathcal{A}(H)$. In such a case, it is easy to check that after (S1)/(S2), p has indeed become a sink of $\mathcal{A}\left(\varphi_{a, b a}(H)\right)$. We remark also that the subsequent trimming by (S3) does not affect the presence of singularities.

Fact 3.5 Let $\beta=p \xrightarrow{w} q$ be a bridge in $\mathcal{A}(H)$ of length at least 2, and let $w=w^{\prime} c d$ where $c, d \in A$.
(i) $\mathcal{A}\left(\varphi_{a, b a}(H)\right)$ has a positive path $p \xrightarrow{\varphi_{a, b a}\left(w^{\prime} c\right)}$ s, which extends to a uniquely determined bridge, denoted by $\varphi_{a, b a}(\beta)$.
(ii) $\left|\varphi_{a, b a}(\beta)\right| \geq|\beta|-1$, and we have $\left|\varphi_{a, b a}(\beta)\right|=|\beta|-1$ exactly if $w \in a^{+}$, p is a source or the origin in $\mathcal{A}(H)$, and q is a sink in $\mathcal{A}(H)$.

Proof. Write $\beta=p \xrightarrow{w^{\prime}} r \xrightarrow{c} s \xrightarrow{d} q$.
(i) By Fact 3.4, no state of the path $p \xrightarrow{\varphi_{a, b a}\left(w^{\prime} c\right)} s$ risks trimming. Hence it suffices to check that no internal state of this path can become a singularity. This follows easily from Fact 3.4 (ii) and (iii).
(ii) The inequality $\left|\varphi_{a, b a}(\beta)\right| \geq|\beta|-1$ follows at once from part (i). It follows also that $\left|\varphi_{a, b a}(\beta)\right|=|\beta|-1$ if and only if $w^{\prime} c \in a^{+}$(otherwise $\left.\left|\varphi_{a, b a}(\beta)\right| \geq\left|\varphi_{a, b a}\left(w^{\prime} c\right)\right|>\left|w^{\prime} c\right|=|\beta|-1\right)$ and $p, s \in \operatorname{Sing}\left(\varphi_{a, b a}(H)\right)$. Thus we assume that $w^{\prime} c \in a^{+}$.

Clearly, if p is the origin, it must remain so. If p is a source, it follows from Fact 3.4 (ii) that p remains a source (since $p \cdot a$ is not a sink in $\mathcal{A}(H)$). Finally, if p is a sink, it will no longer be a singularity in $\mathcal{A}\left(\varphi_{a, b a}(H)\right)$ by Fact 3.4 (iii). Therefore $p \in \operatorname{Sing}\left(\varphi_{a, b a}(H)\right)$ if and only if it is a source or the origin in $\mathcal{A}(H)$.

Similarly, q can never become the origin or a source. Since q has incoming edges in $\mathcal{A}(H)$, it follows from Fact 3.4(iii) that s becomes a sink in $\mathcal{A}\left(\varphi_{a, b a}(H)\right)$ if and only if $s \cdot a$ is a sink in $\mathcal{A}(H)$. Since the unique outgoing edge of s in $\mathcal{A}(H)$ has label d, then $s \in \operatorname{Sing}\left(\varphi_{a, b a}(H)\right)$ if and only if $d=a$ and q is a sink in $\mathcal{A}(H)$.

3.2 Homogeneous cycles and cycle-free paths

Let $\sigma(H)=\max (1, \operatorname{source}(H)+\operatorname{sink}(H))$, where source $(H)($ resp. $\operatorname{sink}(H))$ is the number of sources (resp. sinks) of $\mathcal{A}(H)$. We call $\sigma(H)$ the number of singularities of $\mathcal{A}(H)$. Note that a vertex may be a source and a sink, and in that case, it contributes 2 to $\sigma(H)$.

We say that a path $p \xrightarrow{w} r$ is homogeneous if $w \in R_{a} \cup R_{b}$, and it is special homogeneous if, in addition, it starts at a source or the origin, and it ends at a $\sin k$ or the origin. Let $h c(\mathcal{A})($ resp. $\operatorname{hcfp}(\mathcal{A}), \operatorname{shcfp}(\mathcal{A}))$ be the maximum length of a homogeneous cycle (resp. homogeneous cycle-free path, special homogeneous cycle-free path) in automaton \mathcal{A}.

Given $H \leq_{f . g .} F_{2}$, we define

$$
\begin{aligned}
\delta_{0}(H) & =\max (\sigma(H), \operatorname{hc}(\mathcal{A}(H)), \\
\delta(H) & =\max \left(\delta_{0}(H), \operatorname{hcfp}(\mathcal{A}(H)),\right. \\
\zeta(H) & =\max \left(\delta_{0}(H), \operatorname{shcfp}(\mathcal{A}(H)) .\right.
\end{aligned}
$$

We record the following inequalities.
Lemma 3.6 Let $H \leq_{\text {f.g. }} F_{2}$. Every cycle or a cycle-free path labeled b^{k} in $\mathcal{A}\left(\varphi_{a, b a}(H)\right)$ satisfies $k \leq \sigma(H)$.

Proof. Let us first assume that $\alpha=p \xrightarrow{b^{k}} q$ is a cycle-free path, say

$$
p=q_{0} \xrightarrow{b} q_{1} \xrightarrow{b} \ldots \xrightarrow{b} q_{k}=q .
$$

Since any b-edge obtained through (S1) must be followed only by an a-edge (see Fact (3.3), only the last edge $q_{k-1} \xrightarrow{b} q_{k}$ may be obtained through (S1), and the other edges arise from applications of (S2). Thus there exist edges in $\mathcal{A}(H)$ (represented through discontinuous lines) of the form

In particular, the vertices p_{1}, \ldots, p_{k-1} are distinct sinks in $\mathcal{A}(H)$, and the vertices q_{1}, \ldots, q_{k-1} are distinct sources in $\mathcal{A}(H)$. Therefore $2 k-2 \leq \sigma(H)$ and hence $k \leq \sigma(H)$.

If α is a cycle, then not even the last edge of α arises from an application of (S1), and the same reasoning shows that $2 k \leq \sigma(H)$, so $k \leq \sigma(H)$.

Lemma 3.7 Let $H \leq_{\text {f.g. }} F_{2}$ and $\varphi \in \Sigma$. Then

$$
\begin{aligned}
\sigma(\varphi(H)) & \leq \sigma(H), \\
\delta_{0}(\varphi(H)) & \leq \delta_{0}(H), \\
\zeta(\varphi(H)) & \leq \zeta(H) .
\end{aligned}
$$

Proof. The first inequality is a direct consequence of Facts 3.1, 3.2 and 3.4 .
By Facts 3.1 and 3.2, the other inequalities are trivial if $\varphi=\varphi_{b, a}$ or $\varphi_{b^{-1}, a^{-1}}$. We now assume that $\varphi=\varphi_{a, b a}$. Since $\sigma(\varphi(H)) \leq \sigma(H)$, we only need to show that the maximum length of a homogeneous cycle (resp. cyclefree special homogeneous) path $\alpha=p \longrightarrow q$ in $\mathcal{A}(\varphi(H))(p=q$ in the case of a cycle) is at most equal to $\delta_{0}(H)$ (resp. $\zeta(H)$).

If the label of α is b^{k}, then Lemma 3.6 shows that $k \leq \sigma(H)$, so $k \leq$ $\delta_{0}(H) \leq \zeta(H)$.

Suppose now that the label of α is a^{k}. In view of Fact 3.3, none of its edges was obtained trough (S1): indeed the a-edge in $\bullet \xrightarrow{b} \bullet \bullet$ produced by (S1) cannot occur in a homogeneous cycle, nor in a homogeneous path unless it is its first edge. But its initial vertex is not a singularity, so this edge cannot occur in a special homogeneous path. Hence the path α already existed in $\mathcal{A}(H)$. If α is a cycle, then $k \leq \delta_{0}(H)$.

If instead α is a special homogeneous cycle-free path, then Fact 3.4 (ii) shows that p is either the origin or a source in $\mathcal{A}(H)$. If q is the origin, we immediately get $k \leq \zeta(H)$. If instead q is a sink in $\mathcal{A}(\varphi(H))$, then $s=q \cdot a$ is a sink of $\mathcal{A}(H)$ by Fact 3.4 (iii), and we have a path

$$
\overline{\alpha^{\prime}}=p \xrightarrow{a^{k}} q \xrightarrow{a} s
$$

in $\mathcal{A}(H)$. If α^{\prime} is cycle-free, then $k<k+1 \leq \zeta(H)$. If, on the contrary, α^{\prime} is not cycle-free, then s is the only repetition since the length k prefix of α^{\prime}, namely α, is cycle-free. If $s \neq p$, then q would also be a repetition since $\mathcal{A}(H)$ is an inverse automaton. Therefore $s=p$, so α^{\prime} is a homogeneous cycle in $\mathcal{A}(H)$ and hence $k<k+1 \leq \delta_{0}(H) \leq \zeta(H)$. This concludes the proof.

Remark 3.8 Note that it is not the case that $\delta(\varphi(H)) \leq \delta(H)$ always holds when $\varphi \in \Sigma$: see the case where $H=\langle b a\rangle$ and $\varphi=\varphi_{a, b a}$.

3.3 Truncated automata

Given $H \leq_{f . g .} F_{2}$, we consider the geodesic metric d defined on the vertex set of $\mathcal{A}(H)$ by taking $d(u, v)$ to be the length of the shortest path connecting u and v. Since $\mathcal{A}(H)$ is inverse, it is irrelevant to consider directed or undirected paths. As usual, we have

$$
d(u, \operatorname{Sing}(H))=\min \{d(u, v) \mid v \in \operatorname{Sing}(H)\}
$$

Given $t>0$, the t-truncation of $\mathcal{A}(H)$, denoted by $\mathcal{A}_{t}(H)$, is the automaton obtained by removing from $\mathcal{A}(H)$ all vertices u such that $d(u, \operatorname{Sing}(H))>t$ and their adjacent edges.

We first observe that if β is a bridge which is long enough to be affected by the t-truncation of $\mathcal{A}(H)$, then for each $p \in \Sigma, \varphi(\beta)$ is affected by the t-truncation of $\mathcal{A}(\varphi(H))$ as well.

Proposition 3.9 Let $\varphi \in \Sigma, H \leq{ }_{\text {f.g. }} F_{2}$ and $K \in \Sigma^{*}(H)$. If β is a bridge in $\mathcal{A}(K)$ and $|\beta|>\zeta(H)$, then $|\varphi(\beta)| \geq|\beta|$.

Proof. The result is trivial if $\varphi=\varphi_{b^{-1}, a^{-1}}$ or $\varphi=\varphi_{b, a}$ since in those cases, $|\varphi(\beta)|=|\beta|$ (Facts 3.1 and 3.2). We now assume that $\varphi=\varphi_{a, b a}$.

By Fact 3.5, if $|\varphi(\beta)|<|\beta|$, then $\beta=p \xrightarrow{a^{k}} q$, where $k>\zeta(H), p$ is a source or the origin in $\mathcal{A}(K)$, and q is a sink of $\mathcal{A}(K)$. In particular, β is a special homogeneous cycle-free path, so that $|\beta| \leq \zeta(K)$.

Since $K \in \Sigma^{*} H$, Lemma 3.7 shows that $\zeta(K) \leq \zeta(H)$, a contradiction.

Theorem 3.10 Let $\varphi \in \Sigma, H \leq_{f . g .} F_{2}, t>\frac{1}{2} \zeta(H)$ and $K, K^{\prime} \in \Sigma^{*}(H)$. Then

$$
\mathcal{A}_{t}(K)=\mathcal{A}_{t}\left(K^{\prime}\right) \quad \Longrightarrow \mathcal{A}_{t}(\varphi(K))=\mathcal{A}_{t}\left(\varphi\left(K^{\prime}\right)\right)
$$

Proof. As in several previous proofs, the result is trivial if $\varphi=\varphi_{b, a}$ or $\varphi_{b^{-1}, a^{-1}}$, and we may assume that $\varphi=\varphi_{a, b a}$.

By Proposition 3.9, we know that, once the length of a bridge reaches the threshold $\zeta(H)+1$, it can only get longer. By definition, t-truncation affects only bridges of length at least $\zeta(H)+1$. We must therefore discuss the truncation mechanism for such long bridges.

Assume that $\beta=p \xrightarrow{w} q$ is a bridge in $\mathcal{A}(\mu(H))\left(\mu \in \Sigma^{*}\right)$ with $|w| \geq$ $2 t+1$. Then we may write $w=u z v$ with $|u|=|v|=t$. By Proposition 3.9, the label of $\varphi(\beta)$ is of the form $u^{\prime} z^{\prime} v^{\prime}$ with $\left|u^{\prime}\right|=\left|v^{\prime}\right|=t$ and $\left|z^{\prime}\right| \geq|z|$. We only need to prove that u^{\prime} and v^{\prime} depend only on $\mathcal{A}_{t}(\mu(H))$ and are therefore independent from z.

In view of Fact 3.4, it is clear that u^{\prime} depends only on $\mathcal{A}_{t}(\mu(H))$ (remember that $w=u z v$ is a positive word and singularities cannot move forward along a positive path). The nontrivial case is of course the case of q being a sink in $\mathcal{A}(\mu(H))$, since by Fact 3.4 (iii) a sink can actually be transferred to the preceding state along a positive path. We claim that even in this case v^{\prime} is independent from z.

Indeed, assume first that b occurs in v. Then $|\varphi(v)|>|v|$ provides enough compensation for the sink moving backwards one position. Hence we may assume that $v=a^{t}$. We claim that $v^{\prime}=a^{t}$ as well, independently from z. Suppose not. Since we are assuming that the sink has moved from q to its predecessor, and $\varphi\left(a^{t-1}\right)=a^{t-1}$, it follows that $v^{\prime}=b a^{t-1}$. Hence b occurs in w. Write $w=x b a^{m}$. Since $\varphi\left(b a^{m}\right)=b a^{m+1}$, and taking into account the mobile sink, we obtain by comparison $b a^{m}=b a^{t-1}$ and so $m=t-1$, a contradiction, since a^{t} is a suffix of w. Therefore $v^{\prime}=a^{t}$ and so is independent from z as required.

Corollary 3.11 Let $H \leq_{f . g .} F_{2}$ and $t>\frac{1}{2} \zeta(H)$. Then the set

$$
\mathcal{X}(t, H)=\left\{\mathcal{A}_{t}(K) \mid K \in \Sigma^{*}(H)\right\}
$$

is finite and effectively constructible.
Proof. By Lemma 3.7, every automaton $\mathcal{A}(K), K \in \Sigma^{*}(H)$, has at most $\sigma(H)$ singularities. By definition of a t-truncation, every state in $\mathcal{A}_{t}(K)$
is at distance at most t from a singularity, and hence the size of $\mathcal{A}_{t}(K)$ is bounded. Thus $\mathcal{X}(t, H)$ is finite.

The proof of Theorem 3.10 provides a straighforward algorithm to compute all its elements. Indeed, all we need is to compute the finite sets

$$
\mathcal{X}_{n}(t, H)=\left\{\mathcal{A}_{t}(K) \mid K \in \Sigma^{n}(H)\right\}
$$

until reaching

$$
\begin{equation*}
\mathcal{X}_{n+1}(t, H) \subseteq \bigcup_{i=0}^{n} \mathcal{X}_{i}(t, H) \tag{2}
\end{equation*}
$$

which must occur eventually since $\mathcal{X}(t, H)=\cup_{i \geq 0} \mathcal{X}_{i}(t, H)$ is finite. Why does (2) imply $\mathcal{X}(t, H)=\cup_{i \geq 0}^{n} \mathcal{X}_{i}(t, H)$? Suppose that $\mathcal{B} \in \mathcal{X}_{m}(t, H) \backslash$ $\left(\cup_{i \geq 0}^{n} \mathcal{X}_{i}(t, H)\right)$ with m minimal, say $\mathcal{B}=\mathcal{A}_{t}(\varphi(K))$ with $K \in \Sigma^{m-1}(H)$ and $\varphi \in \Sigma$. By minimality of m, we have $\mathcal{A}_{t}(K) \in \cup_{i \geq 0}^{n} \mathcal{X}_{i}(t, H)$. Thus $\mathcal{A}_{t}(K)=\mathcal{A}_{t}\left(K^{\prime}\right)$ for some $K^{\prime} \in \cup_{i=0}^{n} \Sigma^{i}(H)$. Now Theorem 3.10 yields

$$
\mathcal{B}=\mathcal{A}_{t}(\varphi(K))=\mathcal{A}_{t}\left(\varphi\left(K^{\prime}\right)\right) \in \bigcup_{i=0}^{n+1} \mathcal{X}_{i}(t, H)=\bigcup_{i=0}^{n} \mathcal{X}_{i}(t, H)
$$

a contradiction. Therefore $\mathcal{X}(t, H)=\cup_{i \geq 0}^{n} \mathcal{X}_{i}(H)$ as claimed.

4 Orbit problems in F_{2}

Our original motivation on writing this paper was solving the orbit problem $\varphi(u) \in H$ for given $u \in F_{2}$ and $H \leq_{f . g .} F_{2}$.

Theorem 4.1 Given $u \in F_{2}$ and $H \leq_{\text {f.g. }} F_{2}$, it is decidable whether or not $\mu(u) \in H$ for some $\mu \in$ Aut F_{2}.

After we made a first version of this paper円available, Dahmani and Girardel, and independently Enric Ventura (recalling a foregone conversation with Alexei Miasnikov), called our attention to the fact that our orbit problem could be solved using the following argument:
(1) By a result attributed to Dehn, Magnus and Nielsen (see [19], $\{x, y\}$ is a basis of F_{2} if and only if there exists some $g \in F_{2}$ such that $g^{-1}[x, y] g=[a, b]^{ \pm 1}$.

[^1](2) $\varphi(u) \in H$ for some $\varphi \in$ Aut F_{2} if and only if $u(x, y) \in H$ for some basis $\{x, y\}$.
(3) By Diekert, Gutiérrez and Hagenah [5], systems of equations are solvable over free groups with rational constraints. Using (1) and (2), the existence of an automorphism satisfying $\varphi(u) \in H$ can be reduced to the existence of a solution for one of the systems (on the variables x, y, v, g, for $\varepsilon= \pm 1$)
\[

\left\{$$
\begin{array}{l}
g^{-1}[x, y] g=[a, b]^{\varepsilon} \\
u(x, y)=v
\end{array}
$$\right.
\]

with the rational constraint $v \in H$.
In Section 4.1, we exploit the properties of truncated automata (Section (3.3) to give a direct proof. We then explore how the same idea can be used to solve the same orbit problem, when the available automorphisms are required to belong to certain subsets of Aut F_{2} (Sections 4.2 and 4.3).

Before we proceed with this program, let us note an interesting corollary.
Corollary 4.2 Given $H \leq \leq_{\text {f.g. }} F_{2}$, it is decidable whether H contains a primitive element of F_{2}.

4.1 Proof of Theorem 4.1

Let $u \in F_{2}$ and $H \leq_{f . g .} F_{2}$. We want to show that it is decidable whether $\mu(u) \in H$ for some $\mu \in$ Aut F_{2}. By Theorem 2.3, and since $\Psi^{-1}=\Psi$, it suffices to decide whether there exist $w \in F_{2}$ and $n \geq 0$ such that one of the following conditions hold:

- $\lambda_{w} \varphi_{a, b a}^{n} \varphi_{a^{-1}, b}(u) \in \Sigma_{0}^{*} \Psi(H)$;
- $\lambda_{w} \varphi_{a, b a}^{n} \varphi_{a^{-1}, b^{-1}}(u) \in \Sigma_{0}^{*} \Psi(H)$.

Since Ψ is finite, it suffices to be able to decide whether
there exist $w \in F_{2}, n \geq 0$ and $\mu \in \Sigma_{0}^{*}$ such that $\lambda_{w} \varphi_{a, b a}^{n}(u) \in \mu(H)$.
We start by considering the case $n=0$. By Proposition 1.4 (i), we may replace $\lambda_{w} \varphi_{a, b a}^{n}$ by $\varphi_{a, b a}^{n} \lambda_{w}$, so we may assume that u is cyclically reduced. And by Proposition 1.2 (iv), our problem further reduces to asking if one can decide whether

$$
\begin{equation*}
u \text { labels a loop in } \mathcal{A}(\mu(H)) \text { for some } \mu \in \Sigma_{0}^{*} . \tag{4}
\end{equation*}
$$

We note that every loop contains either the origin or a singularity: if it does not contain the origin, then there is a path from the origin to a state in the loop, and the first contact between that path and the loop is a source or a sink. Now let us fix $t>\max \left(\frac{1}{2} \zeta(H), \frac{1}{2}|u|\right)$: then u labels a loop in $\mathcal{A}(\mu(H))$ if and only if u labels a loop in $\mathcal{A}_{t}(\mu(H))$. By the appropriate variant of Corollary 3.11 (where Σ is replaced with Σ_{0}^{*}) we can effectively compute the finite set

$$
\mathcal{X}_{0}(H)=\left\{\mathcal{A}_{t}(K) \mid K \in \Sigma_{0}^{*}(H)\right\} .
$$

Thus (4) is decidable, and hence (3) is decidable for $n=0$. It is also decidable for any fixed n (applying the case $n=0$ to $\varphi_{a, b a}^{n}(u)$ instead of u).

We now consider (3) in its full generality. If $u \in R_{a}$, then we are reduced to the case $n=0$ since $\varphi_{a, b a}(u)=u$. So we assume that b or b^{-1} occurs in u, and by conjugation again, we may assume that u starts with b or ends with b^{-1} (and not both since u is cyclically reduced).

Let M be the least common multiple of $1,2, \ldots, \delta_{0}(H)$. In order to prove (3), it suffices to show that

> if there exist $w \in F_{2}, n \geq 0$ and $\mu \in \Sigma_{0}^{*}$ such that $\lambda_{w} \varphi_{a, b a}^{n}(u) \in$ $\mu(H)$, then there exists such a triple (w, n, μ) with $n<|u|+$ $\max (M, \delta(H))$.

Since we have proved (3) for bounded n, the latter property is decidable, and hence (3) is decidable in general.

So we are left with the task of proving this reduced claim. Let (w, n, μ) be such that $\lambda_{w} \varphi_{a, b a}^{n}(u) \in \mu(H)$, with n minimal, and let us suppose that $n \geq|u|+\max (M, \delta(H))$.

Write $u=a^{i_{0}} b^{\varepsilon_{1}} a^{i_{1}} \ldots b^{\varepsilon_{k}} a^{i_{k}}$ with $k \geq 1$ and $\varepsilon_{\ell}= \pm 1$ for every ℓ. If $m \geq 0$, then

$$
\varphi_{a, b a}^{m}(u)=\varphi_{a, b a^{m}}(u)=a^{j_{0}} b^{\varepsilon_{1}} a^{j_{1}} \ldots b^{\varepsilon_{k}} a^{j_{k}}
$$

with

$$
j_{\ell}= \begin{cases}i_{\ell}+m & \text { if } \varepsilon_{\ell}=\varepsilon_{\ell+1}=1, \text { or } \ell=k \text { and } \varepsilon_{k}=1 \\ i_{\ell}-m & \text { if } \varepsilon_{\ell}=\varepsilon_{\ell+1}=-1, \text { or } \ell=0 \text { and } \varepsilon_{1}=-1 \\ i_{\ell} & \text { in all other cases. }\end{cases}
$$

Recall that u is cyclically reduced, and that it starts with $b\left(i_{0}=0\right.$ and $\varepsilon_{1}=1$) or ends with $b^{-1}\left(i_{k}=0\right.$ and $\left.\varepsilon_{k}=-1\right)$. It follows that $\varphi_{a, b a^{m}}(u)$ is cyclically reduced and that it too starts with b or ends with b^{-1}.

By Proposition 1.2 (iv), $\varphi_{a, b a}^{n}(u)$ labels a loop α in $\mathcal{A}(\mu(H))$. Moreover, we have

$$
\varphi_{a, b a}^{n}(u)=a^{r_{0}} b^{\varepsilon_{1}} a^{r_{1}} \ldots b^{\varepsilon_{k}} a^{r_{k}}, \quad \varphi_{a, b a}^{n-M}(u)=a^{s_{0}} b^{\varepsilon_{1}} a^{s_{1}} \ldots b^{\varepsilon_{k}} a^{s_{k}}
$$

with

$$
\begin{cases}r_{\ell}=i_{\ell}+n, s_{\ell}=r_{\ell}-M & \text { if } \varepsilon_{\ell}=\varepsilon_{\ell+1}=1, \text { or } \ell=k \text { and } \varepsilon_{k}=1 \\ r_{\ell}=i_{\ell}-n, s_{\ell}=r_{\ell}+M & \text { if } \varepsilon_{\ell}=\varepsilon_{\ell+1}=-1, \text { or } \ell=0 \text { and } \varepsilon_{1}=-1 \\ s_{\ell}=r_{\ell}=i_{\ell} & \text { in all other cases. }\end{cases}
$$

In the first and second cases, $\left|r_{\ell}\right|>n-|u| \geq \max (M, \delta(H))$; and in the last case, $\left|r_{\ell}\right|<|u|$. Thus, for the indices ℓ such that $r_{\ell} \neq s_{\ell}$, we have $r_{\ell}>\delta(H)$. We now show that the fragments of the loop α labeled by the factors $a^{r_{\ell}}$ such that $r_{\ell} \neq s_{\ell}$, fail to be cycle-free in $\mathcal{A}(\mu(H))$.

Recall that $\mu \in \Sigma_{0}^{*}$. If $\mu=$ id or $\varphi_{b^{-1}, a^{-1}}$, the result is immediate since $r_{\ell}>\delta(H)=\delta(\mu(H))$. If $\mu=\varphi_{a, b a} \nu$ with $\nu \in \Sigma_{0}^{*}$, then we can use Proposition 1.4 (i) to reduce n, a contradiction. Hence we may assume that $\mu=\varphi_{b^{-1}, a^{-1}} \nu$ with $\nu \in \Sigma_{0}^{*}, \nu \neq$ id. Since $\varphi_{b^{-1}, a^{-1}}^{2}=\mathrm{id}$, we may further assume that $\mu=\varphi_{b^{-1}, a^{-1}} \varphi_{a, b a} \nu^{\prime}$ with $\nu^{\prime} \in \Sigma_{0}^{*}$. Then the vertices involved in the $a^{r_{\ell}}$-labeled fragment of α form a path in $\mathcal{A}\left(\varphi_{a, b a} \nu^{\prime}(H)\right)$ labeled $b^{r_{\ell}}$. Since $r_{\ell}>\delta(H)$, we also have $r_{\ell}>\sigma(H) \geq \sigma\left(\nu^{\prime}(H)\right)$ (Lemma 3.7), and hence this path is not cycle-free by Lemma 3.6.

So, for each ℓ such that $r_{\ell} \neq s_{\ell}$, the fragment of α labeled by the factor $a^{r_{\ell}}$ of $\varphi_{a, b a}^{n}(u)$ fails to be cycle-free, and must be read along a cycle of $\mathcal{A}(\mu(H))$ (in an inverse automaton, if a homogeneous path contains a cycle, then it reads entirely along that cycle).

By definition, M is a multiple of the length c_{ℓ} of that cycle. Now compare $\varphi_{a, b a}^{n-M}(u)$ and $\varphi_{a, b a}^{n}(u)$: wherever the a-factors $a^{r} \ell$ and $a^{s_{\ell}}$ are different, their difference is either a^{M} or a^{-M}, and hence it consists of a whole number of passages around the length c_{ℓ} cycle. Therefore $\varphi_{a, b a}^{n-M}(u)$ labels a path in $\mathcal{A}(\mu(H))$ as well. This contradicts the minimality of n and completes the proof.

4.2 Orbits under certain rational subsets of Aut F_{2}

In this section, we exploit an idea used in the proof of Claim (4) in Section 4.1. We view $\Sigma=\left\{\varphi_{a, b a}, \varphi_{b^{-1}, a^{-1}}, \varphi_{b, a}\right\}$ as a finite alphabet, besides being a subset of Aut F_{2}. For each $t>\frac{1}{2} \zeta(H)$, we define a Σ-transition system $\mathcal{B}_{t}(H)$ as follows. (A Σ-transition system is defined like a Σ-automaton, omitting the specification of the initial and terminal states.) The state set of $\mathcal{B}_{t}(H)$ is $\mathcal{X}(t, H)$ (see Corollary 3.11) and its transitions are the triples $\mathcal{A}_{t}(K) \xrightarrow{\varphi} \mathcal{A}_{t}(\varphi(K))$, for each $\mathcal{A}_{t}(K) \in \mathcal{X}(t, H)$ and $\varphi \in \Sigma$. Note that $\mathcal{X}(t, H)$ is finite and effectively constructible by Corollary 3.11 and the transitions of $\mathcal{B}_{t}(H)$ are well-defined by Theorem 3.10. Moreover, this transition
system is complete and deterministic by construction. It is immediate that if the word $\left(\varphi_{1}, \ldots, \varphi_{n}\right) \in \Sigma^{*}$ labels a path from $\mathcal{A}_{t}(K)$ to $\mathcal{A}_{t}\left(K^{\prime}\right)$ in $\mathcal{B}_{t}(H)$ $\left(K, K^{\prime} \in \Sigma^{*}(H)\right)$, then $\mathcal{A}_{t}\left(K^{\prime}\right)=\mathcal{A}_{t}\left(\varphi_{n} \ldots \varphi_{1}(K)\right)$.

We put this transition system to work in the following theorem.
Theorem 4.3 Let $H, K \leq_{\text {f.g. }} F_{2}, u, u_{1}, \ldots, u_{k} \in F_{2}$ and $R \in \operatorname{Rat} \Sigma^{*}$. Then the following problems are decidable:
(1) whether $u \in \mu(H)$ for some $\mu \in R$;
(1') whether a conjugate of u lies in $\mu(H)$ for some $\mu \in R$; that is, whether $u \in \mu(H)$ for some $\mu \in \Lambda R ;$
(2) whether $K \subseteq \mu(H)$ for some $\mu \in R$;
(2') whether a conjugate of K is contained in $\mu(H)$ for some $\mu \in R$; that is, whether $K \subseteq \mu(H)$ for some $\mu \in \Lambda R$;
(3) whether $K=\mu(H)$ for some $\mu \in R$;
$\left(3^{\prime}\right)$ whether a conjugate of K is equal to $\mu(H)$ for some $\mu \in R$; that is, whether $K=\mu(H)$ for some $\mu \in \Lambda R$;
(4) whether there exist $w_{1}, \ldots, w_{k} \in F_{2}$ such that $\lambda_{w_{1}}\left(u_{1}\right), \ldots, \lambda_{w_{k}}\left(u_{k}\right) \in$ $\mu(H)$ for some $\mu \in R$.

In addition, for each of these problems, the set of morphisms $\mu \in \Sigma^{*}$ that it defines is rational and effectively constructible.

Proof. The proofs all follow the same pattern. Let us first consider Problem (1) and let $t>\max \left(\frac{1}{2} \zeta(H), \frac{1}{2}|u|\right)$. If $\mu \in \Sigma^{*}$, then $u \in \mu(H)$ if and only if $u \in L(\mathcal{A}(\mu(H)))$, if and only if $u \in L\left(\mathcal{A}_{t}(\mu(H))\right)$.

Consider the (effectively constructible) automaton formed by the transition system $\mathcal{B}_{t}(H)$, with initial state $\mathcal{A}_{t}(H)$ and set of terminal states $T=\{\mathcal{A} \in \mathcal{X}(t, H) \mid \bar{u} \in L(\mathcal{A})\}$. The language $L(t, T)$ accepted by this automaton is the set of $\left(\varphi_{n}, \ldots, \varphi_{1}\right) \in \Sigma^{*}$ such that $u \in \varphi_{1} \cdots \varphi_{n}(H)$. The set of $\mu \in R$ such that $u \in \mu(H)$ is the intersection of R and the mirror language of $L(t, T)$ (the set of $\left(\varphi_{n}, \ldots, \varphi_{1}\right)$ such that $\left(\varphi_{1}, \ldots, \varphi_{n}\right) \in L(t, T)$), which is rational and effectively constructible. In particular, one can decide whether that language is empty, which proves the decidability of (1).

The proof of the decidability of Problem (1^{\prime}) is identical, except that the set of terminal states is chosen to be the set T of all $\mathcal{A} \in \mathcal{X}(t, H)$ such that
the cyclic core of \bar{u} labels a loop in \mathcal{A} (the cyclic core of \bar{u} is the minimum length word w such that $\bar{u}=v w \bar{v}$ for some $\left.v \in \tilde{A}^{*}\right)$.

Let us now consider Problem (2) and let u_{1}, \ldots, u_{k} be generators of K. Then we need to choose $t>\max \left(\frac{1}{2} \zeta(H), \frac{1}{2}\left|u_{1}\right|, \ldots, \frac{1}{2}\left|u_{k}\right|\right)$, and T the set of $\mathcal{A} \in \mathcal{X}(t, H)$ such that $\bar{u}_{1}, \ldots, \bar{u}_{k} \in L(\mathcal{A})$.

For Problem $\left(2^{\prime}\right)$, let K^{\prime} be a cyclically reduced conjugate of K, that is, such that the origin in $\mathcal{A}\left(K^{\prime}\right)$ has degree at least 2 (if the origin in $\mathcal{A}(K)$ has degree 1 , choose any vertex v with degree at least 2 as the new origin and let K^{\prime} be the corresponding conjugate). Let u_{1}, \ldots, u_{k} be generators of K^{\prime}. Then a conjugate of K lies in $\mu(H)$ if and only if the \bar{u}_{i} label loops around the same vertex of $\mathcal{A}(\mu(H))$. Thus it suffices to choose $t>\max \left(\frac{1}{2} \zeta(H), \frac{1}{2}\left|u_{1}\right|, \ldots, \frac{1}{2}\left|u_{k}\right|\right)$, and T the set of $\mathcal{A} \in \mathcal{X}(t, H)$ such that $\bar{u}_{1}, \ldots, \bar{u}_{k}$ label loops around the same vertex of $L(\mathcal{A})$.

For Problem (3), we choose again $t>\max \left(\frac{1}{2} \zeta(H), \frac{1}{2}\left|u_{1}\right|, \ldots, \frac{1}{2}\left|u_{k}\right|\right)$, where u_{1}, \ldots, u_{k} are generators of K. In particular, t is large enough to have $\mathcal{A}_{t}(K)=\mathcal{A}(K)$, and we choose $T=\left\{\mathcal{A}_{t}(K)\right\}$ if $\mathcal{A}_{t}(K) \in \mathcal{X}(t, H)$ (if that is not the case, then the Problem (3) is decidable, in the negative). Then we have an automaton which recognizes the set $L(t, T)$ of all $\mu \in \Sigma^{*}$ such that $\mathcal{A}_{t}(\mu(H))=\mathcal{A}_{t}(K)=\mathcal{A}(K)$. Observe now that the property $\mathcal{A}_{t}(G)=\mathcal{A}(G)$ holds exactly if $\mathcal{A}_{t}(G)$ has no vertex of degree 1, except perhaps for the origin. Therefore $\mathcal{A}_{t}(\mu(H))=\mathcal{A}(K)$ implies $\mathcal{A}_{t}(\mu(H))=\mathcal{A}(\mu(H))$, and our automaton recognizes the set of all $\mu \in \Sigma^{*}$ such that $\mathcal{A}(\mu(H))=\mathcal{A}(K)$, that is, such that $\mu(H)=K$. We then proceed as in Problem (1).

For Problem (3^{\prime}), we consider a cyclically reduced conjugate K^{\prime} of K and an integer t as in Problem (2'). Again, we have $\mathcal{A}_{t}\left(K^{\prime}\right)=\mathcal{A}\left(K^{\prime}\right)$. Let T be the set of all the automata in $\mathcal{X}(t, H)$ which are equal to $\mathcal{A}_{t}\left(\lambda_{w}(K)\right)$ for some $w \in F_{2}$. These automata are of one of the following forms:

with $|x| \leq t$ and $|z|=t$. As in the discussion of Problem (3), the existence of a μ-labeled path in $\mathcal{B}_{t}(H)$ from $\mathcal{A}_{t}(H)$ to an automaton of the form (a) or (b) shows that $\mu(H)$ is a conjugate of K^{\prime}, and hence of K. If the path in $\mathcal{B}_{t}(H)$ ends in an automaton of the form (c), then $\mu(H)$ is a conjugate of K^{\prime} of the form $z y x w K^{\prime}(z y x w)^{-1}$ or $z^{-1} y x w K^{\prime}\left(z^{-1} y x w\right)^{-1}$ for some y, w such that $z y x w$ or $z^{-1} y x w$ is reduced. We then conclude the proof of the decidability of Problem (3^{\prime}) as usual.

Finally, for Problem (4), we let w_{1}, \ldots, w_{k} be the cyclic cores of u_{1}, \ldots, u_{k}, we choose $t>\max \left(\frac{1}{2} \zeta(H), \frac{1}{2}\left|w_{1}\right|, \ldots, \frac{1}{2}\left|w_{k}\right|\right)$ and T the set of $\mathcal{A} \in \mathcal{X}(t, H)$ such that each $w_{i}(i=1, \ldots, k)$ labels a loop at some vertex in \mathcal{A}.

A simple rewriting of Theorem 4.3 in terms of orbit problems (see the introduction) yields the following corollary.

Corollary 4.4 Let $H \leq_{f . g .} F_{2}, u \in F_{2}$ and $R \in R a t \Sigma^{*}$. Then it is decidable whether the orbit of u under the action of R^{-1} (resp. ΛR^{-1}) meets H.

If in addition $K \leq_{f . g .} F_{2}$, then it is decidable whether H contains an element of the orbit of K under the action of R^{-1} or ΛR^{-1}; whether H is contained in an element of the orbit of K under the action of R or ΛR; and whether K is an element of the orbit of H under the action of $R, R^{-1}, \Lambda R$ or ΛR^{-1}.

Applying Corollary 4.4 to the case where u is a letter in A, we get a statement about primitive elements.

Corollary 4.5 Let $H \leq_{\text {f.g. }} F_{2}$ and $R \in R a t \Sigma^{*}$. Then it is decidable whether H contains a primitive element of the form $\mu(a), \mu^{-1} \in R\left(\right.$ resp. $\left.\mu^{-1} \in \Lambda R\right)$.

Remark 4.6 Let S be a subset of R_{2} such that, for each rational set S^{\prime}, one can decide whether $S \cap S^{\prime}$ is empty or not. Then Problems (1^{\prime}), (2^{\prime}) and $\left(3^{\prime}\right)$ in Theorem 4.3 are decidable even if we restrict the conjugating factors to be in S, that is, if we replace Λ by $\left\{\lambda_{s} \mid s \in S\right\}$ in the statement of these problems. The same restriction can be imposed to Λ in the statements of Corollaries 4.4 and 4.5.

Similarly, Problem (4) in Theorem 4.3 remains decidable even if we require the w_{i} to be in fixed subsets $S_{i}(i=1, \ldots, k)$ such that, for each rational set S^{\prime}, one can decide whether $S_{i} \cap S^{\prime}$ is empty or not.

4.3 Orbits under invertible substitutions

Invertible substitutions are an interesting special case of the rational subsets of Aut F_{2} discussed in Section 4.2

A substitution ${ }^{2}$ of F_{A} is an endomorphism φ such that $\varphi(a) \in A^{*}$ for every $a \in A$. If φ is an automorphism, it is said to be an invertible substitution. We denote by $\operatorname{IS}\left(F_{2}\right)$ the monoid of all invertible substitutions of F_{2}, and by $\mathrm{IS}^{-1}\left(F_{2}\right)$ the set of their inverses. Note that the inverse of an invertible substitution is not necessarily a substitution: indeed $\varphi_{a, b a}^{-1}=\varphi_{a, b a^{-1}}$.

[^2]Lemma 4.7 $I S\left(F_{2}\right)$ is a rational submonoid of Σ^{*}. Moreover, there exists a rational submonoid S of Σ^{*} such that $I S^{-1}\left(F_{2}\right)=\varphi_{a, b^{-1}} S \varphi_{a, b^{-1}}$.

In addition, every rational subset $R \in \operatorname{Rat} I S\left(F_{2}\right)$ is also in Rat Σ^{*}, and every rational subset $R \in \operatorname{Rat} I S^{-1}\left(F_{2}\right)$ is of the form $\varphi_{a, b^{-1}} R^{\prime} \varphi_{a, b^{-1}}$ for some $R^{\prime} \in \operatorname{Rat} S \subseteq \operatorname{Rat} \Sigma^{*}$.

Proof. It is known [22] that the monoid $\operatorname{IS}\left(F_{2}\right)$ is generated by $\varphi_{b, a}, \varphi_{a, b a}$ and $\varphi_{a, a b}$ (see also [3, Chapter I.5], [9, Sec. 2.3.5]). But $\varphi_{b, a}, \varphi_{a, b a} \in \Sigma$ and

$$
\varphi_{a, a b}=\varphi_{b, a} \varphi_{b^{-1}, a^{-1}} \varphi_{a, b a} \varphi_{b^{-1}, a^{-1}} \varphi_{b, a} \in \Sigma^{*},
$$

so $\operatorname{IS}\left(F_{2}\right)=\left\{\varphi_{b, a}, \varphi_{a, b a}, \varphi_{a, a b}\right\}^{*} \in \operatorname{Rat} \Sigma^{*}$.
Next we observe that

$$
\begin{aligned}
\varphi_{b, a}^{-1} & =\varphi_{b, a}=\varphi_{a, b^{-1}} \varphi_{b^{-1}, a^{-1}} \varphi_{a, b^{-1}} \\
\varphi_{a, b a}^{-1} & =\varphi_{a, b a^{-1}}=\varphi_{a, b^{-1}} \varphi_{a, a b} \varphi_{a, b^{-1}} \\
\varphi_{a, a b}^{-1} & =\varphi_{a, a^{-1} b}=\varphi_{a, b^{-1}} \varphi_{a, b a} \varphi_{a, b^{-1}}
\end{aligned}
$$

Since $\varphi_{a, b^{-1}}$ has order 2, it follows that $\operatorname{IS}\left(F_{2}\right)^{-1}=\varphi_{a, b^{-1}} R \varphi_{a, b^{-1}}$ with $R=\left\{\varphi_{b^{-1}, a^{-1}}, \varphi_{a, a b}, \varphi_{a, b a}\right\}^{*} \in \operatorname{Rat} \Sigma^{*}$.

This leads to the following statement.
Corollary 4.8 The problems discussed in Theorem 4.3 and Corollaries 4.4 and 4.5 are decidable also if R is assumed to be a rational subset of $\operatorname{IS}\left(F_{2}\right)$ or $I S\left(F_{2}\right)^{-1}$.

Proof. If $R \in \operatorname{Rat} \operatorname{IS}\left(F_{2}\right)$, then $R \in \operatorname{Rat} \Sigma^{*}$ by Lemma 4.7, and we simply apply Theorem 4.3 and Corollaries 4.4 and 4.5 .

If $R \in \mathrm{IS}^{-1}\left(F_{2}\right)$, then $R=\varphi_{a, b^{-1}} R^{\prime} \varphi_{a, b^{-1}}$ for some $R^{\prime} \in \operatorname{Rat} \Sigma^{*}$ by Lemma 4.7. Problem (1) in Theorem 4.3 on instance u, H and R, for instance, is equivalent to the same problem on instances $\varphi_{a, b^{-1}}(u), \varphi_{a, b^{-1}}(H)$ and R^{\prime}, which we know to be decidable. The other problems are handled in the same fashion.

5 Beyond rank 2

We do not know how to extend Theorem 4.1 to arbitrary finite alphabets, but we can get decidability for weakened versions of the problem. The first such result involves a restriction on the subgroups considered.

Theorem 5.1 Let $u \in F_{A}$ and let $H \leq_{f . g .} F_{A}$. If H is cyclic or a free factor of F_{A}, it is decidable whether or not $\mu(u) \in H$ for some $\mu \in A u t F_{A}$.

Proof. Let us first assume that H is a free factor of F_{A}, with rank k. It is easily verified that $\mu(u) \in H$ for some automorphism μ if and only if u sits in some rank k free factor of F_{A}. We conclude using the result from [12], which shows that one can effectively compute the least free factor of F_{A} containing u (the algebraic closure of the subgroup $\langle u\rangle$).

Let us now assume that $H=\langle v\rangle$. Without loss of generality, we may assume that u and v are cyclically reduced. Say that a word x is root-free if it is not equal to a non-trivial power of a shorter word. Then $u=x^{k}$ for some uniquely determined integer $k \geq 1$ and root-free word x, and similarly, $v=y^{\ell}$ for some uniquely determined $\ell \geq 1$ and root-free y. It is an elementary verification that the image of a cyclically reduced root-free word by an automorphism is also cyclically reduced and root-free. Thus, an automorphism maps u into H if and only if and only it maps x to y or y^{-1}, and k is a multiple of ℓ. Decidability follows from the fact that we can decide whether two given words are in each other's automorphic orbit, using Whitehead's algorithm (10].

The second result on a weakened version of our orbit problem involves almost bounded automorphisms. Given a finite alphabet A and $k \in \mathbb{N}$, we say that an automorphism φ of F_{A} is k-almost bounded if $|\varphi(a)|>k$ for at most one letter $a \in A$. We let $\mathrm{AlmB}_{k} F_{A}$ denote the set of k-almost bounded automorphisms of F_{A}.

Theorem 5.2 Given $u \in F_{A}, L \subseteq R_{A}$ rational and $k \in \mathbb{N}$, it is decidable whether or not $\overline{\mu(u)} \in L$ for some $\mu \in A \operatorname{lm} B_{k} F_{A}$.

The proof of this theorem relies on Diekert et al.'s result on the decidability of the existential theory of equations with rational constraints in free groups [5], already mentioned at the beginning of Section 0 . It also requires the following result, which generalizes Corollary 1.3.

Proposition 5.3 Let $m=|A|$ and $v_{1}, \ldots, v_{m-1} \in R_{A}$. Then

$$
X=\left\{x \in R_{A} \mid\left(v_{1}, \ldots, v_{m-1}, x\right) \text { is a basis of } F_{A}\right\}
$$

is rational and effectively constructible.

Proof. First note that X is nonempty if and only if $\left(v_{1}, \ldots, v_{m-1}\right)$ is a basis of a free factor of F_{A}. This is decidable. In fact, it is verified in [20] that if $K=\left\langle v_{1}, \ldots, v_{m-1}\right\rangle$, then K is a free factor of F_{A} if and only if there are vertices p and q of $\mathcal{A}(K)$ whose identification leads (via foldings) to the bouquet of circles $\mathcal{A}\left(F_{A}\right)$. In addition, if u_{p} and u_{q} are the labels of geodesic paths of $\mathcal{A}(K)$ from the origin to p and q, and if $z=\overline{u_{p} u_{q}^{-1}}$, then $z \in X$. Thus it is decidable whether $X=\emptyset$, and if it is not, then we can effectively construct an element z of X.

Let $\varphi \in$ Aut F_{A} be defined by $\varphi\left(a_{i}\right)=v_{i}(i=1, \ldots, m-1)$ and $\varphi\left(a_{m}\right)=$ z. Then $x \in X$ if and only if $\left(a_{1}, \ldots, a_{m-1}, \varphi^{-1}(x)\right)$ is a basis of F_{A}. Write $R=R_{\left\{a_{1}, \ldots, a_{m-1}\right\}}$. By Corollary 1.3, this is equivalent to say that $\varphi^{-1}(x) \in$ $R\left(a_{m} \cup a_{m}^{-1}\right) R$ and therefore

$$
X=\overline{\varphi\left(R\left(a_{m} \cup a_{m}^{-1}\right) R\right)}=\overline{V\left(z \cup z^{-1}\right) V}
$$

for $V=\left\{v_{1}, \ldots, v_{m-1}, v_{1}^{-1}, \ldots, v_{m-1}^{-1}\right\}^{*}$.
Since $V\left(z \cup z^{-1}\right) V$ is a rational subset of $\left(A \cup A^{-1}\right)^{*}$, we conclude that X is rational by Theorem 1.1. Moreover, the formula $X=\overline{V\left(z \cup z^{-1}\right) V}$ provides an effective construction of X.

Proof of Theorem 5.8. Write $A=\left\{a_{1}, \ldots, a_{m}\right\}$. Without loss of generality, we may restrict ourselves to the case $\left|\mu\left(a_{i}\right)\right| \leq k$ for $i=1, \ldots, m-1$. Since there are only finitely many choices for these $\mu\left(a_{i}\right)$, we may as well assume them to be fixed, say $\mu\left(a_{i}\right)=v_{i}$ for $i=1, \ldots, m-1$.

Write $u=u_{0} a_{m}^{\varepsilon_{1}} u_{1} \ldots a_{m}^{\varepsilon_{n}} u_{n}$ with $n \geq 0, u_{i} \in F_{\left\{a_{1}, \ldots, a_{m-1}\right\}}$ and $\varepsilon_{i}= \pm 1$ for every i. Then we must decide if there exists some

$$
y \in X=\left\{x \in R_{A} \mid\left(v_{1}, \ldots, v_{m-1}, x\right) \text { is a basis of } F_{A}\right\}
$$

such that

$$
\overline{u_{0}^{\prime} y^{\varepsilon_{1}} u_{1}^{\prime} \ldots y^{\varepsilon_{n}} u_{n}^{\prime}} \in L,
$$

where u_{i}^{\prime} is the word obtained by replacing each a_{j} by v_{j} in u_{i}. Note that X is rational by Proposition 5.3. This is equivalent to deciding whether or not the equation

$$
u_{0}^{\prime} y^{\varepsilon_{1}} u_{1}^{\prime} \ldots y^{\varepsilon_{n}} u_{n}^{\prime}=z
$$

on the variables y, z has some solution in F_{A} with the rational constraints $y \in X$ and $z \in L$. By [包], this is decidable.

Corollary 5.4 Given $u \in F_{A}, H \leq \leq_{\text {f.g. }} F_{A}$ and $k \in \mathbb{N}$, it is decidable whether or not $\mu(u) \in H$ for some $\mu \in A / m B_{k} F_{A}$.

Proof. In view of Theorem 1.1, the reduced words of \bar{H} constitute a rational language and so we may apply Theorem 5.2.

References

[1] M. Benois, Parties rationnelles du groupe libre, C. R. Acad. Sci. Paris 269 (1969), 1188-1190.
[2] P. Brinkmann, Detecting automorphic orbits in free groups, arXiv:0806. 2889v1.
[3] J. Berstel, A. Lauve, C. Reutenauer and F. Saliola. Combinatorics on words: Christoffel words and repetitions in words, CRM monograph series 27, AMS, 2009.
[4] M. Cohen, W. Metzler and A. Zimmermann. What does a basis of $F(a, b)$ look like?, Math. Ann. 257 (1981), 435-445.
[5] V. Diekert, C. Gutiérrez and C. Hagenah, The existential theory of equations with rational constraints in free groups is PSPACE-complete, Information and Computation 202 (2005), 105-140.
[6] S. Gersten, On Whitehead's algorithm, Bull. Am. Math. Soc. 10 (1984) 281284.
[7] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.
[8] I. Kapovich and A. Myasnikov, Stallings foldings and subgroups of free groups, J. Algebra 248 (2002), 608-668.
[9] M. Lothaire. Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, 2002.
[10] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag 1977.
[11] G. S. Makanin, Equations in a free group (Russian), Izv. Akad. Nauk. SSSR Ser. Mat. 46 (1983), 1199-1273; English translation in Math. USSR Izv. 21 (1983).
[12] A. Miasnikov, E. Ventura and P. Weil, Algebraic extensions in free groups, in Algebra and Geometry in Geneva and Barcelona (G.N. Arzhantseva, L. Bartholdi, J. Burillo and E. Ventura eds.), Trends in Mathematics, Birkhaüser (2007), pp. 225-253.
[13] A.G. Myasnikov and V. Shpilrain, Automorphic orbits in free groups, J. Algebra 269 (2003), 18-27.
[14] J. Nielsen. Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1918), 385-397.
[15] R. P. Osborne and H. Zieschang. Primitives in the free group on two generators, Invent. Math. 63 (1981), 17-24.
[16] A. Roig, E. Ventura and P. Weil, On the complexity of the Whitehead minimization problem, Int. J. Alg. Comput. 17 (2007), 1611-1634.
[17] J. Rotman. An introduction to the theory of groups, 4th edition, Springer, 1995.
[18] J.-P. Serre. Arbres, amalgames, $S L_{2}$, Astérisque 46, Soc. Math. France, 1977. English translation: Trees, Springer Monographs in Mathematics, Springer, 2003.
[19] V. Shpilrain. Recognizing automorphisms of the free groups, Arch. Math. 62 (1994), 385-392.
[20] P. V. Silva and P. Weil. On an algorithm to decide whether a free group is a free factor of another, RAIRO Theoretical Informatics and Applications 42 (2008), 395-414.
[21] J. Stallings. Topology of finite graphs, Invent. Math. 71 (1983), 551-565.
[22] Z. X. Wen and Z. Y. Wen. Local isomorphisms of invertible substitutions, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 299-304.
[23] J.H.C. Whitehead, On equivalent sets of elements in a free group, Annals of Mathematics 37 (1936) 782-800.

[^0]: *The first author acknowledges support from Project ASA (PTDC/MAT/65481/2006) and C.M.U.P., financed by F.C.T. (Portugal) through the programmes POCTI and POSI, with national and European Community structural funds. Both authors acknowledge support from the ESF project AutoMathA.
 ${ }^{\dagger}$ Centro de Matemática, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
 ${ }^{\ddagger}$ LaBRI, Université Bordeaux-1, 351 cours de la Libération, 33405 Talence Cedex, France

[^1]: ${ }^{1}$ arXiv:0809.4386v1 [math.GR]

[^2]: ${ }^{2}$ also called a positive endomorphism

