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Abstract: We implemented in situ time-lapse Second Harmonic Generation 

(SHG) microscopy to monitor the three-dimensional (3D) self-assembly of 

collagen in solution. As a proof of concept, we tuned the kinetics of fibril 

formation by varying the pH and measured the subsequent exponential 

increase of fibril volume density in SHG images. We obtained significantly 

different time constants at pH = 6.5 ± 0.3 and at pH = 7.5 ± 0.3. Moreover, 

we showed that we could focus on the growth of a single isolated collagen 

fibril because SHG microscopy is sensitive to well-organized fibrils with 

diameter below the optical resolution. This work illustrates the potential of 

SHG microscopy for the rational design and characterization of collagen-

based biomaterials. 

© 2012 Optical Society of America 

OCIS codes: (180.4315) Nonlinear microscopy; (180.6900) Three-dimensional microscopy; 

(190.2620) Harmonic generation and mixing; (170.6935) Tissue characterization; (190.4180) 

Multiphoton processes; (190.4710) Optical nonlinearities in organic materials. 
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1. Introduction 

Type I collagen is a ubiquitous protein that is the main constituent of connective tissues. 

Synthesized by cells as triple helix units, collagen self-assembles into fibrils in vivo and in 

vitro forming three-dimensional (3D) networks [1–3]. This assembly mechanism depends 

critically on the collagen concentration, as well as on the temperature, pH and ionic strength 

of the solution [4–7]. To get insight into the molecular mechanisms of collagen assembly, 

transmission electron microscopy (TEM) is routinely used at different stages to obtain highly 

resolved images at the nanometer scale [8]. The structure of collagen fibrils and the kinetics of 

fibrillogenesis have also been investigated using atomic force microscopy [9,10] which 

enables in situ imaging in liquid solutions. However, there is a need for non-invasive 3D 

imaging techniques to monitor and quantify collagen assembly in a 3D environment. In this 

regard, optical techniques such as confocal reflectance microscopy [11–13] and Second 

Harmonic Generation (SHG) microscopy [13–18] appear as powerful techniques to visualize 

the 3D architecture of collagen networks in biological tissues without any labeling. However, 

one main disadvantage of confocal microscopy is that reflectance signals are intrinsically non-

specific. 

In this paper, we focus on SHG microscopy, which is a multiphoton imaging technique 

complementary to two-photon excited fluorescence (2PEF) microscopy. As such, it is 

characterized by intrinsic optical sectioning and provides improved depth penetration in 

scattering tissues with sub-micrometer resolution. SHG is a coherent multiphoton process, 

which radiates at exactly half the excitation wavelength [19], and is highly specific for dense 

non-centrosymmetric media [14–18]. At the molecular level, SHG originates from the 

presence of polarizable electrons with a non-centrosymmetric environment in peptide bonds 

[20,21]. At the macromolecular level, SHG is obtained as the coherent summation of the 
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harmonic fields radiated by all the peptide bonds within the focal volume. SHG radiation is 

coherently amplified in highly anisotropic fibrillar collagen because of the tight alignment of 

peptide bonds along the collagen triple helix and within fibrils [21]. Accordingly, type I 

fibrillar collagen exhibits strong endogenous SHG signals without the addition of exogenous 

labels. This SHG signal scales quadratically with the number of aligned molecules, which 

results in highly contrasted images [22]. On the contrary, type IV non-fibrillar collagen, which 

is organized as a loose centrosymmetrical network in basal membranes, does not exhibit any 

SHG signal because of destructive interferences [18,23]. SHG microscopy is therefore 

considered as a sensitive structural probe of the macromolecular organization of collagen. 

While SHG microscopy has been used in recent years to characterize the architecture of 

collagen fibrils in collagen matrices [4,16,24,25], the kinetics of fibrillogenesis has not been 

investigated using this technique. In this work, we report 3D in situ time-lapse SHG imaging 

of collagen fibrillogenesis in diluted solution ([collagen] = 100 µg/ml), at a constant room 

temperature. We show that SHG provides reliable 3D quantitative information on fibril 

formation. Importantly, we show for the first time that SHG can be used to monitor the growth 

of a single isolated collagen fibril in solution, with diameter below the optical resolution. 

2. Materials and methods 

2.1. Sample preparation 

Type I collagen was extracted and purified from rat tail tendons as previously described 

[6,26]. All other chemicals were purchased and used as received. Water was purified with a 

Direct-Q system (Millipore Co.). Collagen (100 µg/ml) was solubilized in 0.5 M acetic acid 

and fibrillogenesis was triggered upon increasing pH to 6.5 ± 0.3 and 7.5 ± 0.3 by addition of 

NaOH, in order to tune the kinetics of fibrillogenesis. Because temperature is known to impact 

both fibrillogenesis kinetics and fibril diameter, we kept the temperature constant at 21° C ± 

0.5°. A drop of sample was placed between two glass coverslips and directly visualized using 

SHG microscopy without any staining. 

2.2. SHG microscopy 

Multiphoton imaging was performed using a custom-built laser scanning microscope [18,22], 

based on a femtosecond Ti:sapphire laser (Tsunami, Spectra-Physics). Samples were 

illuminated in an upright geometry using circularly-polarized excitation at 860 nm (ellipticity 

0.88) to enable homogenous imaging of fibrils whatever their orientation in the focal plane. 

SHG signals were recorded in photon-counting photomultiplier tubes (P25PC, Electron 

Tubes) using appropriate dichroic mirror and spectral filters (FF01-680/SP, FF01-720/SP and 

FF01-427/10, Semrock). High numerical aperture water immersion objective (40×, NA 1.10, 

LD C-Apochromat, Zeiss) was used to achieve typical lateral and axial resolutions of 0.36 × 

1.2 µm
2
 at 860 nm excitation. SHG image stacks were recorded in forward direction using 100 

kHz pixel rate with 0.27 µm pixel size, 0.5 µm axial steps and 55 mW typical laser power at 

the objective focus. Typical size of image stacks is 163 × 159 × 30 µm
3
 (corresponding to 600 

× 590 × 60 voxels). Stacks of SHG images were recorded in about five minutes in these 

conditions. Sequential acquisitions were performed every ten to twenty minutes for rapid and 

slow kinetics respectively. 

2.3. Image processing 

SHG images were analyzed using ImageJ software (W. Rasband, NIH). Background in the 

SHG images was quite low once the laser excitation was properly filtered out using laser 

blocking emission filters and the SHG was properly selected using ~10 nm wide bandpass 

filters (see above). However, the surface area of this nonsignificant background may not be 

negligible compared to the SHG signal from sparse collagen fibrils in a diluted sample. It was 

therefore filtered out using a median filter (1.0 pixel radius). Stacks were then projected along 
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z-axis and the extent of the fibrillar network was quantified by calculating the area fraction of 

pixels with SHG signal [4,18,24,25]. No threshold was applied at this stage since the median 

filter efficiently removed nonsignificant SHG background. 

2.4 Transmission electron microscopy 

A small drop of sample in aqueous solution was deposited on carbon-coated copper grids (300 

mesh) without any staining. After 3 minutes, the excess liquid was blotted with filter paper 

(Whatman #4). Observations were performed at room temperature using a JEOL 1011 

electron microscope operating at 100 kV and the images were recorded on a Gatan Orius CCD 

camera. 

3. Results 

3.1. In situ 3D visualization of fibrillogenesis 

Modification of temperature, ionic strength and pH has a critical effect on collagen 

fibrillogenesis [4–7]. In particular, decreasing pH slightly above neutral value slows down the 

kinetics of fibril formation due to electrostatic repulsion between collagen triple helices. As a 

proof of concept, we performed time-lapse SHG imaging to investigate collagen 

fibrillogenesis at two different pH, i.e. following two different kinetic regimes. Fibrillogenesis 

has been triggered by adjusting the pH to 6.5 ± 0.3 for samples referred hereafter as “slow 

kinetic samples,” with respect to samples having a pH of 7.5 ± 0.3 so called “fast kinetic 

samples.” These two conditions aimed at underlying the reliability and the different kinetics 

accessible with such a technique. 

For each kinetic, four independent samples have been investigated, where fibrils density 

increased over time before reaching a plateau. This is illustrated in Fig. 1, which displays 3D 

reconstructions of the fibrils density during collagen fibrillogenesis at six different times. In 

this case (pH = 6.5 ± 0.3), the plateau is reached after about 490 minutes. 

The background noise is quite important in the first SHG reconstruction in Fig. 1 

(recorded after 30 min), even after image processing. This background mainly results from 

electronic noise in the amplification stage of the photomultiplier tube (PMT) that accumulates 

during sample setting with light on. However, the PMT spontaneously discharges in the dark,  

30 min 170min 330 min

410 min 490 min 730 min

 

Fig. 1. 3D reconstruction of SHG images of collagen fibrillogenesis in a slow kinetic sample 

(pH = 6.5 ± 0.3). Acquisition times are indicated in top of every image. Image size: 163 × 159 
× 30 µm3. 
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Fig. 2. TEM micrographs of collagen fibrils observed in a slow kinetic sample (pH = 6.5 ± 0.3), 

at different magnifications. Red arrows underline the characteristic D-banded periodicity. 

so that this background noise rapidly decreases and becomes negligible after 20 minutes for 

the following acquisition. 

In parallel, TEM observations performed on slow kinetics samples evidenced the 

formation of collagen fibrils having the typical expected structure. In particular, these fibrils 

exhibited the characteristic D-banded periodicity of about 67 nm, observed in all collagen 

tissues in vivo [1,2,5,6,8] (Fig. 2, red arrows). 

3.2. Kinetics of fibrillogenesis 

We used a statistical approach to quantitatively analyze these SHG images and calculate the 

volume density of fibrils within each sample during fibrillogenesis. Figures 3(a) and 3(b) 

display the evolution of fibril density in two samples at pH = 6.5 ± 0.3 and pH = 7.5 ± 0.3 

respectively. These experimental data were fitted with an exponential function,  

 ( ) 1 ,
t

y t e
B

ττ − = −     

to obtain the fibrillogenesis exponential time constants τ displayed in Table 1. Exponential 

fitting was less accurate for fast kinetics samples (see Fig. 3(b)) than for slow kinetics ones 

(see Fig. 3(a)) because of the limited number of experimental data that could be acquired 

during a fast fibrillogenesis. We also often observed a first small peak before the plateau, 

which decrease is presumably due to slight sedimentation of the collagen fibrils within the 

solution. Nevertheless, the data from all samples were satisfactorily fitted using exponential 

functions. 

It is worth noting that, as an off-resonance technique, SHG microscopy provides a non-

destructive method to probe samples. This could be checked by changing significantly the 

time between sequential acquisitions of two image stacks from twenty to ten minutes. Upon 

doubling the irradiation time, no significant change in fibrils density could be detected (data 

not shown). 

To better characterize the accuracy of SHG imaging when the fibril volume density is 

quite low, we focused on the very beginning of the fibrillogenesis for slow kinetic samples 

(pH = 6.5 ± 0.3). We selected the very beginning of the above time-lapse SHG data, and 

recorded supplemental SHG images only at early times. For both sets of experimental data, we 

observed a linear increase of the fibril volume density, as expected for exponential 

progression at early time. Data were linearly fitted and the inverse of the slope is displayed as 

the fibrillogenesis rise time at origin (1/r) in Table 1. For fast kinetic samples (pH = 7.5 ± 0.3), 
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the acquisition duration (about 5 minutes) limited the number of data at the very beginning, so 

that it was not possible to achieve similar measurements of the onset of fibrillogenesis. 

Nevertheless, we used the series of data recorded for complete kinetics and calculated the 

fibrillogenesis rise time as the inverse of the slope at the origin of the exponential fit. We 

checked for slow kinetic samples that this method provides similar values to linear fitting of 

the very beginning of the fibrillogenesis (not shown). 

Table 1 reports these exponential time constants (τ) and rise time at origin (1/r) for every 
sample with slow (pH = 6.5 ± 0.3) and fast (pH = 7.5 ± 0.3) kinetics. Overall, Table 1 shows 

that a good reproducibility is achieved: similar values are obtained at a fixed pH, while 

significantly different kinetics are measured when comparing samples having different pH. 

This is clearly seen in Fig. 3(c) that displays the mean exponential time constant for slow 

kinetics: 405 ± 62 min and for fast kinetics: 54 ± 14 min, and the mean rise time at origin for 

slow kinetics: 166 ± 35 min and for fast kinetics: 44 ± 12 min. These measurements allow a 

clear discrimination between the two populations of samples. Further statistical analysis was 

performed using R software (R development core team, R foundation for statistical 

computing, version 2.14.1). F-test, with critical value set as 1%, showed that both samples had 

different variances for whole fibrillogenesis (p = 3.3%) and for fibrillogenesis beginning (p = 

3.5%). Then sided two-sample Welsh’s t-test for exponential time constants (p = 0.45%) and 

for fibrillogenesis rise time at origin (p = 0.42%) showed significant differences for slow and 

fast kinetics. 
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Fig. 3. Quantization of collagen fibrillogenesis using a statistical approach. Fibril volume 
density (pixel fraction, %) over time (min) for (a) a slow kinetics sample (pH = 6.5 ± 0.3): τ = 
352 ± 59 min and (b) a fast kinetics sample (pH = 7.5 ± 0.3): τ = 33 ± 7 min. Black squares and 
red lines correspond to experimental data and exponential fitting respectively. Green line 
figures the asymptote of the exponential fit. (c) Statistics over all samples (see Table 1) in 

every condition. Red and green columns represent respectively the mean time constants and the 

mean rise time at origin for slow (sparse hatching) and fast (dense hatching) kinetics; error bars 
represent the standard error of the mean. 

Table 1. Time constants obtained for all samples with slow and fast kineticsa 

Slow kinetics (pH = 6.5 ± 0.3) 

τ (min) 352 ± 59 269 ± 59 543 ± 134 462 ± 124 NA NA NA NA NA 

1/r (min/%) 130 ± 10  82 ± 7 169 ± 29  87 ± 20 105 ± 20 186 ± 10 139 ± 11 169 ± 19 426 ± 42 

Fast kinetics (pH = 7.5 ± 0.3) 

τ (min)  39 ± 25  49 ± 17  33 ± 7  93 ± 48      

1/r (min/%)  23 ± 10  72 ± 19  25 ± 5  57 ± 14      
aThe first row displays time constants (τ) obtained by exponential fitting of fibrils density over time, the second row 
displays the inverse of the slope at the beginning of fibrillogenesis (1/r). Additional values for fibrillogenesis 

beginning correspond to five samples studied only during the first two hours. Error intervals correspond to the 

standard error of fitting parameters. NA: not available. 

3.3. Single fibril formation 

We also studied the growth of single fibrils. Figure 4 displays time-lapse SHG imaging of a 

single fibril in a slow kinetic sample (pH = 6.5 ± 0.3). Figure (a) shows projections of SHG 

image stacks at increasing times after the onset of fibrillogenesis. The growth is more 
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precisely followed in the corresponding kinetic diagram in Fig. 4(b), where 3D 

reconstructions of the fibril are tilted and set in the same direction to better evidence the fibril 

lengthening. It shows that the length of the fibril is well resolved by SHG microscopy and 

increases significantly with time to reach ca 8.7 µm after about 340 minutes. In contrast, the 

apparent fibril diameter is 1 to 2 pixels that is about the optical resolution, and do not change 

significantly during fibrillogenesis. It shows that the fibril diameter is always below the 

optical resolution, in agreement with TEM images. Both length and diameter of the observed 

fibrils nicely correlate with reported data on the structure of collagen fibrils [5–7]. In addition, 

Fig. 4(c) displays the kinetics of the fibril formation. It is measured using the pixel fraction 

density rather than the fibril length, in order to enable comparison to whole sample kinetics. 

These data show that the fibril growth is characterized by a time constant of 103 ± 18 minutes. 

Importantly, similar results were obtained when looking at other single fibrils. This time 

constant is significantly lower than the characteristic time recorded for the whole sample (405 

± 62 minutes). This is not surprising because the fibrillogenesis kinetics over the whole 

sample is determined not only by the fibrils length but also by the number of new fibrils. 
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Fig. 4. Kinetics of single fibril growth. (a) SHG images of the same fibril at increasing times 

after the onset of fibrillogenesis (scale bar: 5µm). (b) Kinetic diagram of the fibril length 

evolution. (c) Time profile of the area fraction of pixels with significant SHG signal during 

single fibril formation. The red line corresponds to exponential fitting and provides a time 
constant of the fibril lengthening of 103 ± 18 min. 

4. Discussion 

In this work, we used in situ time-lapse SHG microscopy to monitor fibrillogenesis of 

collagen samples. A key advantage of this technique is that it allows continuous non-invasive 

observation of the assembly of collagen fibrils in solution without any specific preparation. In 

contrast, when using conventional techniques such as TEM, the fibrillogenesis has to be 

stopped during image acquisition and one can only record images of different samples dried at 

different stages of fibril formation [8]. Accordingly, SHG microscopy measures the 3D 

dynamics of fibrillogenesis with improved reliability and sensitivity. As a proof of concept, 

we took advantage of the fact that controlled variation of pH allows a significant tuning of the 

kinetics of fibril formation with a good reproducibility. We obtained significantly different 
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time constants at pH = 6.5 ± 0.3: around 400 minutes (slow fibrillogenesis), and at pH = 7.5 ± 

0.3: around 50 minutes (fast fibrillogenesis). In the former case, the first collagen fibrils could 

be detected approximately 30 minutes after the induction of fibrillogenesis. TEM micrographs 

obtained at this stage indicated that the fibril diameter varies typically between 60 and 100 

nm. This allowed us to approximate the detection limit of our set-up in this range. SHG 

microscopy is then sensitive to fibrils with diameters below the optical resolution (360 nm in 

our set-up in the lateral direction). Compared to TEM that is characterized by very high 

resolution but limited field of view (few 10 µm), SHG microscopy thus appears as a 

complementary technique that is sensitive enough to image small collagen fibrils while 

providing an extended field of view (few 100 µm to 1 mm). This extended field of view is 

crucial to obtain reliable kinetics since probing fibril formation in larger volume mitigates 

local singular behavior. 

Our results also demonstrate that SHG microscopy enables monitoring the formation of 

single fibrils in a 3D environment. Recording confocal reflectance images and SHG images of 

the same collagen sample using the same excitation wavelength and power at focus gives 

similar sensitivity. Nevertheless, SHG microscopy provides enhanced penetration depth in 

scattering samples, which should enable the visualization of advanced fibrillogenesis stages in 

thick tissues. Most importantly, SHG microscopy provides additional information about the 

supramolecular structure of the collagen fibrils. Indeed, as explained above, SHG probes only 

tightly aligned collagen molecular structures and scales quadratically with the density of these 

aligned molecules, while confocal reflectance signals scale linearly with the density of 

collagen molecules or other entities, including cellular components, regardless of their 

organization. SHG microscopy therefore ensures that the visualized structures are well-

organized fibrils. Moreover, other components like cells may exhibit 2PEF signals, while they 

generate no SHG signal. Combined SHG/2PEF microscopy therefore appears as a promising 

technique to simultaneously observe collagen self-assembly and cells behavior in biological 

samples. It is worth noting that it would require increasing the temperature to typically 37°C 

that would result in decreased fibril diameter at similar pH, concentration and ionic force 

conditions. However, these parameters can be optimized to maintain fibrillogenesis and obtain 

efficient SHG [16,24,25]. 

The structural specificity of SHG images may be further improved by acquiring 

polarization-resolved images, which provides a quantitative index of the orientational disorder 

of collagen distribution within the focal volume [27,28]. Moreover, complete measurement of 

the SHG tensorial response of collagen fibrils may highlight chiral components as already 

observed in collagen thin films [23]. Time-lapse experiments should then provide new data 

about the fibril chirality at various stages of fibrillogenesis. Polarization-resolved SHG 

imaging however requires longer acquisitions and advanced image processing, and new 

strategies have yet to be developed to enable monitoring of fast kinetics. 

5. Conclusion 

In this paper, we used SHG imaging of diluted collagen solutions to monitor and quantify the 

kinetics of collagen fibrillogenesis. This work illustrates the potential of SHG microscopy for 

in situ 3D imaging of collagen fibrillogenesis with field of view over a few 100 µm. 

Moreover, this approach allows monitoring the growth of a single fibril using optical 

microscopy since the sensitivity of SHG microscopy to well-organized fibrils is below the 

optical resolution. SHG microscopy should therefore provide key insights into the molecular 

mechanisms of collagen assembly, as well as about the onset of chirality at the supramolecular 

level. This is a prerequisite to understand biological processes and engineer new biomimetic 

collagen-based matrices. In this respect, SHG microscopy appears to be a key technique for 

the rational design and characterization of biomaterials currently developed through a bottom 

up approach [29]. 
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