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Abstract 

 

Independent component analysis (ICA) and other blind source separation (BSS) methods 
are important processing tools for multi-channel processing of electroencephalographic data 
and have found numerous applications for brain-computer interfaces. A number of solutions 
to the BSS problem are achieved by approximate joint diagonalization (AJD) algorithms, thus 
the goodness of the solution depends on them. We present a new least-squares AJD algorithm 
with adaptive weighting on the separating vectors. We show that it has good properties while 
keeping the greatest generality among AJD algorithms; no constraint is imposed either on the 
input matrices or on the joint diagonalizer to be estimated. The new cost function allows 
interesting extensions that are now under consideration. 

 

 
1 Introduction 
 
Given a set of matrices C:{Ck, k=1…K}, K>2, the approximate joint diagonalization (AJD) consists in 
finding a matrix B such that all K products BCk B

T
 result in matrices as close as possible to diagonal 

form. The AJD is an important algebraic tool extending the generalized eigenvalue problem (two-
matrix diagonalization). As such, it is enjoying considerable interest and several efficient algorithms 
have been proposed [1-9]. In the context of brain-computer interface (BCI) the AJD provides a natural 
extension of the common spatial pattern to multi-class feature extraction [10]. Furthermore, since 
many matrices can be jointly diagonalized, one may optimize the spatial filter not only with respect to 
the signal diversity across classes [10], but also with respect to other kinds of signal diversity such as 
coloration and non-stationarity [11].  

 
Recently a least-squares (LS) AJD algorithm has been proposed almost simultaneously in [6] 

and [8]. This algorithm does not impose restrictions either on the input matrices Ck (e.g., real, positive-
definite, symmetric, etc.) or on the joint diagonalizer B (e.g., orthogonality), thus it is the most flexible 
among existing AJD algorithms. In [7] a similar LS idea has been used to perform simultaneous joint 
diagonalization and zero-diagonalization on two matrix sets, an approach that suits time-frequency 
data expansions. More generally, AJD algorithms are well adapted to expansion of the signal in 
several dimensions, enhancing the ability of capturing the source of diversity in a given data-set, hence 
offering a powerful approach for feature extraction. We anticipate that AJD algorithms will acquire a 
prominent role in feature extraction methods for BCI and we feel that a general approach may prove 
advantageous, which motivated us pursue further LS algorithms. The criterion used in [6] and [8] is  
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where ║║ indicates the Frobenius norm and the Off operator zeros the diagonal entries of the matrix 
argument. The minimization of this criterion with respect to B evidently yields an AJD solution in the 
LS sense. 
 
2 Method 
 
For simplicity of exposition in the following we assume that the N-dimensional input matrices Ck are 
real and square, but not necessarily symmetric. The non-square/complex case is easily derived 
thereupon. We propose a weighted and normalized version of (1) given by the minimization of  
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where W is an N-dimensional diagonal matrix holding the weights for each row vector of B. Since  
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operator zeros the off-diagonal entries of the matrix argument, the minimization of (2) is equivalent to 
the maximization of 
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Denoting by T

ib  the ith row vector of B and by ib its transpose (still the row vector but in column 
representation) and following [7] we expand (3) such as 
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Now by defining   
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and substituting (4) and (5) in ( )Diag℘ B  (3), we can write  
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Similarly as in [6-8] the optimization of B according to (8) may proceed iteratively row-by-row. For 
each vector of B a step consists in sphering M (fixing the denominator) and finding the optimal 
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direction ib maximizing T
i i ib M b . Updating ib will results in different M and Mi, to which a new 

ib will correspond and so on iteratively. The process sequentially applies to all N vectors of B within 
each iteration, resulting in mutual restrictions. The following SWDiag (sphered weighted 
diagonalization) algorithm makes use of adaptive weighting: 
 
Initialize B by a clever guess or by I (the identity matrix) if no guess is available. Initialize W by I. 

While not Convergence do 

For i=1 to N do twice 

 (A: Sphering): Find H such that T =HMH I  

   (B: Optimal Direction): find the principal eigenvector ui and associated eigenvalue iλ of T
iHM H  

   Update the ith row of B as T T
i i←b u H     

End For 

Update all diagonal elements of W as 
1

2
i iw λ −← and normalize them so as 2 , {1... }i

i

w N i N= =∑  

End While 

 
This family of algorithms has good convergence properties (see [6-8]). Note that M(7) and Mi 

(6) are updated at each pass of the for loop. If each pass of the for loop is not repeated twice, as 
suggested, the algorithm still converges, but the stopping criterion (see below) displays a “saw” (non-
monothonically decreasing) behavior. The eigenvalues associated with the principal eigenvectors of 
Step B are by definition comprised between 0 and 1.0 and equals 1.0 iff the off criterion is zero, which 
happens if the input matrices can be diagonalized exactly, that is, if they have exactly the same 
eigenstructure. If not, or more in general due to sampling error, which will always happen in practice, 
the eigenvalues will converge to a value smaller than 1.0. This ensures numerical stability of the 
algorithm and provides the rationale for the weighting scheme: at each iteration the diagonalization 
achieved by each row vector of B is proportional to the magnitude of the associated eigenvalue. In Eq. 
(7) 2T T

k kC B W BC  can be written as 2 T T
k i i i ki

w∑C bb C , thus we see that the adaptive weighting 

emphasizes the search of vectors attaining a lower eigenvalue at the expense of those attaining an 
higher eigenvalue, which steers the algorithm toward a more balanced solution. See also the discussion 
on balanced solutions in [6]. As for the stopping criterion of the algorithm, we stop as soon as the 
change of the N eigenvalues λi is negligible.  

 
Each eigenvector (optimal direction) in step B can be successfully updated toward 

convergence if matrix Mi does not have multiple maximum eigenvalues. In this case the optimal 
direction eigenvector cannot be found uniquely. This is also the case of the LS algorithm of [6] and 
[8], which minimizes  

( ) ( ) 2
OFF T

k
k

Offℑ =∑B BC B  with constraint ( )TDiag =BEB I ,     (9) 

where E is any positive definite matrix. Since the matrix E is disjoint to matrix B, their algorithm 
consists in performing the sphering once at the beginning and then iteratively finding the optimal 
directions by minor component analysis and scaling to match the constraint. However, if after sphering 
there are multiple minor eigenvalues this algorithm is definitely trapped and fails. On the other hand in 
our optimization scheme the matrices HMi H

T change at each pass due to the fact that the sphering 
step (Step A) depends on the previous estimation of B (7), thus our algorithm may fail only if the 
multiplicity of maximum eigenvalues happens close to convergence, whence the changes caused by 
the sphering update are small and cannot correct the multiplicity issue anymore.  
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3 Results 
 
We compared our SWDiag algorithm and its unweighted version SDiag (obtained setting all weights 
to 1.0 and not updating them at each iteration) to the well-established FDiag algorithm of [5] and 
QDiag of [6]. Referring to (9), we use E=I for QDiag. We performed simulations using synthetic input 
matrices and a real-data example. 
 

For the synthetic matrices simulation we generated 12 6-dimensional square diagonal matrices 
with each diagonal entry distributed as a chi-squares random variable with one degree of freedom. 
Each of these matrices, named Dk, may represent the error-free covariance matrix of six independent 
standard Gaussian processes (zero mean and unit variance). The 12 input matrices were obtained as  
 
Ck=ADk A

T,           (10) 
 
k:{1…12}, where each entry of the 6-dimensional square mixing matrix A is randomly distributed as a 
standard Gaussian.  
 
We considered three cases: 
 
- No perturbation: the exact AJD problem as described by (10) 
 
- Perturbation of the Mixing Matrix: input matrices were generated as Ck=AkDk Ak

T, where  
each entry of the mixing matrix A in (10) is perturbated as Akij ← Aij + φ ζ Aij, where φ is +1 or -1 with 
equal probability and ζ is uniformly distributed in [0.001…0.1], for all k=1…K and for all i, j=1…N.  
 
- Perturbation of Independence: with probability 0.2 each off-diagonal symmetric pair of the input 
matrices Dk is perturbated as Dkij=Dkji ← φ (√Dkii√Dkjj ) / δ, where φ is +1 or -1 with equal probability 
and δ uniformly distributed in {1…8}, for all k and i>j. 
 
Given true mixing A, each AJD algorithm estimates demixing B, which should approximate the 
inverse of A out of row scaling (including sign) and permutation. Then, matrix G=BA should equal a 
scaled permutation matrix. At each repetition we computed the performance index such as 
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which is positive and reaches its maximum 1.0 iff G has only one non-null elements in each row and 
column. The mean and standard deviation across 500 repetitions are reported in table 1.  
 
 
Table 1 : Mean and standard deviation (within parentheses) of the performance index (11) across 500 repetitions 
of the synthetic input matrices simulation with and without perturbation. The higher the index the better.  
*: QDiag resulted in a false solution 87 out of 500 repetitions in this case. 

 
Perturbation FDiag QDiag SDiag WSDiag 

None 0.9999 
(0.0000) 

0.9999 
(0.0011) 

1.0 
(0.0) 

1.0 
(0.0) 

Mixing 0.9926 
(0.0107) 

0.9927 
(0.0104) 

0.9915 
(0.0119) 

0.9928 
(0.0102) 

Independence 0.8057 
(0.0676) 

* 0.7961 
(0.0698) 

0.8002 
(0.0683) 

 
The real data example concerns an eyes open EEG recording comprising 19 electrodes and 11 

seconds sampled at 128 samples per second. The recording (Figure 1 top) displays a rapid sequence of 
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eye blinks and bilateral jaw muscle contamination visible at temporal leads T3 and T4. We performed 
AJD of 44 Fourier co-spectral matrices corresponding to frequencies 1 Hz to 44 Hz in 1 Hz steps. 
EEG data was previously whitened and the 16 most energetic components were retained. Such an AJD 
procedure corresponds to exploiting the different coloration of EEG source components. In fact, the 
AJD of cospectral matrices successfully estimates the inverse of the mixing matrix if the source 
components have non-proportional power spectra (characteristic coloration). Out of random 
permutations, FDiag, QDiag and WSDiag gave very similar results (Fig 1). 
 

 
 

Figure 1. Top: about 9 s of a 11 s epoch extracted from the raw EEG recording of a 12 y.o. male. From left to 
right, electrode labels according to the 10-20 international system, raw EEG tracing (upward deflection is 
negative potential; the space between two horizontal centering lines is 70 µV), average power spectrum (from 
zero to 32 Hz; arbitrary units) and autocorrelation function (the space between two horizontal centering lines is 
autocorrelation = 1 in the upward direction and -1 in the downward direction). The gray shaded area in the 
background of EEG tracings is the global field power, the sum of the square of potentials across electrodes for 
each sample (arbitrary units). The next three plots are the sources estimated using FDiag, QDiag and WSDiag on 
the same set of Fourier cospectral matrices. For all methods sources were standardized (unit variance) and 
plotted on the same scale. 
 



 6 

4 Discussion 
 
We have presented a new least-squares approximate joint diagonalization algorithm with adaptive 
weighting for the row vectors of the matrix to be estimated. Simulations on synthetic input matrices 
and a real-data example indicates the good performance of WSDiag when compared to FDiag and 
QDiag. Our new LS optimization scheme allows interesting manipulations, besides the adaptive 
weighting here proposed, which are now under investigation. We are currently considering weighting 
also the input matrices and solving block diagonalization problems. We are also working on the 
convergence properties of the algorithms and on its link to cost function (3). 
 
5 Conclusion 
 
The proposed AJD algorithm may prove useful for the extraction of electroencephalographic features. 
Application of source separation methods making use of AJD algorithms has been recently introduced 
in the brain-computer interface field [10-11] and appears a promising approach.  
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