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Investigation of a Rotor- Bearing 
System with Bearing Clearances and 
Hertz Contact by Using a Harmonic 
Balance Method 
This work is about the steady state vibration of a rotor bearing system. The rolling 
bearings are modeled as two degrees of freedom elements where the kinematics of the 
rolling elements is considered, so are the internal clearance and the Hertz contact 
nonlinearity. The steady state solution of the system is achieved by the harmonic balance 
method, validated by a numerical integration using a three-point-centered finite difference 
scheme. The number of harmonics employed in the harmonic balance method is examined 
to find the satisfactory quantity of harmonics that can describe the system dynamics. The 
contact regimes in the rolling elements are also explored. 
Keywords: rolling bearings, harmonic balance method, bearing clearance, Hertz contact 
 
 
 
 

Introduction 

Rolling elements bearings are mechanical parts whose role is to 

support and locate shafts and rotating parts in machines (Avalone 

and Baumeister, 1999). A rolling element bearing contains two rings 

and between these rings, rolling elements. They allow the relative 

motion between the rings and also the correct positioning of them. 

Generally, there also exists a cage whose main function is to keep 

the adequate angular separation of the rolling elements. 

The rolling element bearing is a complex mechanical unit. There 

are several studies on its mechanical behavior like the standard 

reference on the field, Harris (2001). Rolling elements bearings are 

widely used as boundary conditions for rotordynamics studies. Lim 

and Singh (1990) present a theory of developing a stiffness matrix 

that accounts for the radial displacement and bending of the shaft, 

including the bearing clearance and the Hertz contact between the 

rings and the rolling elements. 

Tiwari et al. (2000) studied the influence of the bearing 

clearance on the dynamics of a horizontal rigid rotor, showing that 

this parameter is very important as it controls the regions of unstable 

regime and chaotic behavior. The studies were made with the 

harmonic balance method and the numerical integration. 

Another important aspect in the bearing induced vibrations is 

the race waviness. Harsha et al. (2003) studied a rotor bearing 

system perfectly balanced considering a deep groove ball bearing 

with radial clearance, Hertz contact and the race waviness. The race 

waviness is characterized by a sinusoidal profile and produces 

vibration at the profile’s frequency. They found that the system 

could present quasiperiodic, periodic and chaotic responses as well 

as stable and unstable regimes. The numerical investigations were 

made by using direct integrations. 1 

In this paper a study of a rotor bearing system considering a 

stator is presented. The bearing has two in-plane degrees of 

freedom, considering the effects of variable stiffness, Hertz contact 

and radial clearance. The interaction between the weight of the rotor 

and the centrifugal force is of particular interest, because under this 

regime the rolling bearing can exhibit a very complex behavior. The 

method of solution is the harmonic balance method associated with 

the AFT (Alternating Frequency Time) strategy and the numerical 

integration for validation of the results. 
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Nomenclature 

A = Sine Fourier coefficients vector 

B = Cosine Fourier coefficients vector 

C = Cosine Fourier coefficients vector 

c = damping coefficient, Ns/m 

D = damping matrix 

d = distance, m 

F = force vector 

F = bearing force, N 

K = stiffness matrix 

k = stiffness, N/m 

kH = bearing ball stiffness, N/m
3/2 

Nb = number of balls of the rolling bearing 

M = mass matrix 

m = mass, kg 

R = inner groove radius of the bearing, m 

Rb = radius of a bearing ball, m 

S = Sine Fourier coefficients vector 

s = curvilinear abscissa 

t = time, s 

X = displacement vector 

x = horizontal displacement, m 

Y = Displacement vector in the frequency domain 

y = vertical displacement, m 

Z = Force vector in the frequency domain 

Greek Letters 

δ = relative radial displacement 

Ω = spin speed of the rotor, rad/s 

θi = angular position of the i
th ball, rad 

⌠θ = angular spacing between two bearing balls, rad 

Subscripts 

k = harmonic number 

r = relative to rotor 

s = relative to stator 

u = relative to unbalance 

x = x direction 

y = y direction 

Superscripts 

p = step in the curvilinear abscissa 

R = relative to resultant 

t = transpose 
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Equations of Motion 

The analyzed system is a horizontal Jeffcott rotor connected to a 

flexible stator by a rolling element bearing installed at its midspan. 

The bearing is modeled as a two-degree-freedom element with 

radial clearance and Hertz contact between the races and the rolling 

elements. The friction in the bearing is assumed to be zero. The 

excitation due to the bearing is assumed to be small in comparison 

to the unbalance forces and then will not be considered. 

The variable stiffness of the rolling bearing is modeled based on 

the internal kinematics of the rolling elements. Figure 1 shows a 

rolling element bearing with its fixed frame of reference and the 

spin direction of the rotor. The bearing has Nb rolling elements and 

each rolling element has an angular position iθ . The cage keeps the 

angular spacing of the rolling elements constant, so the angular 

space between 2 balls is equal to bNπθ∆ 2= . 

 

 

Figure 1. Rolling element position in the bearing. 

 

Considering a ball bearing, the angular positions iθ , 

bNi ≤≤1 , are functions of the spin speed of the rotor, the radius of 

the ball and the radius of the inner ring, as shown by the following 

equation: 
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where Ri is the inner groove radius and Rb is the ball radius. 

Knowing the position of the rolling elements, the restoring force can 

be calculated by making the hypothesis that the contact between the 

rolling element and the races is Hertz contact. At first the relative 

displacement between the inner and the outer ring must be 

determined at each rolling element: 
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Then, the restoring force is calculated for each rolling element: 
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The forces acting on the rotor by the rolling element bearing the 

x and y directions are: 
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Finally, the equations of motion for the rotor bearing system 

with a nonlinear rolling element bearing and a stator are: 
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It can be seem from Equation (5) that the stator dynamics is 

coupled with the rotor dynamics by the nonlinear forces of the 

rolling element bearing. 

Harmonic Solutions 

The method for searching the harmonic solutions of the 

equations (5) is the harmonic balance method with the alternating 

frequency time strategy (HBM AFT). In this method a harmonic 

solution for the system of nonlinear differential equations is 

assumed, transforming this system in a nonlinear algebraic system 

on equations. The nonlinearities are evaluated in the time domain 

and the harmonic solution is evaluated in the frequency domain. 

The equations of motion are written in the following form: 
 

( )+ + = + + =
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In the Equation (6), X is the vector of displacements, M is the 

constant mass matrix, K is the stiffness matrix and D is the damping 

matrix. The vector F contains the weight, the unbalance and the 

bearing forces: 
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The response of the system is assumed to have only integer 

multiples of the exciting frequency, assuming the truncated Fourier 

series form: 
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The excitation forces are also demonstrated by  a sum of 

harmonics: 

( ) ( ) ( )( )0

1
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The equations (8) and (9) are inserted in the equation of motion 

(6) and the nonlinear system of equations become a system of 

nonlinear algebraic equations: 
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The fist block of equations accounts for the static deformation. 

The block 
k

Λ  is a dynamical stiffness of the kth harmonic given by: 
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The vector Yk is a vector containing the unknown Fourier 

coefficients and Zk is the vector of the Fourier coefficients of the 

excitation: 
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The equation (10) can be written as: 
 

( ) ( ),Ω = −H Y ΛY Z Y  (13) 

 

To solve this equation it is needed to have the Fourier series 

coefficients of the nonlinear forces, a task that can be difficult to 

handle analytically by using the mathematical definition of the 

coefficients. 

Another approach to get the coefficients is the AFT strategy 

(Cameron and Griffin, 1989). With the Fourier series coefficients of 

the Y vector, the solution X can be evaluated by using the Equation 

(8). Then the excitation forces, including the nonlinear forces, can 

be calculated by using the Equation (7). The Fourier series 

coefficients are found by the numerical evaluation of the following 

integrals (Weisstein, 2004): 
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Finally the equation (13) is solved by using a nonlinear system 

of equations solver like the Broyden method (Broyden, 1965). A 

special implementation of the Broyden method was developed 

containing an arc-length continuation scheme (Nayfeh and 

Balachandran, 1995), where the spin speed Ω is regarded as a new 

unknown of the system, and the control variable is now the arc-

length of the hypercurve described by the tip of the vector 

[ ]( ), ;s ΩY . The curvilinear abscissa s must obey the arc-length 

equation: 
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where (p-1)s, (p-1)Y and (p-1)Ω are respectively the curvilinear abscissa 

of the previous step, the Fourier coefficients vector of the previous 

step and the spin speed found in the previous step. 
 

The efficacy of this strategy is highly influenced by the 

predictor employed. The simulations presented here use a 3th degree 

Lagrange polynomial predictor based on the previous solutions and 

the corresponding curvilinear abscissas. The step over the 

curvilinear abscissa is controlled by the normalized dot product of 

the last two good solutions. If the dot product is superior to 0.9, the 

steps are increased by a 1.02 factor, else the increment is divided by 

2. These values are empirical. 

Results of the Simulations 

The system under study has the following characteristics: 

30kgsm = , 50kgrm = , =r0ω 141.42 rad/s, =s0ω 577.35 rad/s, 

=rζ 0.02 and =sζ 0.05. The rolling bearing has 16 balls each with 

radius of 10 mm and the bore diameter is equal to 100 mm. The 

stiffness of each ball is 2×1010 N/m3/2, a value compatible with the 

results of a rolling element stiffness calculation following the 

methodology presented by Harris (2001). The bearing clearance is 

equal to 20µm and the unbalance force is chosen to study the 

contact phenomena not so near the resonance peak. 

At first the response of the system is calculated for a growing 

spin speed from 0 to 70 Hz with 5 harmonics to show a global 

response curve for the X direction, as showed in the Figure 2. 
 
 

 

Figure 2. X direction response of the rotor and the stator. 

 

The region of interest is that between 10 Hz and 23 Hz. To see 

the dynamics of the rotor-stator in this frequency range, a plot of the 

evolution of the orbits in function of the frequency of rotation is 

shown in the Figure 3. It can be seen that the orbit near 10 Hz is 

very near an elliptical orbit. When the frequency of rotation is 

between 11 Hz and 16 Hz, the orbits start to have a complex 

morphology, forming even star shaped orbits and hexagon shaped 

orbits. Between 16 Hz and 20 Hz, the orbits are less complex than 

those found for the range 11 Hz – 16 Hz, having basically 2 lobes. 

After 20 Hz, the orbits recover the elliptical form. 
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Figure 3. Evolution of the orbits from 10 Hz to 23 Hz. 

To verify the quality of the results given by the HBM AFT 

method, a comparison of its results (keeping 10 harmonics) with 

these by direct integration is performed. The system of equations (5) 

is integrated by using a centered finite difference scheme (Géradin 

and Rixen, 1997) with 3000 discretisations points over the time and 

1500 periods of integration for Ω  between 5 Hz and 20 Hz. The 

comparison shows a good accordance between the results obtained 

by the two methods, as the figure 4 illustrates. 
 

 

Figure 4. HBM AFT () results against the direct integration results ( ���� ). 

 

For a deeper comparison between the two methods, the orbits 

are analyzed. The first case considers the rotor at 10.4 Hz and the 

orbits are shown in the Figure (5). The figure shows the orbit of the 

stator at a near elliptical form and shows that the rotor does an orbit 

with the top and the upper right and upper left in a flattened fashion. 

The HBM AFT and direct integration solutions are very well 

correlated. 

At 12.7 Hz (Figure (6)), the stator orbit has a hexagonal form 

while the rotor has a pentagonal orbit. Again the HBM AFT and the 

direct integration give almost the same results. At 14.2 Hz (Figure 

(7)) the system has the most complex orbits. The rotor and the stator 

have the orbits in a star-shaped form with a loop at the lower left tip. 

The accordance between the two methods is not as good as it is for 

the two previous cases. 

Finally, at 19.2 Hz (Figure (8)), the rotor and the stator are 

running in a two-lobe orbit and the two methods of solution in 

accordance with each other. For the frequencies above 19.2 Hz the 

accordance between the two methods is always good. 

 

Figure 5. HBM AFT with 10 harmonics () and direct integration (−−−− −−−− −−−−). 

 

 

Figure 6. HBM AFT with 10 harmonics () and direct integration (−−−− −−−− −−−−). 

 

 

Figure 7. HBM AFT with 10 harmonics () and direct integration (−−−− −−−− −−−−). 
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Figure 8. HBM AFT with 10 harmonics () and direct integration (−−−− −−−− −−−−). 

 

These validation results were produced with a 10 harmonics 

HBM AFT method. However, this quantity of harmonics needs a 

reasonably high computational effort and may not be necessary for 

all the frequency range, only for the complex regimes as shown in 

figure 9. This figure shows a comparison of the HBM AFT method 

with the direct integration method at 14.2 Hz, but this time the 

number of harmonics kept in the solution is varied to verify how 

good the HBM AFT estimation can be. 

In this case, as the direct integration solution is known, a 

spectral analysis could reveal the number of harmonics needed to 

get a good HBM approximation. But assuming that the solution is 

unknown (as it is in most cases), the figure shows how the increase 

in number of harmonics makes the HBM AFT approach to the direct 

integration solution. The same comparison is made for the rotor at 

19.2 Hz (Figure 10), showing that the direct integration solution can 

be well mimetized by the 3 harmonics HBM AFT solution. 
 

 

 

Figure 9. HBM AFT () and direct integration (−−−− −−−− −−−−). 

 

 

Figure 10. HBM AFT () and direct integration (−−−− −−−− −−−−). 

 

The HBM AFT solution can also show how the rolling elements 

of the bearing act. For example, in a period of revolution, how many 

rolling elements are in contact with the outer ring? To answer this 

question, one tactic is to create a function per rolling element that is 

zero valued over all the period of revolution of the bearing cage 

except the instants of contact. When the function is evaluated for all 

rolling elements and put in graphical form, the contact behavior of 

the bearing can be understood. In the following discussion, the 

number of harmonics kept in the solution for the following analysis 

is equal to 10, and the time is discretized over one period of 

revolution of the bearing cage. 

Starting with Ω =5 Hz (Figure 11), the graphic shows that all 

the rolling elements are taking part in the motion of the rotor. It can 

be easier to see if one takes a closer look at one of the rolling 

elements. For this particular ball, the horizontal line indicates the 

fraction of the period of revolution of the bearing cage where the 

contact exists. The same idea holds for the rest of the balls. Then, 

the Figure 11 shows that the contact time per ball is not so different 

from one ball to the other, that is, the shaft is whirling almost 

homogenously at the bottom of the bearing, as the contact goes from 

the ball 16 to the ball 1 and considering the direction of rotation of 

the shaft. This graphic can also show how many balls are in contact 

with the outer ring. Choosing any instant inside the considered time 

interval, and tracing a vertical line at this instant, one can see that 

there are at least 3 rolling elements in contact with the outer ring. 

At Ω =10.4 Hz, Figure 12 shows that the contacts now are 

happening in a more pronounced way in two zones: from the ball 6 

until the ball 9 and from the ball 15 to the ball 2. Also the rotor is 

still moving at the bottom of the bearing. 

At 15 Hz, the figure 13 shows there are two zones of the bearing 

without contact: from the balls 10 to 13 and from the balls 3 to 5. 

There are two contact zones from the ball 14 to the ball 2 and from 

the ball 6 to the ball 9 and these two zones are in opposite sides of 

the bearing. The contact and noncontact zones are arising because of  

the participation of the bearing clearance in the dynamics of the 

system. 

When the rotational frequency reaches 19.2 Hz (Figure 14), the 

noncontact zones are already gone, but there are two zones where 

the contact time is longer. At this frequency the orbit is almost 

elliptical and the shaft travels over the outer ring of the bearing 

since the bearing clearance is consumed. The order of contact for 
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the balls is inversed compared with the Figure 12 because of the 

motion of the rotor. 

The last case shows the bearing contacts for the system at 35 Hz 

(Figure 15), where all the rolling elements are engaging in almost 

the same contact time over the period of rotation. 
 

 

Figure 11. Contact time for each ball (F=5.0 Hz). 

 

 

Figure 12. Contact time for each ball (F=10.4 Hz). 

 

 

Figure 13. Contact time for each ball (F=15.0 Hz). 

 

Figure 14. Contact time for each ball (F=19.2 Hz). 

 

 

Figure 15. Contact time for each ball (F=35.0 Hz). 

Conclusions 

This work presented one implementation of the harmonic 

balance method coupled with the AFT strategy, where the 

nonlinearities are evaluated in the time domain and the response of 

the system is calculated in the frequency domain. The system under 

study is a Jeffcott rotor connected to a stator through a ball bearing 

at the midspan. 

The results of the HBM AFT technique are compared with a 

direct integration solution over the range of rotation frequencies of 

interest, and this comparison showed that the HBM AFT tends to 

give the same results as those of the direct integration. 

It was found that there is a frequency range (12 - 20 Hz) where 

the behavior of the system is complex because of the iteration of the 

unbalance forces and the weight of the rotor, considering the bearing 

clearance. The motion of the rotor, in this frequency range, changes 

from one taking place at the bottom of the bearing to the other 

where the shaft travels over the outer ring of the bearing. Between 

these two regimes, there are situations where not all the balls of the 

bearing are touching the outer ring. 
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