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ABSTRACT

Brake squeal is an instability phenomenon, which is 
severely dependent on many parameters. This study 
attempts to assess the effects of their variability on 
brake squeal behavior through FE computation. 

A detailed FE model of a commercial brake corner has 
been built up in order to predict its nominal squeal 
behavior. This analysis includes a non-linear preloading 
step to predict the system working-point and a complex 
eigenvalue analysis to assess its stability. A parametric 
study has been conducted in order to estimate the 
dependency with respect to the friction coefficient. 

The FE model has been parameterized to investigate 
the effect of variability. The process includes geometry 
simplifications to reduce CPU time, allowing far more 
configurations to be computed. Several parametric 
studies have been conducted to assess the effects of 
the friction coefficient, of the rotating direction, of the 
friction induced damping and of the hydraulic pressure. 
A numerical matrix test has been undertaken to 
synthesize the brake behavior in the wide variety of 
conditions it may encounter. Then, a full factorial design 
of experiments has been conducted with respect to the 
friction coefficient and the disc Young Modulus. This 
analysis shows biparametric coupling patterns and 
stability charts. Finally, it is possible to rank the 
parameters with respect to their influence and to assess 
the performance and the robustness of the system. 

INTRODUCTION

In spite of recent breakthroughs in the mechanical 
modeling field, brake squeal remains, one of the most 
common and annoying noise in a car. The key issue 
deals with the fugitive nature of brake squeal. The 
challenging point is to be able to predict this high 
sensitivity to parameters and then to design most robust 
systems. For a given braking system, the influential 
parameters are wear and environment parameters, such 

as hydraulic pressure or temperature. Squeal is also 
deeply altered by part-to-part variability, which involves 
uncertain parameters. The last kind of influential 
parameters includes the parameters chosen during the 
design process. 

In recent years, several techniques dealing with brake 
squeal prediction has been proposed. The most used 
one consists in computing the complex eigenvalues of 
the system in order to assess its stability. Liles has been 
the first researcher to introduce this kind of analysis on a 
finite element model [1]. Then, this technique has been 
progressively improved. The main breakthrough consists 
in computing the static position of the braking system 
considering the contacts between parts before extracting 
the complex eigenvalues. This kind of analysis, which 
has been fully implemented in ABAQUS V6.4 and later, 
has been illustrated in several case studies by Bajer et 
al. [2,3,4]. Then, Abu Bakar et al. have studied the effect 
of brake pad surface topography and have concluded 
that this point was responsible for the fugitive nature of 
brake squeal

In this study, the aforementioned analysis has been 
used to predict the squeal behavior of a commercial 
braking system in “nominal” conditions. Since this 
phenomenon is a friction induced instability, a 
parametric study has been undertaken with respect to 
the friction coefficient. Then, a parametric model has 
been built up in order to conduct comprehensive 
variability analyses and catch the fugitive nature of brake 
squeal.

DETAILED MODEL 

MODEL

This study deals with the squeal behavior of a 
commercial front brake. The whole system, consisting of 
the knuckle, hub, disc, brake and pads, is displayed 
Figure 1. All the connections between parts have been 
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modeled, especially contacts which have been taken 
into account through surface interactions. 

Figure 1: Detailed FE Model 

The analysis consists of a non-linear static preloading 
and an eigenvalue extraction. First, the hydraulic 
pressure, P, is applied between piston and caliper. 
Then, a sliding velocity, v, and a friction coefficient, µ, 
are introduced between disc and pads. After these two 
steps, the equilibrium position corresponding to the 
steady sliding is obtained. Then, the complex 
eigenvalues are computed through a projection on the 
real modal basis method. 

NOMINAL ANALYSIS 

The model has been used first to compute the nominal 
configuration, defined as µ=µ0, v=v0 and P=P0 in forward 
motion. The static deformed shape highlights the way 
the pads get in position against the anchor abutments 
and the way the brake reacts to the braking torque. 
Since contacts have been modeled as surface 
interactions, the contact pressures between parts are 
available and displayed in Figure 2.

Figure 2: Pressure distribution in nominal conditions 

The first point to notice is that parts are not in contact on 
their whole surfaces (the open contacts are colored in 
gray). As expected, because of the surface ratios at 
stake, the maximum pressure is concentrated on the 

trailing edge abutments that receive the whole friction 
force. Since the caliper tends to “open”, the contact with 
the outer pad occurs mainly on the upper part of the 
fingers. The friction force that acts on both sides of the 
disc tends to skew the anchor and the caliper. 
Therefore, the center of pressure is shifted towards the 
trailing edge for the outer pad and towards the leading 
edge for the inner pad. 

The complex eigenvalue analysis detects, on the overall 
frequency range, six unstable modes. Among them, only 
one is in the range 1-4 kHz of the so-called low 
frequency (LF) squeal. In the following, we will focus on 
this LF squeal. This unstable mode, whose frequency is 
1983 Hz, is associated with a complex eigenvector 
displayed Figure 3. This mode mainly consists of a 
twisting mode of the caliper, an opening mode of the 
anchor and a three nodal line bending mode of the disc 
featuring traveling waves. 

Figure 3: Unstable mode - 1983 Hz 

EFFECT OF THE FRICTION COEFFICIENT 

Since friction is the root cause of instabilities, its effect 
has been investigated through a parametric study with 
20 values of the friction coefficient ranging from µmin to 
µmax. This parameter influences both the static and the 
dynamic behavior of the brake. 

Figure 4 shows the pressure distributions for µmin and 
µmax. For small values of µ, the distribution is quite 
homogeneous whereas for large values, the contact 
occurs on a restricted area. In fact, the more the friction 
coefficient is, the more important the “skew effect” 
becomes. Therefore, the center of pressure is gradually 
shifted towards the trailing edge for the outer pad and 
towards the leading edge for the inner pad. 
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µ=µmin µ=µmax
Figure 4: Pressure distribution - friction variability 

As far as the dynamic behavior is concerned, the 
complex eigenvalues are gathered in Figure 5. This 
figure highlights five unstable modes displayed in red, 
among which two LF squeals. Note that from now on, 
the real parts are normalized to 1, with respect to the 
value at µmax of the 1983 Hz mode. The pressure and 
friction coefficient values are normalized with respect to 
P0 and µ0 respectively. 
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Figure 5: Complex eigenvalues - variability with µ 

The evolution of eigenvalues with respect to friction 
shows the mode coupling aspect of instabilities also 
referred to as coalescence. This phenomenon has been 
highlighted first on lumped models and then on linear FE 
models (cf [7]). Here, the coupling pattern of the 810 Hz 
mode, displayed in Figure 6, looks like linear 
coalescence curves. Indeed, for µ=0, the system 
features two real modes apart in the frequency range. 
As the friction increases, the frequencies of the two 
modes get closer to each other. At a friction value known 
as the critical friction value, the two modes reach the 
same frequency. After that point, also referred to as the 
bifurcation point, the eigenvalues of the two modes 
leave the imaginary plane, with opposite real parts. 
Thus, the mode that features a positive real part is 
unstable whereas the other one is stable. 

Figure 6: Coalescence curve - 810 Hz 

For the 1980 Hz unstable mode, the phenomena at 
stake are more complicated as illustrated in Figure 7. 
Indeed, as explained previously, the static position and 
the contact pressure distribution depends on the friction 
value. Here, the change in static solution with µ alters 
the dynamic behavior in a significant way. This is the 
reason why the Figure 7 curves are not smooth, 
especially for the low values of µ when the contacts are 
not yet well established. Here, we follow three modes A, 
B and C, whose frequencies are initially 1950, 1990 and 
2030 Hz respectively. We can infer from the frequency 
curve that B seems to be the most sensitive to the static 
solution. It is worthy to mention that the sudden changes 
in frequency of mode B correspond to changes in 
contact conditions between pads and anchor bracket 
abutments. This accounts for the scattered aspect of this 
curve. Once the static position stabilized, the curves 
become smooth again. Hence, a typical mode-coupling 
pattern appears between the two higher frequency 
modes.
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Figure 7: Coalescence curve – 1980 Hz 
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PARAMETRIC MODEL 

MODEL FEATURES 

After the variability to friction, we aim at studying the 
effect of other influential parameters on the 2 kHz 
squeal. The detailed model is not well adapted to this 
task because of its prohibitive CPU cost. Thus, a 
parametric FE model, displayed Figure 8, has been built 
up to undertake comprehensive parametric studies. The 
geometry has been simplified, with respect to the 
detailed model, but the main dimensions and the 
material properties have been kept. The detailed model 
allows us to identify the parts that have insignificant 
contributions to the system behavior. Thus, the knuckle 
has been reduced to the mountings on which the anchor 
bracket is bolted. Moreover, the disc has been modeled 
as a solid disc with equivalent material properties of the 
core to consider the cooling fins. 

Figure 8: Parametric FE model 

The parametric model has been updated to properly 
reproduce the detailed model behavior in the vicinity of 2 
kHz, in terms of frequency, real part and deformed 
shape. Finally, the model size has been reduced in a 
significant way: the number of elements has been 
divided by 4 with respect to the detailed model. Thus, 
the CPU time cost is drastically reduced, allowing far 
more configurations to be computed. 

NOMINAL FORWARD ANALYSIS

The analysis of the nominal configuration has been 
performed first. The static deformed shape is close to 
the detailed model one, both in terms of position and in 
terms of contact pressure distribution as we can notice 
on Figure 9. 

Figure 9: Pressure distribution - forward 

About dynamic behavior, the results are consistent with 
the detailed model ones since a LF squeal is found at 
1944 Hz. The deformed shape of this unstable mode, 
displayed in Figure 10, is quite close to the detailed 
model one. Indeed, it mainly consists of a twisting mode 
of the caliper, an opening mode of the anchor and a 
three nodal line bending mode of the disc featuring 
traveling waves. Nevertheless, the real part correlation is 
not as good insofar as they are undervalued by 20%. 

Figure 10: Unstable mode - 1944 Hz 

NOMINAL BACKWARD ANALYSIS

So far, all the analyses have been performed in forward 
motion. Here, the backward behavior has been 
computed for µ=µ0. The pads are in contact with the 
upper abutments of the anchor bracket. The friction 
force skew the anchor bracket and the caliper in a 
reverse way with respect to the forward motion. 
Nevertheless, the center of pressure is still shifted 
towards the trailing edge for the outer pad and towards 
the leading edge for the inner pad as it can be observed 
in Figure 11. 
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Figure 11: Pressure distribution - backward 

EFFECT OF THE FRICTION COEFFICIENT 

Parametric sweep has been refined with a higher 
resolution on friction coefficient (40 values) to capture 
the coupling pattern in more detail from 0 to µmax. Figure 
12, that gathers all the eigenvalues, highlights three 
unstable modes up to 4 kHz. As expected, the 
correlation is good near the updating frequency but 
decreases as soon as we get away from it.
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Figure 12: Complex eigenvalues – variability with µ 

We will now focus on the phenomena near 1940 Hz. 
Figure 13 depicts the coalescence pattern on this 
frequency range in forward motion. This figure follows 
the evolution of three modes referred to as A, B and C 
by increasing frequencies and shows broken lines due to 
changes in static solution. At least three borders marking 
static position changes can be readily identified. Even if 
these static nonlinearities occur for different friction 
coefficient values, the overall variability to friction is well 
reproduced, with respect to the detailed model. Indeed, 
B and C, whose frictionless frequencies are respectively 

1908 and 1964 Hz, coalesce for a normalized friction 
value, which is close to 1.0. 
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Figure 13: Coalescence curve - forward 

The same study has been conducted in backward 
motion and the results are shown in Figure 14. As the 
geometry of the brake corner is nearly symmetric, we 
expect a similar behavior. Indeed, B and C coalesce and 
lead to an unstable mode at 1935 Hz. Nevertheless, the 
bifurcation point occurs for a lower friction coefficient 
value, 0.8. Moreover the low friction behavior is different, 
especially since A and B coalesce in the friction range 
[0.28 – 0.38]. 
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Figure 14: Coalescence curve - backward 

If friction induced damping is considered, using the 
methodology described by Bajer et al. [2,3,4], the 
forward coalescence curves are altered as illustrated 
Figure 15. This damping depends on hydraulic pressure 
and velocity. The values, which have been used here, 
are respectively P0 and 5km/h. The main discrepancies 
appear after the bifurcation point, since the frequencies 
of the stable and unstable modes are not the same 
anymore. The friction induced damping tends to shift 
down the real parts. Moreover, a smoothing effect may 
be noticed on both frequency and real part curves. 
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Figure 15: Effect of friction damping on coalescence 
curves - forward  

HYDRAULIC PRESSURE 

The effect of hydraulic pressure has been investigated in 
forward motion for µ=µ0 with P ranging from 0 to 2P0.
Figure 16 shows the evolution of eigenfrequencies with 
respect to this parameter. 
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Figure 16: Effect of hydraulic pressure 

For small values, the hydraulic pressure is a key 
parameter dealing with the static position. Indeed, at low 

pressure, the system is stable and then, a coupling 
pattern appears at P=0.4 and leads to an unstable mode 
at 1944 Hz. For P>0.4, the static position is well 
established and the variability of the eigenvalues with 
pressure is far less important. 

NUMERICAL MATRIX TEST 

In the FE model, many parameters may be identified as 
utilization dependent or environment dependent. Here, 
four parameters have been chosen, among which the 
friction coefficient is the most important. They will be 
referred to as µ, Pa1, Pa2 and Pa3. After having specified 
a variation range for each parameter, a numerical matrix 
test has been conducted. Indeed, 360 experiments have 
been computed in order to assess the brake behavior in 
a wide variety of configurations. All the predicted 
unstable modes are displayed in Figure 17. 
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Figure 17: Numerical matrix test 

As expected, the aforementioned 1375, 1940 and 
3000 Hz modes are found with scattered features. 
Furthermore, two other squeals appear at 1170 and 
3400 Hz. Nevertheless, the key point is to assess the 
probability of these squeals, also referred to as the 
squeal occurrence. As illustrated Figure 18, it has been 
computed every 100 Hz over all the experiments. The 2 
kHz squeal turns out to be the most likely to occur and 
its occurrence reaches 24%. This occurrence may also 
be analyzed with respect to parameters variations, as 
illustrated Figure 19. We can notice that the parameters 
effects on the brake stability are either monotonic, for µ 
and Pa3, or non-monotonic, for Pa2. The main advantage 
of these graphs is to rank the parameters in order of 
importance. As expected, the friction coefficient is the 
most important parameter since the occurrence reaches 
nearly 100 % as it increases. Then, the order of 
importance is Pa3, Pa2 and Pa1.
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Figure 18: Squeal occurrence 
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Figure 19: Occurrence vs. parameters 

DISC YOUNG MODULUS 

The out of plane disc bending modes are agreed to be 
the generators of the air borne noise heard as squeal 
noise. Therefore, a study has been undertaken to 
assess the effect of the disc Young modulus, Ed, on 
predicted squeals. This study, which focuses on the 
forward P=P0 configuration, is based on a full factorial 
design of experiments involving 40 values of µ, from 0 to 
µmax and 21 values of Ed. This latter parameter, whose 
values have been normalized, ranges from -1.0 to 1.0 
around its nominal value 0.0. Figure 20 displays the 
eigenvalues computed between 0 and 4000 Hz 
corresponding to the 840 experiments. This figure 
highlights that the Ed variability makes new squeal 
frequencies appear. 

Figure 20: Complex eigenvalues - variability with (µ,Ed)

We will now focus on the phenomena at stake around 2 
kHz in order to depict their biparametric aspect. The 
corresponding frequencies and real parts are displayed 
with respect to both parameters Ed and Mu in Figure 21 
and Figure 22. The stable modes are colored in green 
and the unstable ones in red. 

Figure 21: Biparametric evolution of the frequencies 
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Figure 22: Biparametric evolution of the real parts 

The frequency graph highlights coalescence phenomena 
with respect to both parameters. As explained 
previously, for the nominal Ed, whose normalized value 
is 0.0, B and C get coupled as the friction coefficient 
increases. For Ed=1.0, the modes involved by the 
coupling are A and B, whereas for Ed=-1.0, no coupling 
occurs. These coupling patterns may also be interpreted 
with respect to Ed. Indeed, for µ=1.6, B and C get 
coupled as Ed increases. When Ed reaches 0.8, the two 
modes split and B coalesces with A. This phenomenon 
may also be noticed on the real part graph as a sudden 
valley.

The real part data have been treated to draw the system 
stability charts displayed in Figure 23 and Figure 24. 
These charts deal with counting the number of unstable 
modes for each couple (µ,Ed) on a given frequency 
range. The white areas are stable whereas the gray and 
black ones mean respectively one and two or more 
unstable modes. This kind of figures illustrates the 
system robustness in terms of squeal to µ and Ed. 
Indeed, as we can notice on the 1850-2000 Hz chart, the 
nominal working point (1,0) is on the stability border. 
Therefore, small variations of the parameters make the 
system become either stable or unstable. 
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Figure 23: Stability chart - 1850-2000 Hz 
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Figure 24: Stability chart – 1000 – 4000 Hz 

CONCLUSION

This study deals with the modeling, in terms of squeal 
behavior, of a commercial front brake system. A detailed 
FE model considering contact as surface interactions 
has been presented. It has been employed to compute 
the steady sliding position and to extract the system 
complex eigenvalues. Since friction is the root cause of 
instabilities, its effect on the static and dynamic behavior 
of the brake has been analyzed. An increase in this 
parameter turns out to skew the caliper and the anchor 
bracket, leading to an inhomogeneous contact pressure 
distribution between parts. Moreover, an increase in this 
parameter alters the dynamic behavior, which follows a 
mode coupling mechanism that has been highlighted by 
means of coalescence curves. Nevertheless, these 
coalescence curves are more complicated than the ones 
shown by linear models, especially for small friction 
values, since static position changes occur in this friction 
range.

Then, comprehensive parametric studies are to be done 
in order to investigate the fugitive nature of brake 
squeal. Since this is too expensive in CPU time with the 
detailed model, a parametric model has been built up. 
This model, which keeps the main features of the 
detailed one, has been used to undertake an accurate 
study with respect to the friction coefficient, both in 
forward and backward motion. It highlights coalescence 
curves altered by static position changes for low friction. 
The same kind of consideration is observed with respect 
to hydraulic pressure. In both cases, the coalescence 
curves are discontinuous because of static position 
changes occurring due to weak loading. A numerical 
matrix test has been conducted in order to synthesize 
the brake behavior in the wide variety of conditions it 
may encounter. Finally, a full factorial design of 
experiments has been conducted with respect to the 
friction coefficient and the disc Young modulus. This 
analysis highlights biparametric coupling patterns and 
stability charts. Both numerical matrix tests and designs 
of experiments are tools able to assess the stability and 
the robustness of the brake. 
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