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Abstract

We consider a bidimensional Ornstein-Uhlenbeck process to describe
the tissue microvascularisation in anti-cancer therapy. Data are discrete,
partial and noisy observations of this stochastic differential equation (SDE).
Our aim is the estimation of the SDE parameters. We use the main advan-
tage of a one-dimensional observation to obtain an easy way to compute
the exact likelihood using the Kalman filter recursion. We also propose
a recursive computation of the gradient and hessian of the log-likelihood
based on Kalman filtering, which allows to implement an easy numerical
maximisation of the likelihood and the exact maximum likelihood estima-
tor (MLE). Furthermore, we establish the link between the observations
and an ARMA process and we deduce the asymptotic properties of the
MLE. We show that this ARMA property can be generalised to a higher
dimensional underlying Ornstein-Uhlenbeck diffusion. We compare this
estimator with the one obtained by the well-known EM algorithm on sim-
ulated data.

Key Words: ARMA process, EM algorithm, Hidden Markov Model, Kalman
filter, Maximum likelihood estimation, Ornstein-Uhlenbeck process, Partial ob-
servations

1 Introduction

Stochastic continuous-time models are a useful tool to describe biological or
physiological systems based on continuous evolution (see e.g. Ditlevsen and
De Gaetano (2005), Ditlevsen et al. (2005), Picchini et al. (2006)). The biolog-
ical context of this work is the modeling of tissue microvascularisation in anti-
cancer therapy. This microcirculation is usually modeled by a bidimensional
deterministic differential system which describes the circulation of a contrast
agent between two compartments (see Brochot et al. (2006) and appendix A).
However, this deterministic model is unable to capture the random fluctuations
observed along time. In this paper, we consider a stochastic version of this sys-
tem to take into account random variations around the deterministic solution by
adding a Brownian motion on each compartment. This leads to a bidimensional
stochastic differential equation (SDE) defined as:{

dP (t) = (αa(t)− (λ+ β)P (t) + (k − λ)I(t))dt+ σ1dW1(t)
dI(t) = (λP (t)− (k − λ)I(t))dt+ σ2dW2(t)

(1)
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where P (t) and I(t) represent contrast agent concentrations in each compart-
ment, a(t) is an input function assumed to be known, α, β, λ and k are unknown
positive parameters, W1 and W2 are two independent Brownian motions on R,
and σ1, σ2 are the constant diffusion terms. We assume that (P (0), I(0)) is a
random variable independent of (W1,W2). In our biological context, only the
sum S(t) = P (t) + I(t) can be measured. So (1) is changed into:{

dS(t) = (αa(t)− βS(t) + βI(t)) dt+ σ1dW1(t) + σ2dW2(t)
dI(t) = (λS(t)− kI(t)) dt+ σ2dW2(t)

(2)

Noisy and discrete measurements (yi, i = 0, . . . , n) of S(t) are performed at
times t0 = 0 < t1 < . . . < tn = T . The observation model is thus:

yi = S(ti) + σεi, εi ∼ N (0, 1)

where (εi)i=0,...,n are assumed to be independent and σ is the unknown standard
deviation of the Gaussian noise. To evaluate the effect of the treatment on a
patient, it is of importance to have a proper estimation of all unknown param-
eters from this data set. The aim of this paper is to investigate this problem
both theoretically and numerically on simulated data.
Parametric inference for discretely observed general SDEs has been widely in-
vestigated. Genon-Catalot and Jacod (1993) and Kessler (1997) propose esti-
mators based on minimization of suitable contrasts and study the asymptotic
distribution of these estimators when the sampling interval tends to zero as the
number of observations tends to infinity. For fixed sampling interval, Bibby
and Sørensen (1995) propose martingale estimating functions. In a biological
context, Ditlevsen et al. (2005) propose an estimation method based on simula-
tion. Picchini et al. (2008) propose estimators based on the Hermite expansion
of the transition densities. When combining the case of discrete, partial and
noisy observations, parameter estimation is a more delicate statistical problem.
In this context, it is classical to estimate the unobserved signal (filtering) (see
e.g. Cappé et al. (2005)). However, our aim is the estimation of SDE parame-
ters. In this paper, we use the main advantage of a one-dimensional observation
y and the Gaussian framework of all distributions to obtain an easy way to
compute the exact likelihood. For this, we solve and discretize the SDE (2).
Then we use the Kalman filter recursion to compute the exact likelihood as pro-
posed by Pedersen (1994) and implemented in the Danish Technical University

3



project CTSM. We also obtain a recursive computation of the exact gradient
and hessian of the log-likelihood based on Kalman filtering, which allows us to
implement an easy numerical maximisation of the likelihood using a gradient
method and to compute the exact maximum likelihood estimator. The exact
observed Fisher information matrix is also directly obtained. As our model
is a hidden Markov model, we develop a second approach based on the EM
algorithm, which is widely used in this context since the so-called complete like-
lihood (observed, unobserved) is generally explicit whereas the exact likelihood
(observed) is generally not explicit. This method has been first proposed by
Shumway and Stoffer (1982) and Segal and Weinstein (1989). Segal and Wein-
stein (1989) claim that the EM algorithm is computationally more efficient that
the Kalman filters. Thus we compare the EM algorithm and the Kalman filter
approach in our context.
In Section 2, we study the SDE. We detail in Section 3 the computation of the
exact likelihood, the score and hessian functions. We present the EM method
in Section 4. In Section 5, we establish the link between the observations and
an ARMA process. This allows to deduce the asymptotic properties of the
maximum likelihood estimator. Section 6 contains numerical results based on
simulated data. This allows to compare the two estimation methods. Appendix
A describes briefly the biological background. Appendix B, C, D, E and F con-
tain some proofs and auxiliary results. In particular, the ARMA property can
be generalised to a higher dimensional underlying Ornstein-Uhlenbeck diffusion.

2 Study of the stochastic differential equation

Introducing U(t) = (S(t), I(t))′ where ′ denotes the transposed matrix, (2) can
be written in a matrix form:{

dU(t) = (F (t) +G U(t))dt+ ΣdW (t), U(0) = U0

yi = J U(ti) + σεi

where J = (1 0) and

F (t) =

(
αa(t)

0

)
, G =

(
−β β

λ −k

)
, dW (t) =

(
dW1(t)
dW2(t)

)
, Σ =

(
σ1 σ2

0 σ2

)

The process (U(t)) is a bidimensional Ornstein-Uhlenbeck diffusion, which can
be explicitly solved. From the biological context (see Appendix A), the parame-
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ters satisfy β, k, λ > 0 and λ < k. This implies that G is diagonalizable with two
distinct negative eigenvalues. Setting d = (β − k)2 + 4βλ > 0, the eigenvalues
of G are distinct and equal to:

µ1 =
−(β + k)−

√
d

2
and µ2 =

−(β + k) +
√
d

2

The diagonal matrix D of eigenvalues and the matrix P of eigenvectors are:

D =

(
µ1 0
0 µ2

)
, P =

(
1 1

β−k−
√
d

2β
β−k+

√
d

2β

)
with D = P−1GP.

Proposition 1 Let X(t) = P−1U(t) and Γ = (Γkj)1≤k,j≤2 = P−1Σ. Then, for
t, h ≥ 0, we have:

X(t+ h) = eDhX(t) +B(t, t+ h) + Z(t, t+ h) (3)

where

B(t, t+ h) = eD(t+h)

∫ t+h

t

e−DsP−1F (s)ds (4)

Z(t, t+ h) = eD(t+h)

∫ t+h

t

e−DsΓdWs. (5)

Therefore, the conditional distribution of X(t+ h) given X(s), s ≤ t is

N2

(
eDhX(t) +B (t, t+ h) , R (t, t+ h)

)
where

R(t, t+ h) =
(
e(µk+µl)h − 1
µk + µl

(ΓΓ′)kl
)

1≤k,l≤2

(6)

If a(t) ≡ c ≥ 0 with c a constant, (X(t)) has a Gaussian stationary distribution
with mean equal to

M = −D−1P−1F

and covariance matrix equal to

V =
(

1
−(µk + µl)

(ΓΓ′)kl
)

1≤k,l≤2
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Proof. See Appendix B.

3 Parameter estimation by maximum likelihood

Our aim is to estimate the unknown parameters α, β, λ, k, σ1, σ2 and σ from
observations y0:n = (y0, . . . , yn). As the law of ((X(t)), εi, i = 0, . . . , n) is Gaus-
sian, the likelihood of y0:n can be explicitly evaluated. However, the direct
maximization of this likelihood requires the inversion of a matrix of dimen-
sion 2(n+ 1)× 2(n+ 1) (the covariance matrix of (X(ti))). This inversion can
be numerically instable. In this section, we present an alternative method for
the computation of the exact likelihood based on Kalman filtering, which does
not require any matrix inversion. This is due to the fact that data are one-
dimensional. Moreover, it is worth stressing that we need not come back to
the initial process (U(t)) for computing the likelihood. Indeed, as (U(t)) is not
observed, we can use either (U(t)) or any other transformation of (U(t)) even
involving unknown parameters. As (X(t)) is simpler, we consider the following
transformed model:{

dX(t) = (DX(t) + P−1F (t))dt+ ΓdWt, X(0) = P−1U0 = X0

yi = J PX(ti) + σεi
(7)

Given the particular form of our vector J = (1 0) and the fact that the eigen-
vectors can be chosen up to a proportionnality constant, we have

H = JP = (1 1).

It is especially interesting for further computations of the gradient and hessian
of the likelihood that H does not depend of any unknown parameter. From
model (7) and (3)-(6), we deduce the following discrete-time evolution system
where Xi = X(ti):{

Xi = AiXi−1 +Bi + ηi, ηi ∼ N (0, Ri)
yi = HXi + σεi

(8)

where Ai = exp(D(ti − ti−1)), Bi = B(ti−1, ti), Ri = R(ti−1, ti).
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3.1 Computation of the exact likelihood

This discrete model is a hidden Markov model (HMM) (Cappé et al., 2005):
(Xi) is a hidden Markov chain on R2 and, conditionally on (Xi), observations
(yi) are independent. Genon-Catalot and Laredo (2006) study the maximum
likelihood estimator for general HMM. They specialize the exact likelihood in the
case where the unobserved Markov chain is a Gaussian one-dimensional AR(1)
process. We generalize this computation to the case where the unobserved
Markov chain is a bidimensional AR(1) process. Let φ denote the vector of
unknown parameters and y0:i = (y0, . . . , yi) the vector of observations until
time ti. By recursive conditioning, it is sufficient to compute the distribution of
yi given y0:i−1:

L(φ, y0:n) = p(y0;φ)
n∏
i=1

p(yi|y0:i−1;φ).

But the conditional law of yi given y0:i−1 can be evaluated by

p(yi|y0:i−1;φ) =
∫
p(yi|Xi;φ)p(Xi|y0:i−1;φ)dXi

Then, as the innovation noise ηi of the hidden Markov chain, and the observation
noise εi are Gaussian variables, by elementary computations on Gaussian laws,
we are able to get the law of yi given y0:i−1 if we know the mean and covariance of
the Gaussian conditional law of Xi given y0:i−1. This conditional distribution
can be exactly computed using Kalman recursions as proposed by Pedersen
(1994) and implemented in the Danish Technical University project CTSM.
This computation is described below.

3.1.1 Kalman filter

To ease the reading, the parameter φ is omitted. The Kalman filter is an iterative
procedure which computes recursively the following conditional distributions

L(Xi|y0:i−1) = N2(X̂−i , P
−
i ) (prediction)

L(Xi|y0:i) = N2(X̂i, Pi) (filter)

where

X̂−i = E(Xi|y0:i−1) and P−i = E((Xi − X̂−i )(Xi − X̂−i )′)
X̂i = E(Xi|y0:i) and Pi = E((Xi − X̂i)(Xi − X̂i)′)
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Let us assume that the law of X0 is Gaussian. Initial values for the algorithm
are:

X0 ∼ N (X̂−0 , P
−
0 )

with X̂−0 = 0, P−0 = 0 (from theoretical point of view, one can choose the
stationary distribution X̂−0 = M , P−0 = V without changes). Next we have the
recursive formulae obtained using (8):

X̂−i = AiX̂i−1 +Bi, P−i = AiPi−1A
′
i +Ri, i ≥ 1 (9)

X̂i = X̂−i +Ki(yi −HX̂−i ), Pi = (I −KiH)P−i , i ≥ 0

where Ki = P−i H
′(HP−i H

′ + σ2)−1 (see e.g. Cappé et al. (2005)).

3.1.2 Computation of the exact likelihood of the observations

The conditional distribution of yi given y0:i−1 is Gaussian and one-dimensional.
Let mi(φ) = Eφ(yi|y0:i−1) and Vi(φ) = V arφ(yi|y0:i−1) denote its mean and
variance which are given using (8) by

mi(φ) = HX̂−i , Vi(φ) = HP−i H
′ + σ2

where X̂−i and P−i depend on φ. The exact likelihood of y0:n is thus equal to

L(φ, y0:n) =
n∏
i=0

1√
2πVi(φ)

exp
(
−1

2
(yi −mi(φ))2

Vi(φ)

)
. (10)

Relations (9) imply that there exist two functions Fφ and Gφ such that

mi(φ) = Fφ(mi−1(φ)), Vi(φ) = Gφ(Vi−1(φ)) (11)

These iterative relations are used to compute the derivatives of the log-likelihood.

3.2 Computation of the maximum likelihood estimator

Pedersen (1994) and the Danish Technical University project CTSM propose to
approximate the maximum likelihood estimator (MLE) using a quasi-Newton
maximisation method based on the approximation of the gradient and the hes-
sian of the log-likelihood. In our model, we show that it is possible to compute
the exact MLE. We use a conjugate gradient method, which relies on the explicit
knowledge of the gradient and hessian of the log-likelihood. Both can be exactly
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computed using formula (10) and observing that the derivatives of mi(φ) and
Vi(φ) can be explicitly and recursively computed by derivating formulae (11).

3.2.1 New parametrization

In order to simplify the derivatives of (11), from now on, we assume that obser-
vation times are equally spaced and set

∆ = ti − ti−1, ∀i = 1, . . . , n.

Hence we have Ai = A, Ri = R. For the sake of simplicity we set a(t) ≡ c ≥ 0,
where c is a known constant, corresponding to an intravenous injection in our
biological framework. Hence we have Bi = B = −(I−A)D−1P−1F = (I−A)M .
Set Zi = Xi −M and m = HM . Therefore, model (8) becomes{

Zi = AZi−1 + ηi, ηi ∼ N (0, R)
yi = HZi +m+ σεi

(12)

The exact likelihood (10) of y0:n is thus equal to

L(φ, y0:n) =
n∏
i=0

1√
2πVi(φ)

exp

(
−1

2
(yi −m−HẐ−i (φ))2

Vi(φ)

)
. (13)

Moreover, instead of φ = (α, β, λ, k, σ1, σ2, σ
2), we propose a new parametriza-

tion fitted with the discretization. We consider θ = (θ1, θ2, θ3, θ4, θ5, θ6) where
θi = eµi∆, i = 1, 2 and θ3, θ4 and θ5 are explicit functions of µ1, µ2, σ1, σ2 and
∆ such that

A = A(θ) =

(
θ1 0
0 θ2

)
and R = R(θ) =

(
θ3 θ5

θ5 θ4

)

and θ6 = m. We set ϑ = (θ, σ2). Our aim is to maximize the likelihood L(ϑ, y0:n)
with respect to ϑ. Given an estimation ϑ̂, φ̂ can be obtained by solving numer-
ically the equation f(φ̂) = ϑ̂ where f is the mapping φ → f(φ) = ϑ (see
Appendix C for details). Note that, later on, we will see that only six out of
the seven parameters can be consistently estimated.
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3.2.2 Computation of the exact gradient and hessian of the log-
likelihood

LetWi(ϑ) = yi−ϑ6−HẐ−i (ϑ) and l0:i(ϑ) = logL(ϑ, y0:i). Using (10), it comes:

l0:i(ϑ) = l0:i−1(ϑ)− 1
2

log(2πVi(ϑ))− 1
2
Wi(ϑ)2

Vi(ϑ)
. (14)

Thus for i = 1, . . . , n, q = 1, . . . , 7:

∂l0:i

∂ϑq
(ϑ) =

∂l0:i−1

∂ϑq
(ϑ)− 1

2
1

Vi(ϑ)
∂Vi
∂ϑq

(ϑ)− Wi(ϑ)
Vi(ϑ)

∂Wi(ϑ)
∂ϑq

+
1
2
Wi(ϑ)2

Vi(ϑ)2

∂Vi(ϑ)
∂ϑq

(15)

where

∂Vi(ϑ)
∂ϑq

= H
∂P−i (ϑ)
∂ϑq

H ′, 1 ≤ q ≤ 6,
∂Vi(ϑ)
∂σ2

= H
∂P−i (ϑ)
∂σ2

H ′ + 1

∂Wi(ϑ)
∂ϑq

= − ∂m
∂ϑq
−H∂X̂−i (ϑ)

∂ϑq
, 1 ≤ q ≤ 7

Furthermore, the derivatives of X̂−i (ϑ) and P−i (ϑ) can be obtained using Kalman
recursions (see appendix D). With a more cumbersome computation, second
order derivatives of l0:n(ϑ) can be analogously deduced from (15). For i =
1, . . . , n, q, r = 1, . . . , 7,

∂2l0:i

∂ϑr∂ϑq
(ϑ) =

∂2l0:i−1

∂ϑr∂ϑq
(ϑ)− 1

2
1

Vi(ϑ)
∂2Vi
∂ϑr∂ϑq

(ϑ) +
1
2

1
V 2
i (ϑ)

∂Vi
∂ϑr

(ϑ)
∂Vi
∂ϑq

(ϑ)

−1
2

(
2
Wi(ϑ)
Vi(ϑ)

∂2Wi(ϑ)
∂ϑr∂ϑq

− Wi(ϑ)2

Vi(ϑ)2

∂2Vi(ϑ)
∂ϑr∂ϑq

)
(16)

−
(
∂Wi(ϑ)
∂ϑr

∂Wj(ϑ)
∂ϑq

1
Vi(ϑ)

− Wi(ϑ)
Vi(ϑ)2

∂Wi(ϑ)
∂ϑr

∂Vi(ϑ)
∂ϑq

)
+
(
∂Wi(ϑ)
∂ϑq

∂Vi(ϑ)
∂ϑr

Wi(ϑ)
Vi(ϑ)2

− Wi(ϑ)2

Vi(ϑ)4

∂Vi(ϑ)
∂ϑr

Vi(ϑ)
∂Vi(ϑ)
∂ϑq

)
where (see appendix D for details)

∂2Vi(ϑ)
∂ϑr∂ϑq

= H
∂2P−i (ϑ)
∂ϑr∂ϑq

H ′ and
∂2Wi(ϑ)
∂ϑr∂ϑq

= −H∂2X̂−i (ϑ)
∂ϑr∂ϑq

.

Hence, we obtain an explicit expression of
(
− ∂2l0:n
∂ϑr∂ϑq

(ϑ)
)

1≤q,r≤7
.
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3.2.3 Maximisation of the exact likelihood

To compute the maximum likelihood estimator, the conjugate gradient algo-
rithm is applied to minimize l−0:n(ϑ) = −l0:n(ϑ) (see Stoer and Bulirsch (1993)).
Let ∇l− denote the gradient of l−0:n and Hess l− its hessian evaluated by (15)-
(16). Starting with an arbitrary initial vector ϑ0, we set as descent direction
u0 = ϑ0. At iteration k, given ϑk and uk, the parameter and descent direction
are updated by

ϑk+1 = ϑk −
〈uk,∇l−(ϑk)〉

〈uk, Hess l−(ϑk)uk〉
uk, uk+1 = −∇l−(ϑk+1) +

‖∇l−(ϑk+1)‖
‖∇l−(ϑk)‖

uk.

Classical stopping conditions are used. The sequence (ϑk)k converges towards
the maximum of the likelihood l0:n(ϑ).

4 Parameter estimation by Expectation Maximiza-

tion algorithm

An alternative method to estimate ϑ = (θ, σ2) is the Expectation Maximization
(EM) algorithm, proposed by Dempster et al. (1977), see also Shumway and
Stoffer (1982) and Segal and Weinstein (1989). The EM algorithm is a classical
approach to estimate parameters of models with non-observed or incomplete
data, especially it is widely used for HMMs. In our case, the non-observed data
are the (Zi)’s, the complete data are the (yi, Zi)’s. The principle is to maximize

ϑ→ Q(ϑ|ϑ∗) = E(log p(y0:n, Z0:n;ϑ)|y0:n;ϑ∗)

with Z0:n = (Z0, . . . , Zn). This is often easier than the maximization of the
observed data log-likelihood since the log-likelihood of the complete data is gen-
erally simpler. Moreover, according to Wu (1983), as our model is an exponential
family, the EM estimate sequence (ϑk)k converges towards a (local) maximum
of the data likelihood. The EM algorithm uses two steps: the Expectation step
(E-step) and the Maximization step (M-step). Starting with an initial value
(ϑ0), the k-th iteration is

• E-step: evaluation of Qk(ϑ) = Q(ϑ |ϑk)

• M-step: update of ϑk by ϑk+1 = arg maxQk(ϑ).
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In our model, function Q has an explicit expression. Recall that we have as-
sumed that observations times are equally spaced and that a(t) ≡ c. For sim-
plicity, we also set for the initial variable Z0 = 0 (Ẑ−0 = 0 and P−0 = 0). The
complete data log-likelihood is thus equal to:

log p(y0:n, Z0:n;ϑ) = −n+ 1
2

log(2πσ2)− 1
2σ2

n∑
i=0

(yi − ϑ6 −HZi)2

−1
2

n∑
i=1

log(2π|R(ϑ)|)− 1
2

n∑
i=1

(Zi −A(ϑ)Zi−1)′R(ϑ)−1(Zi −A(ϑ)Zi−1).

Function Q consists in taking the conditional expectation given y0:n under Pϑ∗ .
This conditional distribution is the so-called smoothing distribution at ϑ∗. In
our model, it is Gaussian and characterized by Mi|0:n(ϑ∗) = Eϑ∗(Zi|y0:n) and

Σi|0:n(ϑ∗) = V arϑ∗(Zi|y0:n), Σi−1,i|0:n(ϑ∗) = Covϑ∗(Zi−1, Zi|y0:n)

These can be obtained through a forward-backward algorithm (see Appendix
E). Thus function Q is equal to:

Q(ϑ|ϑ∗) = −n+ 1
2

log(2πσ2)− 1
2σ2

n∑
i=0

[
(yi − ϑ6 −HMi|0:n(ϑ∗))2 +HΣi|0:n(ϑ∗)H ′

]
−n

2
log(2π|R(ϑ)|)− 1

2
Tr
{
R(ϑ)−1 [C(ϑ∗)− T (ϑ∗)A′(ϑ)−A(ϑ)T ′(ϑ∗) +A(ϑ)S(ϑ∗)A′(ϑ)]

}
where

T (ϑ∗) =
n∑
i=1

(
Σi−1,i|0:n(ϑ∗) +Mi|0:n(ϑ∗)M ′i−1|0:n(ϑ∗)

)
S(ϑ∗) =

n∑
i=1

(
Σi−1|0:n(ϑ∗) +Mi−1|0:n(ϑ∗)M ′i−1|0:n(ϑ∗)

)
C(ϑ∗) =

n∑
i=1

(
Σi|0:n(ϑ∗) +Mi|0:n(ϑ∗)M ′i|0:n(ϑ∗)

)
.
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The matrices A, R, θ6 and σ2 are updated as

A(ϑk) = diag(T (ϑk−1)S−1(ϑk−1))

R(ϑk) =
1
n

(C(ϑk−1)− T (ϑk−1)S−1(ϑk−1)T ′(ϑk−1))

ϑ6k =
1

n+ 1

n∑
i=0

(yi −HMi|0:n(ϑk−1))

σ2
k =

1
n+ 1

n∑
i=0

[
(yi − ϑ6k−1 −HMi|0:n(ϑk−1))2 +HΣi|0:n(ϑk−1)H ′

]

5 Properties of the exact maximum likelihood es-

timator in the stationary case

Recall that we have assumed that a(t) ≡ c. Moreover in this paragraph we
assume that the initial variable X0 has the stationary distribution N2(M,V )
given in Proposition 1. This implies that the joint process (Xi, yi) is strictly
stationary. Let (yi)i∈Z be its extension to a process indexed by Z.

5.1 Link with an ARMA model

We generalize the result of Genon-Catalot et al. (2003) to the bidimensional
case and also to the multidimensional case (see Appendix F).

Proposition 2 Let (ỹi) = (yi − θ6) define the centered process. The process
(ỹi)i∈Z is centered Gaussian and ARMA(2,2).

Proof. Evidently (ỹi) is centered Gaussian. We easily check that

ỹi − (θ1 + θ2)ỹi−1 + θ1θ2ỹi−2 = ξi (17)

where ξi is defined by

ξi = HA(θ)ηi−1 +Hηi + σεi − (θ1 + θ2)Hηi−1 − (θ1 + θ2)σεi−1 + θ1θ2σεi−2

As the (ηi)i and (εi)i are mutually independent, we get that:

Cov(ξi, ξi+k) = 0, ∀k ≥ 3.

This implies that (ξi) is MA(2). Hence the result. �
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Proposition 3 The spectral density f(u, ϑ) of (ỹi) has the explicit form:

f(u, ϑ) = σ2+
H(ARA′ + (1 + (θ1 + θ2)2)R)H ′ + 2 cos(u)(HA− (θ1 + θ2)H)RH ′

1 + (θ1 + θ2)2 + θ2
1θ

2
2 − 2(θ1 + θ2)(1 + θ1θ2) cos(u) + 2 cos(2u)θ1θ2

(18)
with A = A(θ), R = R(θ).

Proof. Let γ(k) = Cov(ξi, ξi+k). Elementary computations show that

γ(0) = HARA′H ′ +HRH ′(1 + (θ1 + θ2)2) + σ2(1 + (θ1 + θ2)2 + θ2
1θ

2
2)

γ(1) = (HA− (θ1 + θ2)H)RH ′ − σ2(θ1 + θ2)(1 + θ1θ2)

γ(2) = σ2θ1θ2

γ(k) = 0 ∀ k ≥ 3

The spectral density (with respect to du
2π ) h(u, ϑ) of (ξi) is

h(u, ϑ) =
∑
n∈Z

γ(n) exp(−inu) = γ(0) + γ(1)2 cos(u) + γ(2)2 cos(2u).

For the AR(2) part, we set: p(x) = 1−(θ1+θ2)x+θ1θ2x
2 (recall that θ1, θ2 < 1).

Then

f(u, ϑ) =
h(u, ϑ)

|p(exp(−iu))|2

=
γ(0) + γ(1)2 cos(u) + γ(2)2 cos(2u)

1 + (θ1 + θ2)2 + θ2
1θ

2
2 − 2(θ1 + θ2)(1 + θ1θ2) cos(u) + 2 cos(2u)θ1θ2

See Brockwell and Davis (1991) for technical details. �

The number of parameters which are identifiable on the spectral density is
precised by the following proposition

Proposition 4 The identifiable quantities are σ2, θ1+θ2 and θ1θ2, and at most
two out of three parameters among θ3, θ4 and θ5.
When ∆ is small, exactly two out of the three paramaters θ3, θ4 and θ5 are
identifiable.

Proof. See Appendix G.
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5.2 Asymptotic properties of maximum likelihood estima-
tor

We now deduce the asymptotic properties of the maximum likelihood estimators
when (yi) is stationary.
We denote by ϑ0 the true value of parameters vector (θ1, . . . , θ6, σ

2). We
assume that the parameter set Θ is an open subset of R7. We denote by
ϑ− = (θ1, . . . , θ5, σ

2) ∈ Θ− the projection of ϑ on R6.
The following result is classical to estimate the parameter ϑ0

6 (see e.g. in Brock-
well and Davis (1991)).

Proposition 5 (Mean estimator) Let ȳn = 1
n

∑n
i=1 yi be the empirical mean.

Under the assumption of stationarity of (yi), ȳn → θ0
6 a.s. as n→∞. Moreover,

√
n(ȳn − θ0

6) converges in distribution:

√
n(ȳn − θ0

6) −→
n→∞

N (0, J(ϑ0
−))

where J(ϑ0
−) = f(0, ϑ0

−) = γ(0)+2γ(1)+2γ(2)
((1−θ1)(1−θ2))2

We now consider the centered process (ỹi). Consider the two assumptions (which
can be checked up to some technicities)

A1 (u, ϑ−) 7−→ f(u, ϑ−) is a C3-function on a neighborhood of [−π, π]×Θ−

A2 ϑ− 7−→ f(., ϑ−) is one to one

As (ỹi) is a ARMA(2,2) process, its spectral density is positive for every (u, ϑ−) ∈
[−π, π]×Θ−.

Proposition 6 (Information matrix) Let l̃0:n(ϑ−) = logL(ϑ−, ỹ0:n) be the log-
likelihood of the centered process (ỹ0:n). Under the assumption A1, we have
Pϑ0
−
-a.s.

lim
n→∞

(
− 1
n

∂2

∂θi∂θj
l̃0:n

(
ϑ0
−
))

1≤i,j≤6

= I(ϑ0
−) (19)

Proposition 7 (Consistency and asymptotic normality of the MLE)
Let θ̂n be a maximum likelihood estimator of ϑ0

− based on ỹ0:n. Under the
assumptions A1 and A2, θ̂n → ϑ0

− a.s. as n → ∞. Moreover, if I(ϑ0
−) is

invertible,
√
n(θ̂n − ϑ0

−) converges in distribution:

√
n(θ̂n − ϑ0

−) −→
n→∞

N (0, I−1(ϑ0
−))
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Proof. This result may be found e.g. in Brockwell and Davis (1991). �

Remark 1 As it is done usually, for further numerical considerations, the em-
pirical mean estimator ȳn is plugged in the likelihood for parameter θ6 in the
Kalman-recursion approach. The EM algorithm estimates this parameter dur-
ing the algorithm iterations.

6 Simulation study

We compare the performances of the two estimation methods on simulated data
sets. The exact maximum likelihood estimators and the EM estimators are com-
puted as described in Section 3 and Section 4, respectively. Data are simulated
using equally spaced observation times (∆ = 0.2) and n = 200 or n = 1000
observations. Values of parameter θ are deduced from values of biological pa-
rameters (α, β, λ, k) estimated on real data in Thomassin (2008), and σ2

1 = 0.5,
σ2

2 = 0.125, c = 50:

θ1 = 0.6, θ2 = 0.9, θ3 = 0.7, θ4 = 0.2, θ5 = 0.1, θ6 = 20

Two levels of observation noise are used: σ2 = 1 or σ2 = 3. Thousand replica-
tions are performed for each design (n = 200 or n = 1000 observations, σ2 = 1
or σ2 = 3). The influence of the time scale ∆ is evaluated on simulated data
with ∆ = 0.04 and n = 1000 observations with parameter values equal to

θ1 = 0.91, θ2 = 0.99, θ3 = 0.2, θ4 = 0.03, θ5 = 0.01, θ6 = 20

Thousand replications are performed for each observation noise (σ2 = 1 or
σ2 = 3) in this case. Mean estimates and their empirical standard errors are
computed on the 1000 replications of each design. The exact standard errors
obtained from the asymptotic information matrix (computed by Kalman-based
recursions) are also provided.
Identifiability results of Section 5 show that parameters θ6 and σ2 are identifi-
able, and that at most 4 among the five parameters (θ1, . . . , θ5) are identifiable.
In our biological context, it is reasonnable to assume that σ2 is known. Therefore
σ2 is fixed to its true value. One parameter among (θ1, . . . , θ5) has to be fixed:
we choose to fix θ5 to its true value and to estimate θ1, θ2, θ3, θ4. For the MLE es-
timation, parameter θ6 is previously estimated by the empirical mean. Then the
other parameters are estimated based on the empirically centered observations.
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Results are given in Table 1 for ∆ = 0.2 and Table 2 for ∆ = 0.2 and ∆ = 0.04.
Results obtained on one simulated data set (n = 200, ∆ = 0.2, σ2 = 3) are
plotted in Figure 1 and show the ability of the method to estimate the trajec-
tories (S(t), P (t), I(t)). The EM algorithm is around three times quicker than
the MLE algorithm. The mean computation time to estimate parameters of
a data set with n = 200 observations is around 4 seconds (CPU time) for the
EM algorithm and around 13 seconds (CPU time) for the MLE for the same
precision of convergence, on an Apple MacPro 2 × 3 Ghz with 5 Go of RAM.
The Matlab code are given at http://www.mi.parisdescartes.fr/~favetto.

[Figure 1 about here.]

The EM estimates are often less biased for parameters θ1 and θ2 than the MLE
estimates. Variance parameters (θ3, θ4) are estimated with less bias by the MLE
method, θ4 is always estimated with a large bias by the EM algorithm. The
standard errors of the EM estimates are lower than those of the MLE estimates.
The standard errors reduce with the increase of the number of observations n.
The bias and standard errors of all parameters decrease with the decrease of
the observation noise σ. When ∆ decreases, bias and standard errors decrease
for a small observation noise σ = 1. MLE estimates are very satisfactory in
this case. The exact Fisher information matrix provides standard errors of the
estimates which are close to the empirical ones, especially those obtained with
the MLE approach. Note that the theoretical study of the exact MLE allows to
deduce the identifiable parameters. On the contrary, the EM algorithm misses
completely the problem.

[Table 1 about here.]

[Table 2 about here.]

7 Conclusion

The Kalman filter is classical in the field of noisy, discretely and partially ob-
served stochastic differential equations. In this paper, we have shown that it
can be used for the estimation of the parameters by maximum likelihood. In
the particular case of an Ornstein-Uhlenbeck process, this method computes
the exact likelihood, its gradient and hessian. We have also shown that the EM
algorithm, which is classical in the field of hidden Markov models, combined
with a smoother algorithm can be used for the parameter estimation.
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We study some theoretical properties of the model. We show that only six out of
the seven parameters are identifiable and we deduce the asymptotic properties of
the maximum likelihood estimate. We illustrate the two methods on simulated
data. The identifiability problem is confirmed on the simulation study: the
observed Fisher information matrix computed by the Kalman method is not
invertible when we estimate the seven parameters.
The next step of this work is its application to real data in anti-cancer ther-
apy. This work could also be extended to the case of non-Gaussian observation
errors. For a unidimensional Markov chain (Xi) observed with non Gaussian er-
rors, Ruiz (1994) proposes a quasi-maximum likelihood estimator based on the
Kalman filter and shows the normality asymptotic distribution of this estimator.
This approach can be extended to our bidimensional model.
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A Physiological model

We focus on the evaluation of anti-angiogenesis treatments in anti-cancer ther-
apy. These treatments take effect on the vascularization of tissue. The in
vivo evaluation of their efficacy is based on the estimation of the tissue micro-
vascularization parameters. The experiment consists in the injection of a con-
trast agent to the patient, followed by the recording of a medical images sequence
which measures the evolution of the concentration of contrast agent along time.
The contrast agent pharmacokinetic is modeled by a bidimensional differential
system. The contrast agent pulsates in the plasma and interstitium cells. Let
a(t), P (t) and I(t) denote respectively the quantity of contrast agent at time t in
the artery, the plasma and the interstitium and 1− h, VP and VI the volume of
artery, plasma and interstitium (h is the hematocrit rate). The initial condition
at time t0 = 0 is P (0) = 0, I(0) = 0. The contrast agent is injected in vein at
time t0, transits in the artery and arrives in plasma, with a tissue perfusion flow
equal to Ftp. The contrast agent is eliminated from plasma with the perfusion
flow Ftp, proportionally to the concentration of contrast agent in plasma. The
quantity of contrast agent exchanging from plasma through interstitium is equal
to Ktrans times the concentration of contrast agent in plasma, where Ktrans is
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the volume transfer constant. Inversely, the quantity of contrast agent exchang-
ing from interstitium through plasma is equal to Ktrans times the concentration
of contrast agent in interstitium. Lastly, the two-compartment model is:{

dP (t)
dt = Ftp

1−ha(t)− Ktrans
VP

P (t) + Ktrans
VI

I(t)− Ftp
VP
P (t)

dI(t)
dt = Ktrans

VP
P (t)− Ktrans

VI
I(t)

(20)

For statistical accommodations, we use a new parameterization and set:

α =
Ftp

1− h
, β =

Ftp
VP

, λ =
Ktrans

VP
, k =

Ktrans

VP
+
Ktrans

VI

Model (20) can thus be transformed as follows:{
dP (t)
dt = αa(t)− λP (t) + (k − λ)I(t)− βP (t)
dI(t)
dt = λP (t)− (k − λ)I(t)

(21)

B Proof of Proposition 1

The process X(t) = P−1U(t) is solution of:

dX(t) = (DX(t) + P−1F (t))dt+ P−1ΣdWt, X(0) = X0 = P−1U0.

Applying Ito’s formula, we obtain

X(t) = eDtX0 + eDt
∫ t

0

e−DsP−1F (s)ds+ eDt
∫ t

0

e−DsΓdWs.

From this equation, we deduce:

X(t+ h) = eDhX(t) +B(t, t+ h) + Z(t, t+ h)

where B(t, t+h) and Z(t, t+h) are given in Proposition 1. Using thatW1,W2 are
independent and that X0 is independent of (W1,W2), we obtain the conditional
law of X(t+ h)|(X(s), s ≤ t).
The stationary distribution can be deduced from equation (3) with a(t) = c. As
the two elements of D are negative, we have

lim
t→+∞

E(X(t)) = lim
t→+∞

eDtE(X0) + lim
t→+∞

B(0, t) = −D−1P−1F = M

lim
t→+∞

V ar(X(t)) = lim
t→+∞

R(0, t) =
(

1
−(µk + µk′)

(ΓΓ′)kk
′
)

1≤k,k′≤2

= V.
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If X0 ∼ N2(M,V ), an elementary computation shows that (X(t)) is strictly
stationary. �

C Link between the two parametrisations

New parameters (θ1, . . . , θ5) are given as functions of initial parameters (β, λ, k, σ1, σ2)
in Section 3.2.1. Now we deduce (β, λ, k, σ1, σ2) from (θ1, . . . , θ5). From the def-
inition of µ1 and µ2 (Section 2), we have

µ2 − µ1 =
√
d, µ1 + µ2 = −(β + k), µ1µ2 = β(k − λ)

Thus we rewrite the matrix P and its inverse

P =

(
1 1

µ1
β + 1 µ2

β + 1

)
, P−1 =

(
µ2+β
µ2−µ1

−β
µ2−µ1

− µ1+β
µ2−µ1

β
µ2−µ1

)
.

Then the covariance matrix Γ is

Γ =

(
σ1

µ2+β
µ2−µ1

σ2
µ2

µ2−µ1

−σ1
µ1+β
µ2−µ1

−σ2
µ1

µ2−µ1

)

and finally comes the matrix R

R =

(
e2µ1∆−1

2µ1
(σ2

1( µ2+β
µ2−µ1

)2 + σ2
2( µ2
µ2−µ1

)2) e(µ1+µ2)∆−1
µ1+µ2

(−σ2
1
µ1+β
µ2−µ1

µ2+β
µ2−µ1

− σ2
2
µ1µ2
µ2−µ1

)
e(µ1+µ2)∆−1

µ1+µ2
(−σ2

1
µ1+β
µ2−µ1

µ2+β
µ2−µ1

− σ2
2
µ1µ2
µ2−µ1

) e2µ2∆−1
2µ2

(σ2
1( µ1+β
µ2−µ1

)2 + σ2
2( µ1
µ2−µ1

)2)

)

Define

θ̃3 = σ2
1(µ2+β)2+σ2

2µ
2
2, θ̃4 = σ2

1(µ1+β)2+σ2
2µ

2
1, θ̃5 = −σ2

1(µ1+β)(µ2+β)−σ2
2µ1µ2

we have

θ̃3 = θ3
2µ1(µ2 − µ1)2

exp(2µ1∆)− 1
, θ̃4 = θ4

2µ2(µ2 − µ1)2

exp(2µ2∆)− 1
, θ̃5 = θ5

(µ1 + µ2)(µ2 − µ1)2

exp((µ1 + µ2)∆)− 1
.

Notice that µ1 = log(θ1)/∆ and µ2 = log(θ2)/∆. The parameters β, λ, k, σ2
1
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and σ2
2 are solution of the system

k = −(µ1 + µ2 + β),
λ = −(µ1µ2

β + k),

(µ2 + β)2σ2
1 + µ2

2σ
2
2 = θ̃3,

(µ1 + β)2σ2
1 + µ2

1σ
2
2 = θ̃4,

σ1β
2 + σ1(µ1 + µ2)β + θ̃5 + (σ2

1 + σ2
2)µ1µ2 = 0.

D Gradient and hessian of the log-likelihood

The gradient and the hessian of the loglikelihood are computed with explicit
recursions. We denote ϑ7 = σ2. The first order derivatives of A(ϑ) are equal to:

∂A(ϑ)
∂ϑ1

=

(
1 0
0 0

)
,
∂A(ϑ)
∂ϑ2

=

(
0 0
0 1

)
and

∂A(ϑ)
∂ϑq

=

(
0 0
0 0

)
, q = 3, 4, 5, 6, 7.

for R(ϑ) we get:

∂R(ϑ)
∂ϑ1

=
∂R(ϑ)
∂ϑ2

=
∂R(ϑ)
∂ϑ6

=
∂R(ϑ)
∂ϑ7

=

(
0 0
0 0

)
,

∂R(ϑ)
∂ϑ3

=

(
1 0
0 0

)
,
∂R(ϑ)
∂ϑ4

=

(
0 0
0 1

)
and

∂R(ϑ)
∂ϑ5

=

(
0 1
1 0

)
.

and for m we get: ∂m
∂ϑq

= 0, q = 1, . . . , 5, 7 and ∂m
∂ϑ6

= 1. The second order
derivatives of A(ϑ) and R(ϑ) are null. The first order derivatives of X̂−i (ϑ) and
P−i (ϑ) with respect to ϑq, q = 1, . . . , 7 can be deduced:

∂X̂−i (ϑ)
∂ϑq

=
∂A(ϑ)
∂ϑq

X̂i−1(ϑ) +A(ϑ)
∂X̂i−1(ϑ)
∂ϑq

∂P−i (ϑ)
∂ϑq

=
∂A(ϑ)
∂ϑq

Pi−1(ϑ)A(ϑ)′ +A(ϑ)
∂Pi−1(ϑ)
∂ϑq

A(ϑ)′ +A(ϑ)Pi−1(ϑ)
∂A(ϑ)′

∂ϑq
+
∂R(ϑ)
∂ϑq

.

Then we get the derivatives of the mean and the covariance of the filter:
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∂X̂i−1(ϑ)
∂ϑq

=
∂X̂−i−1(ϑ)
∂ϑq

+
∂P−i−1(ϑ)
∂ϑq

H ′Wi−1(ϑ)
Vi−1(ϑ)

+
P−i−1(ϑ)H ′

Vi−1(ϑ)

(
∂Wi−1(ϑ)

∂ϑq
− ∂Vi−1(ϑ)

∂ϑq

Wi−1(ϑ)
Vi−1(ϑ)

)
∂Pi−1(ϑ)
∂ϑq

=

(
I −

P−i−1H
′H

Vi−1(ϑ)

)
∂P−i−1(ϑ)
∂ϑq

−

(
∂P−i−1(ϑ)
∂ϑq

H ′

Vi−1(ϑ)
−
P−i−1(ϑ)H ′

Vi−1(ϑ)2

∂Vi−1(ϑ)
∂ϑq

)
HP−i−1(ϑ)

The computation of second order derivatives can be deduced. Because second
order derivatives of A and R are null, we have for q, r = 1, . . . , 7, :

∂2X̂−i (ϑ)
∂ϑq∂ϑr

= A(ϑ)
∂2X̂i−1(ϑ)
∂ϑq∂ϑr

+
∂A(ϑ)
∂ϑr

∂X̂i−1(ϑ)
∂ϑq

+
∂A(ϑ)
∂ϑq

∂X̂i−1(ϑ)
∂ϑr

∂2P−i (ϑ)
∂ϑq∂ϑr

=
(
∂A(ϑ)
∂ϑr

∂Pi−1(ϑ)
∂ϑq

+
∂A(ϑ)
∂ϑq

∂Pi−1(ϑ)
∂ϑr

)
A(ϑ)′ +

∂A(ϑ)
∂ϑr

Pi−1(ϑ)
∂A(ϑ)′

∂ϑq

+A(ϑ)
(
∂2Pi−1(ϑ)
∂ϑq∂ϑr

A(ϑ)′ +
∂Pi−1(ϑ)
∂ϑr

∂A(ϑ)′

∂ϑq
+
∂Pi−1(ϑ)
∂ϑq

∂A(ϑ)′

∂ϑr

)
+
∂A(ϑ)
∂ϑq

Pi−1(ϑ)
∂A(ϑ)′

∂ϑr

The second order derivatives of the mean and the covariance of Kalman filter
are:

∂2X̂i−1(ϑ)
∂ϑq∂ϑr

=
∂2X̂−i−1(ϑ)
∂ϑq∂ϑr

+
∂2P−i−1(ϑ)
∂ϑq∂ϑr

H ′Wi−1(ϑ)
Vi−1(ϑ)

+ P−i−1(ϑ)
H ′

Vi−1(ϑ)

(
∂2Wi−1(ϑ)
∂ϑq∂ϑr

−∂Vi−1(ϑ)
∂ϑq

1
Vi−1(ϑ)

∂Wi−1(ϑ)
∂ϑr

− ∂2Vi−1(ϑ)
∂ϑq∂ϑr

Wi−1(ϑ)
Vi−1(ϑ)

+ 2
∂Vi−1(ϑ)
∂ϑr

∂Vi−1(ϑ)
∂ϑq

Wi−1(ϑ)
V 2
i−1(ϑ)

−∂Vi−1(ϑ)
∂ϑr

1
Vi−1(ϑ)

∂Wi−1(ϑ)
∂ϑq

)
+
∂P−i−1(ϑ)
∂ϑr

H ′

Vi−1(ϑ)

(
∂Wi−1(ϑ)

∂ϑq
− ∂Vi−1(ϑ)

∂ϑq

Wi−1(ϑ)
Vi−1(ϑ)

)
+
∂P−i−1(ϑ)
∂ϑq

H ′

Vi−1(ϑ)

(
∂Wi−1(ϑ)

∂ϑr
− ∂Vi−1(ϑ)

∂ϑr

Wi−1(ϑ)
Vi−1(ϑ)

)
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∂2Pi−1(ϑ)
∂ϑq∂ϑr

=

(
I −

P−i−1(ϑ)H ′H
Vi−1(ϑ)

)
∂2P−i−1(ϑ)
∂ϑq∂ϑr

−

[
∂2P−i−1(ϑ)
∂ϑq∂ϑr

−
P−i−1(ϑ)
Vi−1(ϑ)

∂2Vi−1(ϑ)
∂ϑq∂ϑr

−

(
∂P−i−1(ϑ)
∂ϑr

∂Vi−1(ϑ)
∂ϑq

+
∂P−i−1(ϑ)
∂ϑq

∂Vi−1(ϑ)
∂ϑr

)
1

Vi−1(ϑ)
+

2P−i−1(ϑ)
V 2
i−1(ϑ)

∂Vi−1(ϑ)
∂ϑq

∂Vi−1(ϑ)
∂ϑr

]
H ′HP−i−1(ϑ)
Vi−1(ϑ)

−

(
∂P−i−1(ϑ)
∂ϑr

H ′ −
P−i−1(ϑ)H ′

Vi−1(ϑ)
∂Vi−1(ϑ)
∂ϑr

)
H

Vi−1(ϑ)
∂P−i−1(ϑ)
∂ϑq

−

(
∂P−i−1(ϑ)
∂ϑq

H ′ − P−i−1(ϑ)
H ′

Vi−1(ϑ)
∂Vi−1(ϑ)
∂ϑq

)
H

Vi−1(ϑ)
∂P−i−1(ϑ)
∂ϑr

E Smoother algorithm

The Kalman smoother is calculated recursively with a forward-backward algo-
rithm (see e.g. Cappé et al. (2005)). The forward algorithm is the classical
Kalman filter which computes Mi|0:i−1 = Ẑ−i = E(Zi|y0:i−1), Σi|0:i−1 = P−i =
V ar(Zi|y0:i−1), Mi|0:i = Ẑi = E(Zi|y0:i) and Σi|0:i = Pi = V ar(Zi|y0:i). Then,
in order to calculate Mi|0:n = E(Zi|y0:n), Σi|0:n = V ar(Zi|y0:n), Σi−1,i|0:n =
Cov(Zi−1, Zi|y0:n), one performs the set of backward recursions i = n, n −
1, . . . , 1:

Ji−1 = Σi−1|0:i−1A
′(Σi|0:i−1)−1

Mi−1|0:n = Mi−1|0:i−1 + Ji−1(Mi|0:n −Mi|0:i−1)

Σi−1|0:n = Σi−1|0:i−1 + Ji−1(Σi|0:n − Σi|0:i−1)J ′i−1

To calculate Σi−1,i|0:n, we have

Σn−1,n|0:n = (I −KnH)AΣn−1|0:n−1

and the following backward recursions, for i = n− 1, n− 2, . . . , 1

Σi−1,i|0:n = Σi|0:iJ
′
i−1 + Ji(Σi,i+1|0:n −AΣi|0:i)J ′i−1
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F ARMA property of multidimensional process

In our model, (yi)i∈Z is an ARMA(2,2) process and asymptotic properties of
the maximum likelihood estimator are derived. This result can be generalised
to the case where Xi is p-dimensional under weak assumptions. We consider
the model:

yi = HXi + σεi, Xi = AXi−1 + ηi, X0 ∼ ν

where Xi is p-dimensional, A is a diagonal matrix with diagonal coefficients
(θk, k = 1, . . . , p) such that θk 6= θl for k 6= l and θi ∈ (0, 1) for i = 1 . . . p, (ηi)i≥0

is a sequence of independent Np(0, R) random variables, H is a (1, p)-matrix and
(εi) is a sequence of i.i.d N (0, 1) random variables. Up to a transformation of
(Xi), H is equal to H = (1 . . . 1 0 . . . 0) with its first d coordinates equal to 1
and its p− d next coordinates equal to 0 (1 ≤ d ≤ p). Consequently, we observe
with additive noise the partial sum of the first d coordinates of Xi. Since A is
diagonal and θi ∈ (0, 1) for i = 1 . . . p, the process (Xi)i≥0 admits a stationary
distribution ν. Then with X0 ∼ ν, the process (Xi)i≥0 is stationary. Denote
(yi)i∈Z the extension of y to Z by stationarity.

Proposition 8 The process (yi)i∈Z is ARMA(d,d).

Proof. Denote Sj , j = 1, . . . , d, the j-th symmetric function of θ1, . . . , θd:

Sj =
∑

1≤i1<···<ij≤d

θi1 . . . θij

and S0 = 1. Define the polynomial P such that P (θ1) = . . . = P (θd) = 0:

P (x) =
d∑
k=0

(−1)kSkxd−k

Set L the one-lag operator : Lyi = yi−1, Lεi = εi−1. Set ξi = P (L)(yi) =∑d
k=0(−1)kSkyi−k. By recursive computation for 0 ≤ k ≤ d, we have

yi−k = HAd−kXi−d +
d−k−1∑
j=0

HAjηi−k−j + σεi−k
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We deduce

ξi = HP (A)Xi−d +
d∑
k=0

(−1)kSk

d−k−1∑
j=0

HAjηi−k−j

+ σP (L)(εi)

But HP (A) = (P (θ1) . . . P (θd) 0 . . . 0) = (0 . . . . . . 0). Thus ξi only depends on
(ηj , εj)j≤i. Therefore (yi) verifies an AR(d) equation. Moreover, as the (ηi)i
and (εi)i are mutually independent, we get that:

Cov(ξi, ξi+k) = 0, ∀k ≥ d.

This implies that (ξi) is MA(d). Hence the result.

G First order identifiability

The spectral density can be rewritten as

f(u, ϑ) = σ2 +
d(ϑ)eiu + c(ϑ) + d(ϑ)e−iu

(1− (θ1 + θ2)eiu + θ1θ2e2iu)(1− (θ1 + θ2)e−iu + θ1θ2e−2iu)

where c(ϑ) = H(ARA′+(1+(θ1+θ2)2)R)H ′ and d(ϑ) = (HA−(θ1+θ2)H)RH ′.
The equality f(u, ϑ) = f(u, ϑ′) ∀u ∈ (0, 2π) implies

σ2 = σ′2, θ1 + θ2 = θ′1 + θ′2, θ1θ2 = θ′1θ
′
2, c(ϑ) = c(ϑ′), d(ϑ) = d(ϑ′)

We deduce that σ2, θ1 + θ2, θ1θ2 are identifiable and that at most two of three
parameters among θ3, θ4 and θ5 are identifiable from c(ϑ) and d(ϑ).
We can prove that there are exactly two parameters identifiable when ∆ is small.
Set

g(z, ϑ) = d(ϑ) + c(ϑ)z + d(ϑ)z2.

so that for z = eiu

f(z, ϑ) = σ2 + z
g(z, ϑ)

(1− θ1z)(θ1 − z)(1− θ2z)(θ2 − z)

Note that the product of the roots of g is equal to 1. Thus, if θ1 and θ2 are not
roots of g, then no simplification is possible in the expression of f and exactly
two out of the three parameters θ3, θ4, θ5 are identifiable (from c(ϑ) and d(ϑ)).

27



The computation of g(θ1) and g(θ2) gives

g(θ1) = (θ1 − θ2)(θ3 + θ5) + 2θ3
1θ3 + θ3

1θ5

+θ1θ
2
2θ3 + θ2

1θ2θ3 + 2θ1θ
2
2θ4 + 2θ2

1θ2θ4 + 2θ1θ
2
2θ5 + 5θ2

1θ2θ5

g(θ2) = (θ2 − θ1)(θ4 + θ5) + 2θ3
2θ4 + θ3

2θ5

+2θ1θ
2
2θ3 + 2θ2

1θ2θ3 + θ1θ
2
2θ4 + θ2

1θ2θ4 + 5θ1θ
2
2θ5 + 2θ2

1θ2θ5

It is not straightforward to prove that g does not vanish in θ1 and θ2. But for
small ∆, by developping θ1, . . . , θ5 at first order we have

θ1 − θ2 = ∆(µ1 − µ2) +O(∆)

θ3 + θ5 = ∆(σ2
1(
µ2 + β

µ2 − µ1
)2 + σ2

2(
µ2

µ2 − µ1
)2 − σ2

1

µ1 + β

µ2 − µ1

µ2 + β

µ2 − µ1
− σ2

2

µ1µ2

µ2 − µ1
) +O(∆)

θ4 + θ5 = ∆(σ2
1(
µ1 + β

µ2 − µ1
)2 + σ2

2(
µ1

µ2 − µ1
)2 − σ2

1

µ1 + β

µ2 − µ1

µ2 + β

µ2 − µ1
− σ2

2

µ1µ2

µ2 − µ1
) +O(∆)

Hence it comes

g(θ1) = O(∆2) + 4C∆ + o(∆), g(θ2) = O(∆2) + 4C∆ + o(∆).

with
C = θ3 + θ4 + 2θ5

But C is a positive constant because

C = (1 1)R(1 1)′.

where R is a covariance matrix thus positive. Hence g(θ1) and g(θ2) are positive
when ∆ is small. We have thus a non degenerate ARMA(2,2) process and
exactly five parameters are identifiable.
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Figure 1: Noisy observations of one simulated data set (n = 200, ∆ = 0.2,
σ2 = 3) are plotted with stars. True simulated trajectories (thin solid lines),
mean estimated trajectories (thick solid lines) and estimated 95% confidence
intervals (dotted lines) obtained with the Kalman algorithm are plotted with
dark lines for S(t), light lines for P (t) and very light line for I(t).
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σ2 = 1
n = 200, ∆ = 0.2 n = 1000, ∆ = 0.2

true Fisher Fisher
Par. value EM (SE) MLE (SE) SE EM (SE) MLE (SE) SE
θ1 0.60 0.62 (0.11) 0.64 (0.17) (0.15) 0.62 (0.05) 0.68 (0.11) (0.11)
θ2 0.90 0.89 (0.06) 0.79 (0.15) (0.04) 0.92 (0.02) 0.87 (0.07) (0.11)
θ3 0.70 0.85 (0.20) 0.78 (0.26) (0.25) 0.86 (0.09) 0.76 (0.15) (0.37)
θ4 0.20 0.10 (0.01) 0.12 (0.16) (0.14) 0.10 (0.01) 0.10 (0.09) (0.36)
θ6 20.00 20.00 (0.39) 20.00 (0.38) 20.01 (0.17) 20.01 (0.17)

σ2
1 + σ2

2 0.32 0.35 (0.09) 0.34 (0.14) 0.34 (0.04) 0.30 (0.07)
σ2 = 3

n = 200, ∆ = 0.2 n = 1000, ∆ = 0.2
true Fisher Fisher

Par. value EM (SE) MLE (SE) SE EM (SE) MLE (SE) SE
θ1 0.60 0.58 (0.13) 0.59 (0.20) (0.17) 0.57 (0.06) 0.59 (0.13) (0.24)
θ2 0.90 0.89 (0.06) 0.76 (0.19) (0.05) 0.92 (0.02) 0.88 (0.07) (0.04)
θ3 0.70 0.96 (0.27) 0.85 (0.43) (0.53) 0.96 (0.10) 0.88 (0.23) (0.22)
θ4 0.20 0.10 (0.01) 0.15 (0.23) (0.11) 0.10 (0.01) 0.14 (0.09) (0.13)
θ6 20.00 20.00 (0.41) 20.01 (0.39) 19.98 (0.18) 19.98 (0.18)

σ2
1 + σ2

2 0.32 0.41 (0.14) 0.42 (0.31) 0.39 (0.05) 0.38 (0.12)

Table 1: Mean estimated values (with empirical standard errors in bracket)
obtained with the exact MLE and the EM algorithms and exact standard errors
obtained from the Fisher information matrix, evaluated on 1000 simulated data
with n = 200 and n = 1000 observations and σ2 = 1 or σ2 = 3 (σ2 and θ5 fixed
to their true values).
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σ2 = 1
n = 200, ∆ = 0.2 n = 1000, ∆ = 0.04

true Fisher true Fisher
Par. value EM (SE) MLE (SE) SE value EM (SE) MLE (SE) SE
θ1 0.60 0.62 (0.11) 0.64 (0.17) (0.15) 0.91 0.86 (0.03) 0.87 (0.08) (0.06)
θ2 0.90 0.89 (0.06) 0.79 (0.15) (0.04) 0.99 0.97 (0.01) 0.94 (0.12) (0.02)
θ3 0.70 0.85 (0.20) 0.78 (0.26) (0.25) 0.20 0.26 (0.02) 0.06 (0.26) (0.23)
θ4 0.20 0.10 (0.01) 0.12 (0.16) (0.14) 0.03 0.09 (0.01) 0.03 (0.13) (0.17)
θ6 20.00 20.00 (0.39) 20.00 (0.38) 20.00 20.01 (0.56) 20.01 (0.56)

σ2
1 + σ2

2 0.32 0.35 (0.09) 0.34 (0.14) 0.05 0.09 (0.01) 0.02 (0.09)
σ2 = 3

n = 200, ∆ = 0.2 n = 1000, ∆ = 0.04
true Fisher true Fisher

Par. value EM (SE) MLE (SE) SE value EM (SE) MLE (SE) SE
θ1 0.60 0.58 (0.13) 0.59 (0.20) (0.17) 0.91 0.74 (0.06) 0.79 (0.15) (0.01)
θ2 0.90 0.89 (0.06) 0.76 (0.19) (0.05) 0.99 0.96 (0.02) 0.89 (0.17) (0.01)
θ3 0.70 0.96 (0.27) 0.85 (0.43) (0.53) 0.20 0.24 (0.02) 0.20 (1.39) (0.04)
θ4 0.20 0.10 (0.01) 0.15 (0.23) (0.11) 0.03 0.08 (0.01) 0.14 (1.85) (0.01)
θ6 20.00 20.00 (0.41) 20.01 (0.39) 20.00 19.99 (0.53) 19.99 (0.54)

σ2
1 + σ2

2 0.32 0.41 (0.14) 0.42 (0.31) 0.05 0.13 (0.01) 0.39 (5.40)

Table 2: Mean estimated values (with empirical standard errors in bracket)
obtained with the exact MLE and the EM algorithms and exact standard errors
obtained from the Fisher information matrix, evaluated on 1000 simulated data
with n = 200 and n = 1000 observations and σ2 = 1 or σ2 = 3 (σ2 and θ5 fixed
to their true values).
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