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Abstract

We consider a bidimensional Ornstein-Uhlenbeck process to describe

the tissue microvascularisation in anti-cancer therapy. Data are discrete,

partial and noisy observations of this stochastic differential equation (SDE).

Our aim is the estimation of the SDE parameters. We use the main advan-

tage of a one-dimensional observation to obtain an easy way to compute

the exact likelihood using the Kalman filter recursion. We also propose

a recursive computation of the gradient and hessian of the log-likelihood

based on Kalman filtering, which allows to implement an easy numerical

maximisation of the likelihood and the exact maximum likelihood estima-

tor (MLE). Furthermore, we establish the link between the observations

and an ARMA process and we deduce the asymptotic properties of the

MLE. We show that this ARMA property can be generalised to a higher

dimensional underlying Ornstein-Uhlenbeck diffusion. We compare this

estimator with the one obtained by the well-known EM algorithm on sim-

ulated data.

Key Words: ARMA process, EM algorithm, Hidden Markov Model, Kalman

filter, Maximum likelihood estimation, Ornstein-Uhlenbeck process, Partial ob-

servations

1 Introduction

Stochastic continuous-time models are a useful tool to describe biological or

physiological systems based on continuous evolution (see e.g. Ditlevsen and

De Gaetano (2005), Ditlevsen et al. (2005), Picchini et al. (2006)). The biolog-

ical context of this work is the modeling of tissue microvascularisation in anti-

cancer therapy. This microcirculation is usually modeled by a bidimensional

deterministic differential system which describes the circulation of a contrast

agent between two compartments (see Brochot et al. (2006) and appendix A).

However, this deterministic model is unable to capture the random fluctuations

observed along time. In this paper, we consider a stochastic version of this sys-

tem to take into account random variations around the deterministic solution by

adding a Brownian motion on each compartment. This leads to a bidimensional

stochastic differential equation (SDE) defined as:

{

dP (t) = (αa(t) − (λ + β)P (t) + kI(t))dt + σ1dW1(t)

dI(t) = (λP (t) − kI(t))dt + σ2dW2(t)
(1)
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where P (t) and I(t) represent contrast agent concentrations in each compart-

ment, a(t) is an input function assumed to be known, α, β, λ and k are unknown

positive parameters, W1 and W2 are two independent Brownian motions on R,

and σ1, σ2 are the constant diffusion terms. We assume that (P (0), I(0)) is a

random variable independent of (W1, W2). In our biological context, only the

sum S(t) = P (t) + I(t) can be measured. So (1) is changed into:

{

dS(t) = (αa(t) − βS(t) + βI(t)) dt + σ1dW1(t) + σ2dW2(t)

dI(t) = (λS(t) − kI(t)) dt + σ2dW2(t)
(2)

Noisy and discrete measurements (yi, i = 0, . . . , n) of S(t) are performed at

times t0 = 0 < t1 < . . . < tn = T . The observation model is thus:

yi = S(ti) + σεi, εi ∼ N (0, 1)

where (εi)i=0,...,n are assumed to be independent and σ is the unknown standard

deviation of the Gaussian noise. To evaluate the effect of the treatment on a

patient, it is of importance to have a proper estimation of all unknown param-

eters from this data set. The aim of this paper is to investigate this problem

both theoretically and numerically on simulated data.

Parametric inference for discretely observed general SDEs has been widely in-

vestigated. Genon-Catalot and Jacod (1993) and Kessler (1997) propose esti-

mators based on minimization of suitable contrasts and study the asymptotic

distribution of these estimators when the sampling interval tends to zero as the

number of observations tends to infinity. For fixed sampling interval, Bibby and

Sørensen (1995) propose martingale estimating functions. In a biological con-

text, Ditlevsen et al. (2005) propose an estimation method based on simulation.

Picchini et al. (2008) propose estimators based on the Hermite expansion of

the transition densities. When combining the case of discrete, partial and noisy

observations, parameter estimation is a more delicate statistical problem. In

this context, it is classical to estimate the unobserved signal (filtering) (see e.g.

Cappé et al. (2005)). However, our aim is the estimation of SDE parameters. In

this paper, we use the main advantage of a one-dimensional observation y and

the Gaussian framework of all distributions to obtain an easy way to compute

the exact likelihood. For this, we solve and discretize the SDE (2). Then we

use the Kalman filter recursion to compute the exact likelihood. We also obtain

a recursive computation of the exact gradient and hessian of the log-likelihood
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based on Kalman filtering, which allows us to implement an easy numerical

maximisation of the likelihood using a gradient method and to compute the

exact maximum likelihood estimator. The exact observed Fisher information

matrix is also directly obtained. We develop a second approach based on the

EM algorithm. This method has been first proposed by Shumway and Stoffer

(1982) and Segal and Weinstein (1989).

In Section 2, we study the SDE. We detail in Section 3 the computation of the

exact likelihood, the score and hessian functions. We present the EM method

in Section 4. In Section 5, we establish the link between the observations and

an ARMA process. This allows to deduce the asymptotic properties of the

maximum likelihood estimator. Section 6 contains numerical results based on

simulated data. This allows to compare the two estimation methods. Appendix

A describes briefly the biological background. Appendix B, C, D and E contain

some proofs and auxiliary results. In particular, the ARMA property can be

generalised to a higher dimensional underlying Ornstein-Uhlenbeck diffusion.

2 Study of the stochastic differential equation

Introducing U(t) = (S(t), I(t))′, (2) can be written in a matrix form:

{

dU(t) = (F (t) + G U(t))dt + ΣdW (t), U(0) = U0

yi = J U(ti) + σεi

where J = (1 0) and

F (t) =

(

αa(t)

0

)

, G =

(

−β β

λ −k

)

, dW (t) =

(

dW1(t)

dW2(t)

)

, Σ =

(

σ1 σ2

0 σ2

)

The process (U(t)) is a bidimensional Ornstein-Uhlenbeck diffusion, which can

be explicitly solved. From the biological context (see Appendix A), the parame-

ters satisfy β, k, λ > 0 and λ < k. This implies that G is diagonalizable with two

distinct negative eigenvalues. Setting d = (β − k)2 + 4βλ ≥ 0, the eigenvalues

of G are:

µ1 =
−(β + k) −

√
d

2
and µ2 =

−(β + k) +
√

d

2
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The diagonal matrix D of eigenvalues and the matrix P of eigenvectors are:

D =

(

µ1 0

0 µ2

)

, P =

(

1 1
β−k−

√
d

2β
β−k+

√
d

2β

)

with D = P−1GP.

Proposition 1 Let X(t) = P−1U(t) and Γ = (Γkj)1≤k,j≤2 = P−1Σ. Then, for

t, h ≥ 0, we have:

X(t + h) = eDhX(t) + B(t, t + h) + Z(t, t + h) (3)

where

B(t, t + h) = eD(t+h)

∫ t+h

t

e−DsP−1F (s)ds (4)

Z(t, t + h) = eD(t+h)

∫ t+h

t

e−DsΓdWs. (5)

Therefore, the conditional distribution of X(t + h) given X(s), s ≤ t is

N2

(

eDhX(t) + B (t, t + h) , R (t, t + h)
)

where

R(t, t + h) =

(

e(µk+µk′ )h − 1

µk + µk′

(ΓΓ′)kk′

)

1≤k,k′≤2

(6)

If a(t) ≡ 0, (X(t)) has a Gaussian stationary distribution with a null mean and

a covariance matrix equal to

V =

(

1

−(µk + µk′)
(ΓΓ′)kk′

)

1≤k,k′≤2

If limt→∞ a(t) = c ≥ 0, (X(t)) converges in distribution towards a Gaussian

distribution with a mean equal to ( c
|µ1| ,

c
|µ2| )

′ and the covariance matrix V .

Proof. See Appendix B.

3 Parameter estimation by maximum likelihood

Our aim is to estimate the unknown parameters α, β, λ, k, σ1, σ2 and σ from

observations y0:n = (y0, . . . , yn). As the law of ((X(t)), εi, i = 0, . . . , n) is Gaus-
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sian, the likelihood of y0:n can be explicitly evaluated. However, the direct

maximization of this likelihood requires the inversion of a matrix of dimen-

sion 2(n + 1) × 2(n + 1) (the covariance matrix of (X(ti))). This inversion can

be numerically instable. In this section, we present an alternative method for

the computation of the exact likelihood based on Kalman filtering, which does

not require any matrix inversion. This is due to the fact that data are one-

dimensional. Moreover, it is worth stressing that we need not come back to

the initial process (U(t)) for computing the likelihood. Indeed, as (U(t)) is not

observed, we can use either (U(t)) or any other transformation of (U(t)) even

involving unknown parameters. As (X(t)) is simpler, we consider the following

transformed model:

{

dX(t) = (DX(t) + P−1F (t))dt + ΓdWt, X(0) = P−1U0 = X0

yi = J PX(ti) + σεi

(7)

Given the particular form of our vector J = (1 0) and the fact that the eigen-

vectors can be chosen up to a proportionnality constant, we have

H = JP = (1 1).

It is especially interesting for further computations of the gradient and hessian

of the likelihood that H does not depend of any unknown parameter. From

model (7) and (3)-(6), we deduce the following discrete-time evolution system

where Xi = X(ti):

{

Xi = AiXi−1 + Bi + ηi, ηi ∼ N (0, Ri)

yi = HXi + σεi

(8)

where Ai = exp(D(ti − ti−1)), Bi = B(ti−1, ti), Ri = R(ti−1, ti).

3.1 Computation of the exact likelihood

This discrete model is a hidden Markov model (HMM) (Cappé et al., 2005):

(Xi) is a hidden Markov chain on R
2 and, conditionally on (Xi), observations

(yi) are independent. Genon-Catalot and Laredo (2006) study the maximum

likelihood estimator for general HMM. They specialize the exact likelihood in the

case where the unobserved Markov chain is a Gaussian one-dimensional AR(1)

process. We generalize this computation to the case where the unobserved

Markov chain is a bidimensional AR(1) process. Let φ denote the vector of

6



unknown parameters and y0:i = (y0, . . . , yi) the vector of observations until

time ti. By recursive conditioning, it is sufficient to compute the distribution of

yi given y0:i−1:

L(φ, y0:n) = p(y0;φ)

n
∏

i=1

p(yi|y0:i−1;φ).

But the conditional law of yi given y0:i−1 can be evaluated by

p(yi|y0:i−1;φ) =

∫

p(yi|Xi;φ)p(Xi|y0:i−1;φ)dXi

Then, as the innovation noise ηi of the hidden Markov chain, and the observation

noise εi are Gaussian variables, by elementary computations on Gaussian laws,

we are able to get the law of yi given y0:i−1 if we know the mean and covariance

of the Gaussian conditional law of Xi given y0:i−1. This conditional distribution

can be exactly computed using Kalman recursions as described below.

3.1.1 Kalman filter

To ease the reading, the parameter φ is omitted. The Kalman filter is an iterative

procedure which computes recursively the following conditional distributions

L(Xi|y0:i−1) = N2(X̂
−
i , P−

i ) (prediction)

L(Xi|y0:i) = N2(X̂i, Pi) (filter)

where

X̂−
i = E(Xi|y0:i−1) and P−

i = E((Xi − X̂−
i )(Xi − X̂−

i )′)

X̂i = E(Xi|y0:i) and Pi = E((Xi − X̂i)(Xi − X̂i)
′)

Let us assume that the law of X0 is Gaussian. Initial values for the algorithm

are:

X0 ∼ N (X̂−
0 , P−

0 )

Next we have the recursive formulae obtained using (8):

X̂−
i = AiX̂i−1 + Bi, P−

i = AiPi−1A
′
i + Ri, i ≥ 1 (9)

X̂i = X̂−
i + Ki(yi − HX̂−

i ), Pi = (I − KiH)P−
i , i ≥ 0

where Ki = P−
i H ′(HP−

i H ′ + σ2)−1 (see e.g. Cappé et al. (2005)).
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3.1.2 Computation of the exact likelihood of the observations

The conditional distribution of yi given y0:i−1 is Gaussian and one-dimensional.

Let mi(φ) = Eφ(yi|y0:i−1) and Vi(φ) = V arφ(yi|y0:i−1) denote its mean and

variance which are given using (8) by

mi(φ) = HX̂−
i , Vi(φ) = HP−

i H ′ + σ2

where X̂−
i and P−

i depend on φ. The exact likelihood of y0:n is thus equal to

L(φ, y0:n) =

n
∏

i=0

1
√

2πVi(φ)
exp

(

−1

2

(yi − mi(φ))2

Vi(φ)

)

. (10)

Relations (9) imply that there exist two functions Fφ and Gφ such that

mi(φ) = Fφ(mi−1(φ)), Vi(φ) = Gφ(Vi−1(φ)) (11)

These iterative relations are used to compute the derivatives of the log-likelihood.

3.2 Computation of the maximum likelihood estimator

To compute the exact maximum likelihood estimator (MLE), we use a conjugate

gradient method, which relies on the explicit knowledge of the gradient and

hessian of the log-likelihood. Both can be exactly computed using formula

(10) and observing that the derivatives of mi(φ) and Vi(φ) can be explicitly

and recursively computed by derivating formulae (11). These computations are

detailed below.

3.2.1 New parametrization

In order to simplify the derivatives of (11), from now on, we assume that obser-

vation times are equally spaced and set

∆ = ti − ti−1, ∀i = 1, . . . , n.

The parameter α is assumed to be known and for the sake of simplicity we

set a(t) ≡ 0. Hence we have Ai = A, Ri = R, Bi = 0. Moreover, instead

of φ = (β, λ, k, σ1, σ2, σ
2), we propose a new parametrization fitted with the

discretization. We consider θ = (θ1, θ2, θ3, θ4, θ5) where θi = eµi∆, i = 1, 2 and
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θ3, θ4 and θ5 are explicit functions of µ1, µ2, σ1, σ2 and ∆ such that

A = A(θ) =

(

θ1 0

0 θ2

)

and R = R(θ) =

(

θ3 θ5

θ5 θ4

)

We set ϑ = (θ, σ2). Our aim is to maximize the likelihood L(ϑ, y0:n) with respect

to ϑ. Given an estimation ϑ̂, φ̂ can be obtained by solving numerically the

equation f(φ̂) = ϑ̂ where f is the mapping φ → f(φ) = ϑ. Note that, later on,

we will see that only five out of the six parameters can be consistently estimated.

3.2.2 Computation of the exact gradient and hessian of the log-

likelihood

Let Wi(ϑ) = yi − mi(ϑ) and l0:i(ϑ) = log L(ϑ, y0:i). Using (10), it comes:

l0:i(ϑ) = l0:i−1(ϑ) − 1

2
log(2πVi(ϑ)) − 1

2

Wi(ϑ)2

Vi(ϑ)
. (12)

Thus for i = 1, . . . , n, q = 1, . . . , 6:

∂l0:i

∂ϑq

(ϑ) =
∂l0:i−1

∂ϑq

(ϑ) − 1

2

1

Vi(ϑ)

∂Vi

∂ϑq

(ϑ) − Wi(ϑ)

Vi(ϑ)

∂Wi(ϑ)

∂ϑq

+
1

2

Wi(ϑ)2

Vi(ϑ)2
∂Vi(ϑ)

∂ϑq

, (13)

where

∂Vi(ϑ)

∂ϑq

= H
∂P−

i (ϑ)

∂ϑq

H ′, 1 ≤ q ≤ 5,
∂Vi(ϑ)

∂σ2
= H

∂P−
i (ϑ)

∂σ2
H ′ + 1

∂Wi(ϑ)

∂ϑq

= −H
∂X̂−

i (ϑ)

∂ϑq

, 1 ≤ q ≤ 6

Furthermore, the derivatives of X̂−
i (ϑ) and P−

i (ϑ) can be obtained using Kalman

recursions (see appendix C). With a more cumbersome computation, second

order derivatives of l0:n(ϑ) can be analogously deduced from (13). For i =
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1, . . . , n, q, r = 1, . . . , 6,

∂2l0:i

∂ϑr∂ϑq

(ϑ) =
∂2l0:i−1

∂ϑr∂ϑq

(ϑ) − 1

2

1

Vi(ϑ)

∂2Vi

∂ϑr∂ϑq

(ϑ) +
1

2

1

V 2
i (ϑ)

∂Vi

∂ϑr

(ϑ)
∂Vi

∂ϑq

(ϑ)

−1

2

(

2
Wi(ϑ)

Vi(ϑ)

∂2Wi(ϑ)

∂ϑr∂ϑq

− Wi(ϑ)2

Vi(ϑ)2
∂2Vi(ϑ)

∂ϑr∂ϑq

)

(14)

−
(

∂Wi(ϑ)

∂ϑr

∂Wj(ϑ)

∂ϑq

1

Vi(ϑ)
− Wi(ϑ)

Vi(ϑ)2
∂Wi(ϑ)

∂ϑr

∂Vi(ϑ)

∂ϑq

)

+

(

∂Wi(ϑ)

∂ϑq

∂Vi(ϑ)

∂ϑr

Wi(ϑ)

Vi(ϑ)2
− Wi(ϑ)2

Vi(ϑ)4
∂Vi(ϑ)

∂ϑr

Vi(ϑ)
∂Vi(ϑ)

∂ϑq

)

where (see appendix C for details)

∂2Vi(ϑ)

∂ϑr∂ϑq

= H
∂2P−

i (ϑ)

∂ϑr∂ϑq

H ′ and
∂2Wi(ϑ)

∂ϑr∂ϑq

= −H
∂2X̂−

i (ϑ)

∂ϑr∂ϑq

.

Hence, we obtain an explicit expression of
(

− ∂2l0:n
∂ϑr∂ϑq

(ϑ)
)

1≤q,r≤6
.

3.2.3 Maximisation of the exact likelihood

To compute the maximum likelihood estimator, the conjugate gradient algo-

rithm is applied to minimize l̃0:n(ϑ) = −l0:n(ϑ) (see Stoer and Bulirsch (1993)).

Let ∇l̃ denote the gradient of l̃0:n and Hess l̃ its hessian evaluated by (13)-

(14). Starting with an arbitrary initial vector ϑ0, we set as descent direction

u0 = ϑ0. At iteration k, given ϑk and uk, the parameter and descent direction

are updated by

ϑk+1 = ϑk − 〈uk,∇l̃(ϑk)〉
〈uk, Hess l̃(ϑk)uk〉

uk, uk+1 = −∇l̃(ϑk+1) +
‖∇l̃(ϑk+1)‖
‖∇l̃(ϑk)‖

uk.

Classical stopping conditions are used. The sequence (ϑk)k converges towards

the maximum of the likelihood l0:n(ϑ).

4 Parameter estimation by Expectation Maximiza-

tion algorithm

An alternative method to estimate ϑ = (θ, σ2) is the Expectation Maximization

(EM) algorithm, proposed by Dempster et al. (1977), see also Shumway and

Stoffer (1982) and Segal and Weinstein (1989). The EM algorithm is a classical
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approach to estimate parameters of models with non-observed or incomplete

data. In our case, the non-observed data are the (Xi)’s, the complete data are

the (yi, Xi)’s. The principle is to maximize

ϑ → Q(ϑ|ϑ∗) = E(log p(y0:n, X0:n;ϑ)|y0:n;ϑ∗)

with X0:n = (X0, . . . , Xn). This is often easier than the maximization of the

observed data log-likelihood since the log-likelihood of the complete data is gen-

erally simpler. Moreover, according to Wu (1983), as our model is an exponential

family, the EM estimate sequence (ϑk)k converges towards a (local) maximum

of the data likelihood. The EM algorithm uses two steps: the Expectation step

(E-step) and the Maximization step (M-step). Starting with an initial value

(ϑ0), the k-th iteration is

• E-step: evaluation of Qk(ϑ) = Q(ϑ |ϑk)

• M-step: update of ϑk by ϑk+1 = arg max Qk(ϑ).

In our model, function Q has an explicit expression. Recall that we have as-

sumed that observations times are equally spaced and that a(t) ≡ 0. For sim-

plicity, we also set for the initial variable X0 = 0 (X̂−
0 = 0 and P−

0 = 0). The

complete data log-likelihood is thus equal to:

log p(y0:n, X0:n;ϑ) = −n + 1

2
log(2πσ2) − 1

2σ2

n
∑

i=0

(yi − HXi)
2

−1

2

n
∑

i=1

log(2π|R(θ)|) − 1

2

n
∑

i=1

(Xi − A(θ)Xi−1)
′R(θ)−1(Xi − A(θ)Xi−1).

Function Q consists in taking the conditional expectation given y0:n under Pϑ∗
.

This conditional distribution is the so-called smoothing distribution at ϑ∗. In

our model, it is Gaussian and characterized by Mi|0:n(ϑ∗) = Eϑ∗
(Xi|y0:n) and

Σi|0:n(ϑ∗) = V arϑ∗
(Xi|y0:n), Σi−1,i|0:n(ϑ∗) = Covϑ∗

(Xi−1, Xi|y0:n)

11



These can be obtained through a forward-backward algorithm (see Appendix

D). Thus function Q is equal to:

Q(ϑ|ϑ∗) = −n + 1

2
log(2πσ2) − 1

2σ2

n
∑

i=0

[

(yi − HMi|0:n(ϑ∗))
2 + HΣi|0:n(ϑ∗)H

′]

−n

2
log(2π|R(θ)|) − 1

2
Tr
{

R(θ)−1 [C(ϑ∗) − M(ϑ∗)A
′(ϑ) − A(ϑ)M ′(ϑ∗) + A(ϑ)S(ϑ∗)A

′(ϑ)]
}

where

M(ϑ∗) =

n
∑

i=1

(

Σi−1,i|0:n(ϑ∗) + Mi|0:n(ϑ∗)M
′
i−1|0:n(ϑ∗)

)

S(ϑ∗) =

n
∑

i=1

(

Σi−1|0:n(ϑ∗) + Mi−1|0:n(ϑ∗)M
′
i−1|0:n(ϑ∗)

)

C(ϑ∗) =

n
∑

i=1

(

Σi|0:n(ϑ∗) + Mi|0:n(ϑ∗)M
′
i|0:n(ϑ∗)

)

.

The matrices A, R and σ2 are updated as

A(θk) = diag(M(ϑk−1)S
−1(ϑk−1))

R(θk) =
1

n
(C(ϑk−1) − M(ϑk−1)S

−1(ϑk−1)M
′(ϑk−1))

σ2
k =

1

n + 1

n
∑

i=0

[

(yi − HMi|0:n(ϑk−1))
2 + HΣi|0:n(ϑk−1)H

′]

5 Properties of the exact maximum likelihood es-

timator in the stationary case

Recall that we have assumed that a(t) ≡ 0. Moreover in this paragraph we

assume that the initial variable X0 has the stationary distribution N2(0, V )

given in Proposition 1. This implies that the joint process (Xi, yi) is strictly

stationary. Let (yi)i∈Z be its extension to a process indexed by Z.

5.1 Link with an ARMA model

We generalize the result of Genon-Catalot et al. (2003) to the bidimensional

case and also to the multidimensional case (see Appendix E).

Proposition 2 The process (yi)i∈Z is centered Gaussian and ARMA(2,2).
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Proof. Evidently (yi) is centered Gaussian. We easily check that

yi − (θ1 + θ2)yi−1 + θ1θ2yi−2 = ξi (15)

where ξi is defined by

ξi = HA(θ)ηi−1 + Hηi + σεi − (θ1 + θ2)Hηi−1 − (θ1 + θ2)σεi−1 + θ1θ2σεi−2

As the (ηi)i and (εi)i are mutually independent, we get that:

Cov(ξi, ξi+k) = 0, ∀k ≥ 3.

This implies that (ξi) is MA(2). Hence the result. �

Proposition 3 The spectral density f(u, ϑ) of (yi) has the explicit form:

f(u, ϑ) = σ2+
H(ARA′ + (1 + (θ1 + θ2)

2)R)H ′ + 2 cos(u)(HA − (θ1 + θ2)H)RH ′

1 + (θ1 + θ2)2 + θ2
1θ

2
2 − 2(θ1 + θ2)(1 + θ1θ2) cos(u) + 2 cos(2u)θ1θ2

with A = A(θ), R = R(θ).

Proof. Let γ(k) = Cov(ξi, ξi+k). Elementary computations show that

γ(0) = HARA′H ′ + HRH ′(1 + (θ1 + θ2)
2) + σ2(1 + (θ1 + θ2)

2 + θ2
1θ

2
2)

γ(1) = (HA − (θ1 + θ2)H)RH ′ − σ2(θ1 + θ2)(1 + θ1θ2)

γ(2) = σ2θ1θ2

γ(k) = 0 ∀ k ≥ 3

The spectral density (with respect to du
2π

) h(u, ϑ) of (ξi) is

h(u, ϑ) =
∑

n∈Z

γ(n) exp(−inu) = γ(0) + γ(1)2 cos(u) + γ(2)2 cos(2u).

For the AR(2) part, we set: p(x) = 1−(θ1+θ2)x+θ1θ2x
2 (recall that θ1, θ2 < 1).

Then

f(u, ϑ) =
h(u, ϑ)

|p(exp(−iu))|2

=
γ(0) + γ(1)2 cos(u) + γ(2)2 cos(2u)

1 + (θ1 + θ2)2 + θ2
1θ

2
2 − 2(θ1 + θ2)(1 + θ1θ2) cos(u) + 2 cos(2u)θ1θ2

See Brockwell and Davis (1991) for technical details. �
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5.2 Asymptotic properties of maximum likelihood estima-

tor

We now deduce the asymptotic properties of the maximum likelihood estimators

when (yi) is stationary. We can only estimate consistently the parameters which

are identifiable on the spectral density. The identifiable parameters are (θ1 +

θ2, θ1θ2, σ
2, H(ARA′+(1+(θ1+θ2)

2)R)H ′, (HA−(θ1+θ2)H)RH ′). This means

that we can only identify five parameters out of the six. Therefore, we can choose

to estimate either (θ1, . . . , θ5), or σ2 and four among θ1, . . . , θ5. Moreover, since

we identify only the sum θ1 + θ2 and the product θ1θ2, by convention in our

algorithms, we choose θ1 < θ2.

We denote by θ0 the true value of parameter. We assume that the parameter

set Θ is an open subset of R
5. The asymptotic information matrix I(θ) is

for i, j ∈ {1, . . . , 5} I(θ)i,j =

∫ π

−π

∂

∂θi

log f(u, θ)
∂

∂θj

log f(u, θ)
du

2π

Consider the two assumptions (which can be checked up to some technicities)

A1 θ 7−→ f(., θ) is one to one

A2 (u, θ) 7−→ f(u, θ) is a C3-function on a neighborhood of [−π, π] × Θ

As (yi) is a ARMA(2,2) process, its spectral density is positive for every (u, θ) ∈
[−π, π] × Θ.

Proposition 4 (Information matrix) We have Pθ0-a.s.

lim
n→∞

(

− 1

n

∂2

∂θi∂θj

l0:n
(

θ0
)

)

1≤i,j≤5

= I(θ0) (16)

Proposition 5 (Consistency and asymptotic normality of the MLE) Let θ̂n be

a maximum likelihood estimator of θ0 based on y0:n. Then, θ̂n → θ0 a.s. as

n → ∞. Moreover, if I(θ0) is invertible,
√

n(θ̂n − θ0) converges in distribution:

√
n(θ̂n − θ0) −→

n→∞
N (0, I−1(θ0))

Proof. This result may be found e.g. in Brockwell and Davis (1991). �
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6 Simulation study

We compare the performances of the two methods of estimation on simulated

data. The exact maximum likelihood estimators are computed as described in

Section 3, using Kalman-based recursions. The EM estimators are computed

as described in Section 4. Data are simulated using equally spaced observation

times (∆ = 0.2), n = 5000 observations and the following parameter values

θ1 = 0.3, θ2 = 0.8, θ3 = 0.5, θ4 = 1, θ5 = 0.1,

which corresponds to initial parameters equal to β = 4.86, λ = 0.88, k =

2.27, σ1 = 3.31, σ2 = 1.92.

To evaluate the impact of the noise level σ2 on the estimation, we simulate

20 data sets with σ2 = 0.2 and 20 data sets with σ2 = 1. The parameter

σ2 is fixed to its true value, and θ is estimated by the exact MLE and EM

algorithm. Results are reported in Table 1. Both methods estimate accurately

the parameter θ2 and its corresponding variance parameter θ4. The noise level

σ2 does not affect the exact MLE while the EM algorithm is more accurate

when the observation noise is large.

[Table 1 about here.]

Then we estimate σ2 and fix θ5 to its true value (recall that only 5 parameters

are identifiable). Results are reported in Table 2. The estimation of θ2 is sat-

isfactory. However, the estimation of the other four parameters is deteriorated

for both methods, especially θ1.

[Table 2 about here.]

To evaluate the impact of the sampling interval, we simulate 20 data sets with

successively ∆ = 0.1, n = 10000, ∆ = 0.2, n = 5000 and ∆ = 1, n = 1000, each

design corresponding to n × ∆ = 1000. Result are reported in Table 3. Note

that the true values of the parameters are changed according to the value of ∆.

The estimation is more precise for smaller ∆.

[Table 3 about here.]

The Matlab code are given at http://www.mi.parisdescartes.fr/~favetto.
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7 Conclusion

The Kalman filter is classical in the field of noisy, discretely and partially ob-

served stochastic differential equations. In this paper, we have shown that it

can be used for the estimation of the parameters by maximum likelihood. In

the particular case of an Ornstein-Uhlenbeck process, this method computes

the exact likelihood, its gradient and hessian. We have also shown that the EM

algorithm combined with a smoother algorithm can be used for the parameter

estimation.

We study some theoretical properties of the model. We show that only five out

of the six parameters are identifiable and we deduce the asymptotic properties

of the maximum likelihood estimate. We illustrate the two methods on simu-

lated data. The identifiability problem is confirmed on the simulation study:

the observed Fisher information matrix computed by the Kalman method is

not invertible when we estimate the six parameters. Furthermore, we recom-

mend to estimate σ2 in a preliminary phase and then to estimate the five other

parameters.

The next step of this work is its application to real data in anti-cancer therapy.

However, as real data are obtained from medical images such as MRI or CT-scan,

the number of data is limited in order not to ray the patient. Furthermore, these

images are measured at non-equidistant times. Therefore, the two methods have

to be adapted to the case of non-equidistant observation times.
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A Physiological model

We focus on the evaluation of anti-angiogenesis treatments in anti-cancer ther-

apy. These treatments take effect on the vascularization of tissue. The in

vivo evaluation of their efficacy is based on the estimation of the tissue micro-

vascularization parameters. The experiment consists in the injection of a con-

trast agent to the patient, followed by the recording of a medical images sequence

which measures the evolution of the concentration of contrast agent along time.

The contrast agent pharmacokinetic is modeled by a bidimensional differential

system. The contrast agent pulsates in the plasma and interstitium cells. Let

a(t), P (t) and I(t) denote respectively the quantity of contrast agent at time t in

the artery, the plasma and the interstitium and 1− h, VP and VI the volume of

artery, plasma and interstitium (h is the hematocrit rate). The initial condition

at time t0 = 0 is P (0) = 0, I(0) = 0. The contrast agent is injected in vein at

time t0, transits in the artery and arrives in plasma, with a tissue perfusion flow

equal to Ftp. The contrast agent is eliminated from plasma with the perfusion

flow Ftp, proportionally to the concentration of contrast agent in plasma. The

quantity of contrast agent exchanging from plasma through interstitium is equal

to Ktrans times the concentration of contrast agent in plasma, where Ktrans is

the volume transfer constant. Inversely, the quantity of contrast agent exchang-

ing from interstitium through plasma is equal to Ktrans times the concentration
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of contrast agent in interstitium. Lastly, the two-compartment model is:

{

dP (t)
dt

=
Ftp

1−h
a(t) − Ktrans

VP
P (t) + Ktrans

VI
I(t) − Ftp

VP
P (t)

dI(t)
dt

= Ktrans

VP
P (t) − Ktrans

VI
I(t)

(17)

For statistical accommodations, we use a new parameterization and set:

α =
Ftp

1 − h
, β =

Ftp

VP

, λ =
Ktrans

VP

, k =
Ktrans

VP

+
Ktrans

VI

Model (17) can thus be transformed as follows:

{

dP (t)
dt

= αa(t) − λP (t) + kI(t) − βP (t)
dI(t)

dt
= λP (t) − kI(t)

(18)

B Proof of Proposition 1

The process X(t) = P−1U(t) is solution of:

dX(t) = (DX(t) + P−1F (t))dt + P−1ΣdWt, X(0) = X0 = P−1U0.

Applying Ito’s formula, we obtain

X(t) = eDtX0 + eDt

∫ t

0

e−DsP−1F (s)ds + eDt

∫ t

0

e−DsΓdWs.

From this equation, we deduce:

X(t + h) = eDhX(t) + B(t, t + h) + Z(t, t + h)

where B(t, t+h) and Z(t, t+h) are given in Proposition 1. Using that W1, W2 are

independent and that X0 is independent of (W1, W2), we obtain the conditional

law of X(t + h)|(X(s), s ≤ t).

The stationary distribution can be deduced from equation (3) with F (t) = 0.

As the two elements of D are negative, we have

lim
t→+∞

E(X(t)) = lim
t→+∞

eDt
E(X0) = 0

lim
t→+∞

V ar(X(t)) = lim
t→+∞

R(0, t) =

(

1

−(µk + µk′)
(ΓΓ′)kk′

)

1≤k,k′≤2

= V.

If X0 ∼ N2(0, V ), an elementary computation shows that (X(t)) is strictly
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stationary. The case limt→∞ a(t) = c is straightforward. �

C Gradient and hessian of the log-likelihood

The gradient and the hessian of the loglikelihood are computed with explicit

recursions. We denote ϑ6 = σ2. The first order derivatives of A(ϑ) are equal to:

∂A(ϑ)

∂ϑ1
=

(

1 0

0 0

)

,
∂A(ϑ)

∂ϑ2
=

(

0 0

0 1

)

and
∂A(ϑ)

∂ϑq

=

(

0 0

0 0

)

, q = 3, 4, 5, 6.

and for R(ϑ) we get:

∂R(ϑ)

∂ϑ1
=

∂R(ϑ)

∂ϑ2
=

∂R(ϑ)

∂ϑ6
=

(

0 0

0 0

)

,

∂R(ϑ)

∂ϑ3
=

(

1 0

0 0

)

,
∂R(ϑ)

∂ϑ4
=

(

0 0

0 1

)

and
∂R(ϑ)

∂ϑ5
=

(

0 1

1 0

)

.

The second order derivatives of A(ϑ) and R(ϑ) are null. The first order deriva-

tives of X̂−
i (ϑ) and P−

i (ϑ) with respect to ϑq, q = 1, . . . , 6 can be deduced:
∂X̂−

i
(ϑ)

∂ϑq
= ∂A(ϑ)

∂ϑq
X̂i−1(ϑ) + A(ϑ)∂X̂i−1(ϑ)

∂ϑq

∂P−

i
(ϑ)

∂ϑq
= ∂A(ϑ)

∂ϑq
Pi−1(ϑ)A(ϑ)′+A(ϑ)∂Pi−1(ϑ)

∂ϑq
A(ϑ)′+A(ϑ)Pi−1(ϑ)∂A(ϑ)′

∂ϑq
+ ∂R(ϑ)

∂ϑq
.

Then we get the derivatives of the mean and the covariance of the filter: ∂X̂i−1(ϑ)
∂ϑq

=

∂X̂−

i−1
(ϑ)

∂ϑq
+

∂P−

i−1
(ϑ)

∂ϑq

H′Wi−1(ϑ)
Vi−1(ϑ) +

P−

i−1
(ϑ)H′

Vi−1(ϑ)

(

∂Wi−1(ϑ)
∂ϑq

− ∂Vi−1(ϑ)
∂ϑq

Wi−1(ϑ)
Vi−1(ϑ)

)

∂Pi−1(ϑ)
∂ϑq

=
(

I − P−

i−1
H′H

Vi−1(ϑ)

)

∂P−

i−1
(ϑ)

∂ϑq
−
(

∂P−

i−1
(ϑ)

∂ϑq

H′

Vi−1(ϑ) −
P−

i−1
(ϑ)H′

Vi−1(ϑ)2
∂Vi−1(ϑ)

∂ϑq

)

HP−
i−1(ϑ)

The computation of second order derivatives can be deduced. Because second

order derivatives of A and R are null, we have for q, r = 1, . . . , 6, :

∂2X̂−
i (ϑ)

∂ϑq∂ϑr

= A(ϑ)
∂2X̂i−1(ϑ)

∂ϑq∂ϑr

+
∂A(ϑ)

∂ϑr

∂X̂i−1(ϑ)

∂ϑq

+
∂A(ϑ)

∂ϑq

∂X̂i−1(ϑ)

∂ϑr

∂2P−
i (ϑ)

∂ϑq∂ϑr

=

(

∂A(ϑ)

∂ϑr

∂Pi−1(ϑ)

∂ϑq

+
∂A(ϑ)

∂ϑq

∂Pi−1(ϑ)

∂ϑr

)

A(ϑ)′ +
∂A(ϑ)

∂ϑr

Pi−1(ϑ)
∂A(ϑ)′

∂ϑq

+A(ϑ)

(

∂2Pi−1(ϑ)

∂ϑq∂ϑr

A(ϑ)′ +
∂Pi−1(ϑ)

∂ϑr

∂A(ϑ)′

∂ϑq

+
∂Pi−1(ϑ)

∂ϑq

∂A(ϑ)′

∂ϑr

)

+
∂A(ϑ)

∂ϑq

Pi−1(ϑ)
∂A(ϑ)′

∂ϑr
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The second order derivatives of mean and covariance of Kalman filter are:

∂2X̂i−1(ϑ)

∂ϑq∂ϑr

=
∂2X̂−

i−1(ϑ)

∂ϑq∂ϑr

+
∂2P−

i−1(ϑ)

∂ϑq∂ϑr

H ′Wi−1(ϑ)

Vi−1(ϑ)
+ P−

i−1(ϑ)
H ′

Vi−1(ϑ)

(

∂2Wi−1(ϑ)

∂ϑq∂ϑr

−∂Vi−1(ϑ)

∂ϑq

1

Vi−1(ϑ)

∂Wi−1(ϑ)

∂ϑr

− ∂2Vi−1(ϑ)

∂ϑq∂ϑr

Wi−1(ϑ)

Vi−1(ϑ)
+ 2

∂Vi−1(ϑ)

∂ϑr

∂Vi−1(ϑ)

∂ϑq

Wi−1(ϑ)

V 2
i−1(ϑ)

−∂Vi−1(ϑ)

∂ϑr

1

Vi−1(ϑ)

∂Wi−1(ϑ)

∂ϑq

)

+
∂P−

i−1(ϑ)

∂ϑr

H ′

Vi−1(ϑ)

(

∂Wi−1(ϑ)

∂ϑq

− ∂Vi−1(ϑ)

∂ϑq

Wi−1(ϑ)

Vi−1(ϑ)

)

+
∂P−

i−1(ϑ)

∂ϑq

H ′

Vi−1(ϑ)

(

∂Wi−1(ϑ)

∂ϑr

− ∂Vi−1(ϑ)

∂ϑr

Wi−1(ϑ)

Vi−1(ϑ)

)

∂2Pi−1(ϑ)

∂ϑq∂ϑr

=

(

I − P−
i−1(ϑ)H ′H

Vi−1(ϑ)

)

∂2P−
i−1(ϑ)

∂ϑq∂ϑr

−
[

∂2P−
i−1(ϑ)

∂ϑq∂ϑr

− P−
i−1(ϑ)

Vi−1(ϑ)

∂2Vi−1(ϑ)

∂ϑq∂ϑr

−
(

∂P−
i−1(ϑ)

∂ϑr

∂Vi−1(ϑ)

∂ϑq

+
∂P−

i−1(ϑ)

∂ϑq

∂Vi−1(ϑ)

∂ϑr

)

1

Vi−1(ϑ)
+

2P−
i−1(ϑ)

V 2
i−1(ϑ)

∂Vi−1(ϑ)

∂ϑq

∂Vi−1(ϑ)

∂ϑr

]

H ′HP−
i−1(ϑ)

Vi−1(ϑ)

−
(

∂P−
i−1(ϑ)

∂ϑr

H ′ − P−
i−1(ϑ)H ′

Vi−1(ϑ)

∂Vi−1(ϑ)

∂ϑr

)

H

Vi−1(ϑ)

∂P−
i−1(ϑ)

∂ϑq

−
(

∂P−
i−1(ϑ)

∂ϑq

H ′ − P−
i−1(ϑ)

H ′

Vi−1(ϑ)

∂Vi−1(ϑ)

∂ϑq

)

H

Vi−1(ϑ)

∂P−
i−1(ϑ)

∂ϑr

D Smoother algorithm

The Kalman smoother is calculated recursively with a forward-backward algo-

rithm (see e.g. Cappé et al. (2005)). The forward algorithm is the classical

Kalman filter which computes Mi|0:i−1 = X̂−
i = E(Xi|y0:i−1), Σi|0:i−1 = P−

i =

V ar(Xi|y0:i−1), Mi|0:i = X̂i = E(Xi|y0:i) and Σi|0:i = Pi = V ar(Xi|y0:i). Then,

in order to calculate Mi|0:n = E(Xi|y0:n), Σi|0:n = V ar(Xi|y0:n), Σi−1,i|0:n =

Cov(Xi−1, Xi|y0:n), one performs the set of backward recursions i = n, n −
1, . . . , 1:

Ji−1 = Σi−1|0:i−1A
′(Σi|0:i−1)

−1

Mi−1|0:n = Mi−1|0:i−1 + Ji−1(Mi|0:n − Mi|0:i−1)

Σi−1|0:n = Σi−1|0:i−1 + Ji−1(Σi|0:n − Σi|0:i−1)J
′
i−1
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To calculate Σi−1,i|0:n, we have

Σn−1,n|0:n = (I − KnH)AΣn−1|0:n−1

and the following backward recursions, for i = n − 1, n − 2, . . . , 1

Σi−1,i|0:n = Σi|0:iJ
′
i−1 + Ji(Σi,i+1|0:n − AΣi|0:i)J

′
i−1

E ARMA property of multidimensional process

In our model, (yi)i∈Z is an ARMA(2,2) process and asymptotic properties of

the maximum likelihood estimator are derived. This result can be generalised

to the case where Xi is p-dimensional under weak assumptions. We consider

the model:

yi = HXi + σεi, Xi = AXi−1 + ηi, X0 ∼ ν

where Xi is p-dimensional, A is a diagonal matrix with diagonal coefficients

(θk, k = 1, . . . , p) such that θk 6= θl for k 6= l and θi ∈ (0, 1) for i = 1 . . . p, (ηi)i≥0

is a sequence of independent Np(0, R) random variables, H is a (1, p)-matrix and

(εi) is a sequence of i.i.d N (0, 1) random variables. Up to a transformation of

(Xi), H is equal to H = (1 . . . 1 0 . . . 0) with its first d coordinates equal to 1

and its p− d next coordinates equal to 0 (1 ≤ d ≤ p). Consequently, we observe

with additive noise the partial sum of the first d coordinates of Xi. Since A is

diagonal and θi ∈ (0, 1) for i = 1 . . . p, the process (Xi)i≥0 admits a stationary

distribution ν. Then with X0 ∼ ν, the process (Xi)i≥0 is stationary. Denote

(yi)i∈Z the extension of y to Z by stationarity.

Proposition 6 The process (yi)i∈Z is ARMA(d,d).

Proof. Denote Sj , j = 1, . . . , d, the j-th symmetric function of θ1, . . . , θd:

Sj =
∑

1≤i1<···<ij≤d

θi1 . . . θij

and S0 = 1. Define the polynomial P such that P (θ1) = . . . = P (θd) = 0:

P (x) =

d
∑

k=0

(−1)kSkxd−k
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Set L the one-lag operator : Lyi = yi−1, Lεi = εi−1. Set ξi = P (L)(yi) =
∑d

k=0(−1)kSkyi−k. By recursive computation for 0 ≤ k ≤ d, we have

yi−k = HAd−kXi−d +

d−k−1
∑

j=0

HAjηi−k−j + σεi−k

We deduce

ξi = HP (A)Xi−d +

d
∑

k=0

(−1)kSk





d−k−1
∑

j=0

HAjηi−k−j



+ σP (L)(εi)

But HP (A) = (P (θ1) . . . P (θd) 0 . . . 0) = (0 . . . . . . 0). Thus ξi only depends on

(ηj , εj)j≤i. Therefore (yi) verifies an AR(d) equation. Moreover, as the (ηi)i

and (εi)i are mutually independent, we get that:

Cov(ξi, ξi+k) = 0, ∀k ≥ d.

This implies that (ξi) is MA(d). Hence the result.
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σ2 = 0.2 σ2 = 1
Method MLE EM MLE EM

θ1 0.28 (0.02) 0.21 (0.02) 0.25 (0.05) 0.29 (0.03)
θ2 0.80 (0.00) 0.80 (0.00) 0.80 (0.00) 0.80 (0.00)
θ3 0.52 (0.01) 0.61 (0.03) 0.53 (0.04) 0.55 (0.02)
θ4 0.98 (0.04) 0.97 (0.04) 0.98 (0.10) 0.96 (0.06)
θ5 0.09 (0.00) 0.15 (0.00) 0.08 (0.01) 0.08 (0.00)

Table 1: Mean estimated values (with estimated standard deviations in bracket)
obtained with the exact MLE and the EM algorithms, evaluated on 20 simulated
data with n = 5000 observations and σ2 = 0.2 or σ2 = 1 (σ2 fixed to its true
value).
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σ2 = 0.2 σ2 = 1
Method MLE EM MLE EM

θ1 0.47 (0.06) 0.26 (0.02) 0.48 (0.09) 0.49 (0.07)
θ2 0.80 (0.00) 0.80 (0.00) 0.79 (0.00) 0.80 (0.00)
θ3 0.46 (0.05) 0.62 (0.05) 0.53 (0.23) 0.64 (0.07)
θ4 0.91 (0.02) 0.96 (0.04) 0.94 (0.01) 0.78 (0.07)
σ2 0.29 (0.54) 0.34 (0.02) 1.00 (0.15) 1.02 (0.01)

Table 2: Mean estimated values (with estimated standard deviations in bracket)
obtained with the exact MLE and the EM method, evaluated on simulated data
with n = 5000 observations and σ2 = 0.2 or σ2 = 1 (θ5 fixed to its true value).
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∆ = 0.1, n = 10000 ∆ = 0.2, n = 5000 ∆ = 1, n = 1000
value true estimated true estimated true estimated
MLE
θ1 0.30 0.31 (0.01) 0.09 0.26 (0.04) 0.00 0.00 (0.00)
θ2 0.80 0.80 (0.00) 0.64 0.68 (0.00) 0.11 0.17 (0.02)
θ3 0.50 0.53 (0.01) 0.54 0.72 (0.03) 0.55 1.04 (0.24)
θ4 1.00 0.96 (0.04) 1.64 1.04 (0.35) 2.75 1.07 (2.79)
θ5 0.10 0.09 (0.00) 0.12 0.36 (0.06) 0.13 0.74 (0.38)

EM
θ1 0.30 0.32 (0.01) 0.09 0.20 (0.20) 0.00 0.01 (0.01)
θ2 0.80 0.80 (0.00) 0.64 0.66 (0.01) 0.11 0.16 (0.01)
θ3 0.50 0.55 (0.01) 0.54 0.66 (0.03) 0.55 1.09 (0.32)
θ4 1.00 0.94 (0.04) 1.64 1.25 (0.22) 2.75 1.25 (2.27)
θ5 0.10 0.09 (0.01) 0.12 0.27 (0.03) 0.13 0.59 (0.22)

Table 3: Influence of ∆ when σ2 = 1: for each ∆, true values of θ, mean
estimated values (with estimated standard deviations in bracket) are presented.
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