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ABSTRACT. Brake Squeal is a friction induced instability phenomenon known to be one of the
most annoying noise for drivers. This paper focuses on the mode coupling aspect of brake
squeal by means of a multi parametric analysis. The study is based on a Finite Element model
of the whole brake corner. A complex eigenvalue analysis is undertaken, with a modal projection
technique, to detect the stable and unstable modes. Following this process, the brake stability
is assessed as a function of the friction coefficient. The results highlight accurately the mode-
coupling phenomenon also referred to as coalescence. Then, the emphasis is put on the disc
Young modulus variability by launching a numerical design of experiment. Finally, the brake
robustness is displayed as functions of the friction coefficient and of the disc Young modulus.

RÉSUMÉ. Le crissement de frein est un phénomène d’instabilité vibratoire induit par le frotte-
ment, connu comme l’un des bruits les plus gênants pour le conducteur. Cet article se foca-
lise, grâce à une analyse multiparamètrique, sur la coalescence de modes lors du crissement.
L’étude se base sur un modèle éléments finis du système de freinage complet. Une analyse aux
valeurs propres complexes est réalisée, avec une technique de projection modale, afin de déter-
miner quels sont les modes stables et instables. Une étude paramètrique permet de déterminer
la stabilité du système en fonction de la valeur du coefficient de frottement. Les résultats dé-
crivent avec précision le phénomène de coalescence. Enfin, un plan d’expérience est lancé afin
d’évaluer l’influence du frottement et du module d’Young du disque sur la stabilité du système.
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1. Introduction

Disc brake noise is a very important and complex problem highlighted by the in-
crease of customer requirements. One of the most common and annoying brake noise
is called brake squeal. It belongs to the class of friction induced instability phenomena.
This field of mechanical engineering has been studied for years (Mills, 1938; Jarvis et
al., 1993; Earles et al., 1976; Earles et al., 1987; Millner, 1978; North, 1972; Ouyang
et al., 2001; Ouyang et al., 1999; Ouyang et al., 1998; Kobayashi, 1990; Hul-
ten, 1993; Nakata et al., 2001; Chung et al., 2001; Chung et al., 2003b; Chung et
al., 2003a; Moirot et al., 2000a; Blaschke et al., 2000; Baillet et al., 2005; Bail-
let et al., 2006). Researchers works (Ibrahim, 1994a; Ibrahim, 1994b; Crolla et
al., 1991; Oden et al., 1985; Tolstoi, 1967; Rabinowicz, 1965; Sinclair et al., 1955)
yield to the identification of four different mechanisms of friction induced instabilities:
stick slip (Antoniou et al., 1976; Moirot et al., 2000b; Oueslati et al., 2003; Moirot
et al., 2003), negative damping (Gao et al., 1994; Barnejee, 1968), sprag slip
(Spurr, 1961) and mode coupling. The trend in brake squeal analysis is to figure out the
phenomenon in terms of mode coupling (Jarvis et al., 1993; Earles et al., 1976; Ear-
les et al., 1987; Millner, 1978; North, 1972; Moirot et al., 2000a). The first stud-
ies were based on lumped models with few degrees of freedom (Mills, 1938; Jarvis
et al., 1993; Earles et al., 1976; Earles et al., 1987; Millner, 1978; North, 1972).
More recently, the rise in computer capabilities has made it possible to assess the
brake stability on a whole brake finite element model (Kinkaid et al., 2003; Nakata
et al., 2001; Chung et al., 2001; Chung et al., 2003b; Chung et al., 2003a; Moirot et
al., 2000a; Blaschke et al., 2000; Lorang et al., 2006).

In both cases, the method consists in computing the complex eigenvalues of the
system. Hence, its stability is inferred from the eigenvalues real parts signs. This
kind of computation helps car and brake manufacturers to improve the NVH (Noise,
Vibration and Harshness) performances of brakes. Nevertheless, in spite of the large
amount of work done, brake squeal remains a difficult issue to tackle. It might be
because the main feature of brake squeal is its sensitive nature. Indeed, experiments
show that brake squeal is severely environment dependant. Therefore, the aim is not
only to design a quiet brake in nominal conditions but also to ensure it is quiet in the
overall operation condition range.

This paper presents a parametric study of brake squeal on an actual front brake.
First of all, the finite element model is described. Then, a complex eigenvalue analysis
is carried out on this model. The stable and unstable zones with respect to the friction
coefficient and the detection of the associated unstable mode are undertaken. Finally,
the brake squeal sensitivity with respect to the disc Young modulus has been studied
and synthesized.
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2. Finite element model

2.1. Model description

This study aims at building up a model to assess the squealing behavior of a com-
mercial front disc brake. The scope of the study involves the whole brake corner
including disc, anchor bracket, caliper, pads, hub and knuckle. Each part has been
meshed and filled in terms of material properties. Parts are linked together by normal
contact stiffnesses, as it will be explained in the following section. Once assembled,
the whole Nastran model illustrated in Figure 1 has a total of 528 000 degrees of free-
dom (DOF).

Figure 1. Finite element model

So far, this model is a basic finite element (FE) model which equation of motion is

Mü + Ku = 0 [1]

where M, K and u are respectively the mass matrix, the stiffness matrix and the
displacement vector. Dot denotes derivative with respect to time.

2.2. Contact definition

As mentioned in previous works (Matsui et al., 1992; Dihua et al., 1998; Park
et al., 2001; Nakata et al., 2001; Chung et al., 2001; Chung et al., 2003b; Chung
et al., 2003a), the most convenient way to introduce contact in a brake FE model
consists in adding contact stiffnesses between disc and pads. Those springs account
for the normal contact force N. In order to consider the tangential force T induced by
friction, the Coulomb law is adopted:

T = sign(v)μN [2]
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The tangential and normal forces are linked together by the friction coefficient μ

that is assumed to be constant and positive. The sign of T depends on the sign of
the sliding velocity v between disc and pads, which has been defined as positve in the
forward direction. This law is sufficient for this study since the relevant mechanism
to explain squeal is based on flutter instability (Sinou et al., 2004; Sinou et al., 2003)
(i.e. coupling between a stable and an unstable mode) and the non-conservative effect
of the Coulomb law.

Once the friction introduced, the equation of motion becomes

Mü + Ku = Ff [3]

where Ff denotes the disc-pad friction force. This vector is a sparse vector which
non-zero terms correspond to the tangential DOFs of the disc-pads interface. Those
non-zero terms are ±Ti. i is the node index on the disc-pads interface. Thanks to the
friction law, those terms can be rewritten as a function of the corresponding normal
force Ni. Since Ni deals with a force between two nodes that are linked by a spring,
it depends explicitly on the displacements of those two nodes. Finally, Equation [3]
becomes

Mü + (K + Keq)u = 0 [4]

where Keq is the friction induced asymmetrical stiffness matrix. The non-zero terms
of this sparse matrix are ±μk, where k is the contact stiffness value.

In order to reduce the problem size, Equation [4] is transformed to the modal and
frequency domain:

(s2
I + Ω

2 + μ.Λf )Γ = 0 [5]

where I is the identity matrix. Ω
2 is given by

Ω
2 = diag(ω2

1 · · ·ω
2

n
) [6]

with ω1, · · · , ωn the non-friction system frequencies. μ.Λf is the projection of Keq

on the modal basis. s denotes the Laplace parameter and Γ the eigenvector coordinates
in the non-friction modal basis.

Equation [5] features two main advantages. First, it depends explicitly on the
friction coefficient. Second, the three matrices involved can be inferred from a basic
normal mode extraction on the non-friction system.

2.3. Complex eigenvalue analysis

Since the equivalent stiffness matrix is asymmetrical because of friction, a com-
plex eigenvalue analysis (CEA) is required. Equation [5] can be written as a general
eigenvalue problem

A.X = λ.X [7]
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where λ is the eigenvalue and X the eigenvector. Both are complex valuated. Espe-
cially, the eigenvalue may be written

λ = a + ib [8]

The real part a and the imaginary part b of the eigenvalue account respectively for the
stability and the frequency of the corresponding mode. Indeed the system is stable if
its eigenvalue real parts are negative and unstable otherwise.

3. Sensitivity analysis with respect to the friction coefficient

As instabilities are induced by friction, the first study to carry out concerns the
effect of the friction coefficient on the system eigenvalues. This variability is assessed
by solving the eigenvalue problem (Equation [7]). As mentioned previously, the com-
putation of A requires the knowledge of the friction coefficient value and of the first
m normal modes of the non-friction FE model. The modal truncation chosen in this
study includes the first 75 modes of the braking system. The problem, which size is
(75 × 75), has been solved in Matlab for each friction coefficient value.

Figure 2 displays all the computed eigenvalues in the complex plane. It highlights
the six unstable modes of the system. The values have been normalized with respect
to the frequency of the mode that shows the largest real part. This mode which nor-
malized coordinates are (1,1) in the complex plane has been chosen for the following
as a reference.
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Figure 2. Eigenvalues in the complex plane
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The complex plot graph is an interesting means to sum up the brake stability. How-
ever, it does not put the emphasis on the eigenvalues variability with the friction coef-
ficient. Figures 3 and 4 focus on that point by showing in different ways the frequency
and the real part of the eigenvalues with respect to friction coefficient.
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Figure 3. Evolution of the frequencies as a function of the friction coefficient
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Figure 4. Evolution of the real parts as a function of the friction coefficient
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As shown in Figures 3 and 4, the brake features initially (ie at μ = 0) two modes
apart in frequency and stable since its real parts are zero. Hence, the frequencies
tend to get closer as the friction coefficient increases. As soon as the two modes
have reached the same frequency, the system behaviour is deeply altered. Indeed, the
system has reached the bifurcation point referred to as the coalescence point. Note
that the friction coefficient values have been normalized with respect to that point.
Then, the frequencies remain equal and the real parts leave progressively the abscissa
axis as the friction coefficient increases. One of the two modes features a positive
real part whereas the other features the opposite one. As mentioned in the previous
section, it means that the first one is stable and the other one is unstable. Note that on
Figure 3, dots are for stable modes and crosses for unstable ones.

In an actual brake system, the friction coefficient value can be assessed by mea-
surements. Nevertheless the study of the eigenvalues variability with respect to the
friction coefficient leads to the root cause of the phenomena. Indeed it makes it
possible to identify the non-friction modes responsible for the mode coupling. The
non-friction modes here referred to as M1 and M2 have respectively a normalized fre-
quency of 0.992 and 1.007. The deformed shapes of those two modes are illustrated
in Figures 5 and 6, respectively. M1 is a real mode involving most of the brake com-
ponents. The knuckle mounts vibrate out of phase in the disc axis direction and drive
the anchor bracket, which undergoes a complicated twisting mode. The disc features
a 3 nodal diameter bending mode and the inner pad slides as a rigid body along the
disc surface. The first bending of the caliper is the dominant feature of M2. This
mode involves also the first bending of the inner pad and compression of the outer
pad. Like M1, M2 features a 3 nodal diameter disc bending mode. As M1 and M2

are real modes, they are very useful. Indeed, they are far easier to figure out than the
complex modes at stake as soon as the system is unstable. For instance, the complex
deformed shape at μ = 2.5 is displayed Figure 7 with a phase of 0 degree.

Figure 5. Deformed shape of M1 - normalized frequency: 0.992
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Figure 6. Deformed shape of M2 - normalized frequency: 1.007

Figure 7. Complex deformed Shape μ = 2.5, φ = 00 - normalized frequency: 1.0

This complex mode shares the same 3 nodal diameter disc bending with M1 and
M2. The inner pad slides along the disc surface and bends like its first free-free
bending mode. The outer pad rotates with respect to its center of gravity in the
direction of the disc axis. The anchor bracket vibrates in an anti symetric way and the
caliper undergoes a mix of bending and twisting mode.

Since the mode is complex, the displacements are not in phase for each DOF. That
point can be observed by animating the deformed shape. In order to check the results,
the mode that shows the largest real parts (Figure 2) has been compared with the main
experimental squealing mode. The correlation turns out to be very good both in terms
of frequency and deformed shape.

8



All the curves displayed until now described the forward direction behaviour of
the brake. To go further, the forward and backward behaviors of the brake have been
plotted on the same graph in figure 8 as a function of sign(v)μ. As mentioned pre-
viously, sign(v) has been defined as positive in the forward direction. Thus, the left
part of the figure (sign(v)μ < 0) represents the backward modes whereas the right
part (sign(v)μ > 0) is for the forward direction.
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Figure 8. Sensitivity frequency with μ - forward and backward directions

4. Sensitivity analysis with respect to the disc Young modulus

So far, we have studied the behaviour variability of the brake system with respect
to the parameter which is the root cause of instabilities: the friction coefficient. Nev-
ertheless, when μ is set to a non-zero value, the brake stability depends on its modal
behaviour. That is to say that it depends on each FE model parameter. Since unstable
modes are often driven by a disc contribution, its Young modulus (E) has been chosen
as the parameter of variability analysis.

A full factorial design of experiment (DOE), that features 101 values of μ (50
forward, 50 backward) and 21 of E, has been planed. The Young modulus values,
which have been normalized, range from 0.0 to 1.0. This range has been chosen
symmetric with respect to the nominal value, 0.5, used in the previous section. The
DOE results will be used in the next sections to try to figure out the phenomena at
stake and to synthesize the robustness of the brake behaviour.
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4.1. Behaviour variability

In order to have a first idea on the system eigenvalues variability with respect
to the disc Young modulus, Figure 9 shows, in the vicinity of the squealing mode
frequency, all the DOE eigenvalues in the complex plane. The obtained pattern is
quite complex as E and μ are varying simultaneously. However this graph indicates
that the variability may be either smooth (in the lower part for the frequency range
[0.97− 1.01]) or rough (in the upper part of the graph for the frequency range [1.01−
1.05]). The system seems to shift from a kind of behaviour to another. To go further,
the eigenvalues variablities with respect to μ and E have to be analyzed deeper. Ten
plots have been gathered in Figures 10, 11, 12, 13 and 14 to explain the relationship
between μ, E and coalescences.

These figures focuse on the evolution of four modes referred to as M1, M2, M3

and M4 respectively, by increansing frequency. The state (μ = 0, E = 0.5) has been
chosen as a reference to describe the deformed shapes of those modes, since it depends
on both parameters. The deformed shapes of M1 and M2 had been displayed in the
previous section, Figures 5 and 6. The deformed shapes of M3 and M4 are shown in
Figures 15 and 16.

Figure 9. Eigenvalues variability with μ and E
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Figure 10. Variability λ = f(μ, E), Ea=0.00

M3 features a normalized frequency of 1.039 and its deformed shape is the fol-
lowing. The knuckle mounts vibrate in phase in the disc axis direction and drive the
anchor bracket in a symetric mode. The caliper undergoes a first twisting mode. The
inner pad slides as a rigid body along the disc surface and the outer pad rotates with
respect to its center of gravity in the direction of the disc axis. The disc vibrates, with
a low magnitude, like a mix of an umbrella mode and a 2 nodal diameter mode. The
deformed shape of M4, which normalized frequency is 1.060, looks like the M3 one.
Nevertheless, M4 is out of phase with respect to M3 and the magnitude of the caliper
displacements is larger.

The eight first graphs (Figures 10, 11, 12 and 13) show the frequency and real part
variability versus the friction coefficient respectively for four disc Young modulus
values referred to as Ea = 0.00, Eb = 0.75, Ec = 0.85 and Ed = 1.00. For the
first value, Ea = 0.00, the two lower frequency modes get coupled at μ = 0.6. For
Eb = 0.75 this two modes become also unstable, but the coalescence point is shifted
toward the higher values of μ. Another point to mention on this graph is the trend of

11



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Normalized friction coefficient
N

or
m

al
iz

ed
 fr

eq
ue

nc
y

µm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1.5

−1

−0.5

0

0.5

1

1.5

Normalized friction coefficient

N
or

m
al

iz
ed

 r
ea

l p
ar

t

µm

Figure 11. Variability λ = f(μ, E), Eb=0.75

the two higher frequency modes to get closer in the vicinity of μ = 2.1. This trend is
confirmed on the Ec = 0.85 graph since these two modes are unstable on the friction
coefficient range [1.9 − 2.4]. On this range, the real part magnitudes increases and
then decreases versus the friction coefficient. This phenomenon is noticeable as circle
shaped patterns on Figure 9. Meanwhile, the two lower frequency modes coalescence
point is once again shifted toward the higher values of μ. After this coalescence point,
the frequencies of the two coupled modes seem to be influenced by the nearest upper
mode as its deflection becomes sharper. This leads to the Ed = 1.00 situation. The
two higher frequency modes get coupled at μ = 1.4. Then a third mode makes its
paths diverge at μ = 2.6. One of the two released modes get immediately coupled
with the third mode. That is the reason why the curves intersect with a vertical tangent.
Then the forth mode cross the two coupled ones at μ = 4.5. As the tangent is not
vertical, it can be inferred that this intersection does not alter the coupling pattern.

12



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Normalized friction coefficient
N

or
m

al
iz

ed
 fr

eq
ue

nc
y

µm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1.5

−1

−0.5

0

0.5

1

1.5

Normalized friction coefficient

N
or

m
al

iz
ed

 r
ea

l p
ar

t

µm

Figure 12. Variability λ = f(μ, E), Ec=0.85

The eigenvalues variability as a function of E is now investigated. Figure 14 shows
the frequencies and real parts sensitivity with respect to E for μ = 2.1. This value
of the friction coefficient will be referred to as μm in the following. In order to link
the sensitivity graphs with respect to E and to μ, vertical dashed lines have been
superimposed. One line marks μm = 2.1 on each variability with friction graph and
four lines mark respectively Ea = 0.00, Eb = 0.75, Ec = 0.85, Ed = 1.00 on the
μm = 2.1 variability with E graphs. The noteworthy point is that sensitivities with
μ and with E features the same topology. Indeed, data may be interpreted in terms
of coalescence and of mode coupling. Figure 14 shows that, for μm = 2.1 the two
higher frequency modes are stable until they couple for E = 0.85. The two lower
frequency modes are coupled on the range [0.00 − 0.75] of E and separate further.
Nevertheless, the key difference between μ and E as variability parameters is that
increasing μ generally strengthens the mode coupling, whereas such a trend does not
exist for E.
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Figure 13. Variability λ = f(μ, E), Ed=1.00

4.2. Stability areas

The previous section shows that brake squeal is a very sensitive multi parametric
phenomenon. Nevertheless, according to the driver point of view, no matter how
complex it may be the brake must be quiet in each operational condition. This tackles
the concept of robustness. In order to assess the brake robustness in terms of squealing
behaviour, a new kind of plot has been developed to synthesize the large amount of
DOE data available. The number of unstable modes has been counted and displayed
as a colormap in the μ− E plane. Figures 17 and 18 show six graphs respectively for
the frequency ranges referred to as A, B, C, D, E and F. The corresponding normalized
frequencies are gathered in Table 1.

Note that both forward and backward behaviours are displayed. The lightest colour
marks the stable area whereas the two darker ones represents increasingly unstable
conditions: respectively one and two instabilities. At least for the lower frequency
ranges, the areas are quite smooth and well defined. That tends to prove that the
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Figure 14. Variability λ = f(μ, E), μm =2.1

Table 1. Normalized frequency ranges

Name Normalized frequency range
A 0.00 - 0.35
B 0.35 - 0.70
C 0.70 - 1.05
D 1.05 - 1.40
E 1.40 - 1.75
F 1.75 - 2.10
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Figure 15. Deformed shape of M3 - normalized frequency: 1.039

Figure 16. Deformed shape of M4 - normalized frequency: 1.060

sampling of Young modulus is sufficient. In the frequency range A (0 − 0.35), the
stable-unstable border is almost a straight line. Whatever the Young modulus value,
the brake squeals for the same friction coefficient value. In the frequency range B
(0.35− 0.70), the situation is quite different. The brake is stable forward and unstable
backward. The backward unstable area reaches a maximum around E = 0.15. In this
situation, the brake stability might be improved by choosing the E value which max-
imize the stable area: E = 0.00. In that case, the brake begins to squeal backwards
at μ = 2.5. Nevertheless, this state is not robust. Indeed, since the border slopes are
large, a small variation in E will worsen drastically the brake behaviour. Here a 0.15
shift of the Young modulus value makes the critical friction jump from μ = 2.5 to
μ = 0.1. If the solution E = 0.8 had been chosen the brake would have been less
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Figure 17. Stability charts versus frequency range

17



Range D −5.26 −4.21 −3.16 −2.11 −1.05 0.00 1.05 2.11 3.16 4.21 5.26
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 Y
ou

ng
 m

od
ul

us

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

sign(v)μ

Range E −5.26 −4.21 −3.16 −2.11 −1.05 0.00 1.05 2.11 3.16 4.21 5.26
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 Y
ou

ng
 m

od
ul

us

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

sign(v)μ

Range F −5.26 −4.21 −3.16 −2.11 −1.05 0.00 1.05 2.11 3.16 4.21 5.26
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 Y
ou

ng
 m

od
ul

us

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

sign(v)μ

Figure 18. Stability charts versus frequency range
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performant but more robust. In the frequency range C (0.70−1.05), the pattern is a bit
more complicated. Forward, the brake is the most unstable for E = 0.2 and the most
stable for E = 0.8. In the vicinity of that local maximum, a decoupling phenomenon
can be observed as a stable area surrounded on the unstable side. The second border,
which marks the second coalescence appearance, features two local maxima and one
local minimum respectively E = 0.10, E = 0.60 and E = 0.35. Backward, the
border slop decreases from E = 0.00 to E = 0.25. The critical friction coefficient
value suddenly jumps from μ = 4.5 to μ = 2.0. Hence, the border slope decreases
again until E reaches 0.8. On the range D (1.05−1.40), the stability pattern is mainly
based on a coupling - decoupling backward phenomenon. The noteworthy point on
ranges E and F (1.40− 1.75 and 1.75− 2.10) is that the stability patterns features two
different trends. On the one hand, stability borders are mainly smooth looking. But
on the other hand, in some areas, parameters seem to be too under sampled to figure
out the actual stability behaviour. The last chart, Figure 19, aims at summing up the
overall stability of the brake, from 0 to 2.10 in terms of normalized frequencies. It
presents a bottleneck in the vicinity of E = 0.15 and shows that increasing the disc
Young modulus tends to widen the stable area. Nevertheless, it must be kept in mind
that instabilities displayed on that graph may be induced by very different phenom-
ena. For instance a low frequency instability and a high frequency squeal have here
the same weight.

5. Conclusion

In this paper, a parametric study of brake squeal has been carried out on an actual
front brake. The method consists in a complex eigenvalue analysis on the brake FE
model. A technique of modal basis projection has been used to assess the dependency
as a function of the friction coefficient. With this technique, a full factorial design
of experiment has been launched to study the squeal sensitivity with respect to two
parameters: the friction coefficient and the disc Young modulus. The reasons of this
choice are that squeal is a friction induced instability and that unstable modes often
involve a disc bending mode component. The large amount of data computed has
been analysed with respect to both parameters. The noteworthy point is that the eigen-
values sensitivity curves with respect to the first and to the second parameter have
the same topology. Indeed, they may be both analysed in terms of mode coupling
also referred to as coalescence. The coupling patterns turn out to be complicated and
highly sensitive. This key point, which had been highlighted by experiments, has been
here forecasted by computations. The brake stability has been synthesized on stabil-
ity charts based on the DOE data. This kind of chart, which point out the stable and
unstable areas, is very useful to assess the brake robustness in terms of squeal. There-
fore, the optimal parameters values can be chosen. This optimal configuration might
not be the most performant one, but the best one in terms of performance - robustness
compromise.
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Figure 19. Stability chart on the overall frequency range
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