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Model of chatter vibrations and stability analysis of a non-linear 
wiper system  

S. Berger1, P. Ragot1, JJ. Sinou2, E. Aubry1 

Abstract – This paper presents a two dimensional phenomenological non-linear model of a 
windscreen wiper system. This non-linear model describes the instabilities arising from the 
frictional contact between the glass and the rubber.  The objective of this paper is to illustrate the 
fact that a very simple non-linear phenomenological system may be used to model and simulate 
chatter vibrations for wiper systems stability analysis. 
 First, the complete non-linear phenomenological system which represents the non-linear wiper 
system is described. Then, the stability analysis of the system is performed by considering the 
eigenvalues of the linearized system around the non-linear equilibrium points. Finally, the non-
linear behaviour of the mechanical system which corresponds to the “limit cycles” is 
investigated using a Runge-Kutta method.

Keywords:  friction, limit cycles, mechanical system, stability analysis, vibration 

I. Introduction 
A great number of studies have been carried out on 

the dynamic behaviour of dry friction systems, such as 
braking systems or windscreen-wipers from [1]-[13].  

It is classically admitted that one of the most 
important phases in studying windscreen-wipers 
systems is the determination of the friction mechanism. 
According to Ibrahim [7], Oden and Martins [8], and 
Sinou et al. [10], [11], there are four general 
mechanisms for friction-induced system instability: 
stick-slip, variable dynamic friction coefficient, sprag-
slip [13] and geometric coupling of degrees of freedom. 
The first two approaches rely on changes in the friction 
coefficient with the relative sliding speed to affect the 
system stability [9]. The latter two approaches utilize 
kinematic constraints and modal coupling to develop 
instability when the friction coefficient is constant [5], 
[11]. The sprag-slip action was described by Spurr [13] 
and does not depend on a friction coefficient varying 
with the relative rotation speed of the brake disc. Next, 
a number of investigations have been carried out by 
considering kinematic constraint or geometric instability 
which can be seen as an extension of the sprag-slip 
model. This mechanism involves the coupling of the 
different degrees of freedom and has been studied by 
numerous researchers [2], [5], [10], [11]. Their 
investigations demonstrated that instability may occur 
even if the friction coefficient is constant. In their 
studies, the authors consider the latter two approaches 
which use a modal coupling mechanism involving two 
system modes which couple together due to the friction 
interface, so as to develop the instability of the wiper 

system with a constant friction coefficient. As 
previously explained, this instability is defined as a 
geometric coupling [11] where two system modes move 
closer in frequency as the friction coefficient varies. 

It is well known that the dynamic behaviour of the 
wiper system is highly sensitive to the design 
parameters and the physical parameters such as the 
friction coefficient, the value of the applied load. So, 
due to the presence of flutter instability, the 
performance of such mechanical wiper systems may be 
seriously decreased. Thus, as friction-induced vibration 
is the main characteristic of the non-linear dynamics of 
wiper systems, the objective is now to study the stability 
analysis and the non-linear dynamics of a non-linear 
wiper system when it is subjected to self-induced 
oscillations. 

This paper first presents the development of a non-
linear phenomenological system which represents the 
non-linear dynamic of wiper systems. Secondly, the 
stability analysis of the non-linear system is performed 
and the effects of various physical parameters on the 
stability are studied. Finally, the last section illustrates 
the possibility to obtain the limit cycles of the non-
linear wiper system when the equilibrium points of the 
non-linear system are unstable. 

II. Nomenclature
θ : angle between stem T1 and vector x  (rad) 
φ : angle between stem T2 and vector x  (rad) 
v : displacement according to the vector y of the  

solid S (m) 
u: displacement according to the vector x of the  
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solid S (m) 
α: leading angle (rad) 
µ: friction coefficient for the contact at point C   

between stem T2 and the surface (π) 
I1: Axial mass inertia moment of stem T1 for the  

axis z  through point G1 (kg.m2) 
I2: Axial mass inertia moment of stem T2 for the  

axis z  through point G2 (kg.m2) 
k1:  torsion stiffness between the solid S and  

stem T1 (N.m / rad) 
K1: linear stiffness between the solid S and the  

rigid framework (N / m) 
k2:  torsion stiffness between the solid S and  

stem T2 (N.m / rad) 
F0 : load  (N) 
L1: length of stem T1 (m) 
L2: length of stem T2 (m) 
LG1: distance AG1 with G1 centre of inertia T1 (m) 
LG2: distance BG2 avec G2 centre of inertia T2 (m) 
m:  mass of the solid S (kg) 
m1: mass of stem T1 (kg) 
m2: mass of stem T2 (kg) 

III. Description of the non linear system
The non-linear mechanical system considered here 

has been defined starting from studies [6], [15] on a 
windscreen wiper blade. Fig 1(a) shows the physical 
system under study.  Based on previous work 
considering a finite element model and experimental 
tests [6], a two-dimensional phenomenological system 
is developed to model instability at the contact frictional 
surface between the glass and the rubber. The 
observation of chatter vibrations with a high-speed 
camera shows that the rubber blade vibrates in a 
bending mode mainly [6].  

The non-linear model is illustrated in Fig. 1(b). The 
rigid solid S represents the blade holder. The two rigid 
stems T1 and T2 whose respective lengths are L1 and L2 
and masses m1 and m2 describe the rubber blade. The 
top of the rubber blade is clamped in the blade holder 
whereas the end of the rubber blade is in contact with 
the glass. It may be noted that the two rigid stems T1 
and T2 allow the considerations of the first two bending 
modes of the rubber blade. 

A uniform load F0 which represents the uniform 
pressure under the rubber blade for a classic wiper blade 
is applied on the top of the rigid solid S. As indicated in 
Fig. 1(a) and (b), the previous load and the wiping 
motion introduce a leading angle between the rubber 
blade and the glass surface. The resulting contact (see 
point C in Fig. 1(b)) generates a frictional blade-glass 
interaction. As explained by a lot of researchers [2], [3], 
[7], [11], [13], [15], the friction contact between a pad 
(i.e. the rubber blade in this study) and a moving 

surface (i.e. the glass) may generate unstable motion 
(flutter instabilities) due to mode coupling depending on 
the contact angle between the two elements. 

The three elements of the rubber blade (i.e. the rigid 
solid S and the two rigid stems T1 and T2) are connected 
to each other by perfect pivot links coupled with a 
torsion stiffness k1 (between the solid S and stem T1), 
and with a torsion stiffness k2 (between stem T1 and 
stem T2). The solid S is linked to the rigid framework 
by a return spring of stiffness K1, as shown in Fig. 1. 
As previously explained, stem T2 rubs on the moving 
surface of the glass. It is assumed that the contact at 
point C is permanent and it is modelled using 
Coulomb’s law : 

= µT N (1) 

where T is the tangential component and N the 
normal component of the friction force.  

The non-linear wiper system has three degrees of 
freedom: the generalized coordinates chosen are the 
displacement u according to the vector x of the solid S, 
the angle θ between stem T1 and vector x  , and the 
angle φ between stem T2 and vector x , respectively. 

(a)  Physical system (b) Non linear model  

Fig. 1: Windscreen wiper blade 

The principle of virtual work helps to obtain the 
equations of motion for the non-linear system:  
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2
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2 2
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 ( ) sin(  - ) +N' L  sin  

2
+ f N' L  cos  + k ( ) 0

− + φ + φ

− φ − θ φ θ

+ θ φ θ φ
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(5) 

Coefficient f is the apparent coefficient friction [3]. It 
depends both on the friction coefficient µ at point C and 
on the leading angle α, as shown in the following 
formula: 

' cos sin
' cos sin

µ α − α
= =

α + µ α
Tf
N

(6) 

T’ and N’ are the projections of the friction force
onto x  and y  respectively (Fig. 1).

As it is assumed that the contact at point C is 
permanent, the linked equation is written: 

1 2

1 2 1 2

tan  (v + L  sin  + L  sin ) 
= u  L  cos   L  cos  + L  + L

α θ φ
− − θ − φ

(7) 

Considering the linked equation, the equations of 
motion of the non-linear system may be reduced to the 
form: 

( ) ( )
[ ]

       ,

with 

+ + =

=

MX + KX B X X FNL X X 0

X Tv θ φ
  (8) 

X , X  and X  are the acceleration, velocity, and 
displacement response 3-dimensional vectors of the 
degrees of freedom, respectively. M  and K  are 
constant matrices. Matrix ( )B X  and vector 

( ),FNL X X  contain the non-linear expressions (cf. 

appendix). 

IV. Stability analysis
The first step in the solution procedure is to obtain 

the steady state operating point for the full set of the 
non-linear system by the determination of the 
equilibrium solutions. These equilibrium solutions 

0 0 0( , , )=0X Tv θ φ   (i.e. = =X X 0 ) are obtained by
solving the non-linear static equations for a given load 
F0. These equilibrium points satisfy the following 
conditions [14]: 

( )0 0 ,+ =KX FNL X 0 0    (9) 
This system of equations is solved using an 

algorithm of the Newton-Raphson type. The difficulty is 
not to find the solutions, but to be sure to find all the 
solutions. This study not only proposes to find the first 
equilibrium point of the non-linear wiper system, but 
also all the solutions of the non-linear static equation 
(9). This helps to perform a complete stability analysis 
of the non-linear wiper system by considering the 
stability of each equilibrium point of the system. For 
this, the field of study is discretized in a very fine way 
and the initialization value of the Newton-Raphson 
series describes all the discretization points. The 
resolution of the system allows the determination of the 
stationary equilibrium positions 0X  of the non-linear 
system. 

Then, the stability of the non-linear system is 
investigated in the linearized equations, assuming small 
perturbations X  about the equilibrium point 0X  of the 
non-linear system: 

= +0X X X  (10) 
Replacing Equation (10) into Equation (11) leads to: 

( ) ( ) ( )0 0 0 ,+ + + + + =MX + K X X B X X X FNL X X X 0

Supposing that B and  FNL belong to the C1 class, 
developing the non-linear expressions as Taylor series 
and keeping the first order leads to: 

( )
0

0+ ≈ NL XB X X X M X    (11) 

( ) ( )
0

0 0+ ≈ + + NL X
FNL X X FNL X X K X   (12) 

Substituting the two linearized expression of the non-
linear terms B and  FNL  in the complete non-linear 
expression (6) and by using the non-linear static 
equation (9), the linearized system is given by 

NL NL( )  ( )  + + =M M X + K K X 0    (13) 
where NLM  and NLK  define the linearized expressions 

of ( ) B X  and ( ),FNL X X  at the stationary state 

configuration, respectively. 
The study of the poles λ of this system of equations 

(13) helps to determine the stability or instability of the 
system, as well as the type of instability (flutter, 
divergence). So, if at least one of the real parts of the 
poles is positive, the system is unstable; otherwise, it is 
stable. The imaginary parts of the poles give the 
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pulsation of the modes considered. The poles λ of the 
system are the six roots of the polynomial: 

( ) ( )2det ( ) ( )= + + +NL NLM M K KP λ λ   (14)

It is important to note that initially damping is neglected 
in the model for the sake of simplicity. However, it is 
known that damping can have a significant influence on 
the stability of mechanical systems:  if damping is 
equally distributed on the two modes involved in the 
mode coupling phenomenon, added damping stabilizes 
the mechanical system; this phenomenon is called the 
‘‘lowering’ effect. If damping is spread non-equally 
over the two modes, added damping may act in an 
unintuitive way by destabilizing the system; this 
phenomenon is referred as  the ‘‘smoothing effect’’ and 
destabilizing paradox.. For more details, we refer the 
interested reader to the following paper [12]. 

To illustrate the previous developments, two 
parametric stability studies are carried out on the 
present non-linear wiper system.  

The first parametric study shows the influence of 
force F0. Fig. 2 and 3 show respectively the evolution of 
the angles θ and φ and the values of the system’s poles 
according to F0 for µ=0.528. There are six two-by-two 
conjugate roots; so, for the sake of simplicity, only three 
are presented. For a slight variation of the load F0, 3 
zones appear, corresponding each to a state: steady 
equilibrium, unstable equilibrium with flutter and 
unstable equilibrium with divergence. For 

023 24≤ ≤F , the equilibrium position is unstable 
because of the presence of at least one positive real part. 
Moreover, as the imaginary parts of two poles are equal 
(they are also combined), there are only two modes 
instead of three. It is a coalescence of two modes. This 
instability is of the flutter type and corresponds to an 
instability caused by the coupling of two modes. These 
results are in perfect agreement with experimental tests 
carried out on the wiper system [6], [15]. They clearly 
show that unstable motions and chatter instabilities may 
be described by considering a higly non-linear 
phenomenological system. For 020 22≤ ≤F , the 
equilibrium positions are stable because the real parts 
resulting from the three modes are zero. The two modes 
which were confused, separate. For 010 19≤ ≤F , the 
system is in the position of divergent unstable 
equilibrium because one of the poles is a strictly 
positive reality.  

10 12 14 16 18 20 22 24
0

0.5

1

1.5

-1.5

-1

-0.5θ 
(r

ad
)

F0 (N)

stable
unstable

10 12 14 16 18 20 22 2410 12 14 16 18 20 22 24
0

0.5

1

1.5

-1.5

-1

-0.5θ 
(r

ad
)

F0 (N)

stable
unstable

(a) Angle θ 

10 12 14 16 18 20 22 24
0

0.5

1

1.5

-1.5

-1

-0.5φ 
(r

ad
)

F0 (N)

stable
unstable

10 12 14 16 18 20 22 24
0

0.5

1

1.5

-1.5

-1

-0.5φ 
(r

ad
)

F0 (N)

stable
unstable

10 12 14 16 18 20 22 2410 12 14 16 18 20 22 24
0

0.5

1

1.5

-1.5

-1

-0.5φ 
(r

ad
)

F0 (N)

stable
unstable

(b) Angle φ 

Fig. 2 : Equilibrium and stability of the system according to F0 for 
µ=0.528 (unstable=white dot, stable= black dot) 
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Fig. 3 : Real and imaginary parts of the poles according to F0 for 
µ=0.528 

The second study shows the influence of friction 
coefficient µ for various values of the angular stiffness 
k2. Fig. 4 to 6 describe the evolution of the equilibrium 
positions φ and θ with their stability, according to the 
friction coefficient for various angular stiffnesses k2. 

These various graphs highlight the system’s highly 
non-linear behaviour and the high sensitivity to the 
parameters. For the same set of parameters, the system 
may be in several different geometrical configurations 
(one to three positions of equilibrium). The system’s 
behaviour may present discontinuity zones, even with a 
continuous evolution of the various parameters. The 
direction of variation of µ may also influence the 
system’s behaviour (Fig. 4). Moreover, the stability of 
these points of equilibrium can change rather rapidly 
and several times with a slight variation of one 
parameter (Fig. 5).  

 Fig. 7 shows the evolution of the values of the 
system’s poles according to friction coefficient µ for 
k2=0.6 N.m / rad. Only two poles are plotted, as the 
values of pole 3 are too high to be represented on the 
same graph. For a slight variation of the friction 
coefficient [0.8 , 1.1], 3 zones appear, corresponding 
each again to a state. For µ=0.8, the equilibrium 
position is unstable. It is a coalescence of two modes 
which corresponds to a flutter instability. For 
0.85<µ<0.95, the equilibrium positions are stable, the 
two modes which merged now separate. For µ>1, the 
positions are unstable again, the system is divergent. 
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Fig. 4 : Equilibrium and stability of the system according to µ for 
k2=0.5 N.m / rad (unstable= white dot, stable= black dot) 
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Fig. 5 : Equilibrium and stability of the system according to µ for 
k2=0.6 N.m / rad 
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(a) Angle θ 

 (b) Angle φ 

Fig. 6 : Equilibrium and stability of the system according to µ for 
k2=0.7 N.m / rad (unstable= white dot, stable= black dot) 
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Fig. 7 : Real and imaginary parts of the poles according to µ for 
k2=0.6 N.m / rad 

V. Non linear behaviour –Limit cycles 
If the static point is unstable (i.e. flutter unstable), the 

system oscillates around its position of equilibrium with 
amplitudes which depend on the value of the 
parameters, in particular of the friction coefficient. In 
fact, these oscillations are self-sustained oscillations 
which decrease the performance of the system and can 
degrade it through fatigue. Thus, it is primordial to 
quantify the level of the system’s vibratory amplitude. 
To do so, the amplitudes of the limit cycles of the non 
linear system are studied. 

To determine the limit cycles, it is necessary to 
integrate the system (8) of differential equations of the 
second order which describe the system’s behaviour. It 
must be turned into the system of the first order below:  

( )=z F z (13) 
where  

1 1( ) ( )    ( )  ( )− −= +CL CLF z M z A  z M z T z

    T(t) ( (t), (t))=z X X
( )

( ) ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
CL

M + B z 0
M z

0 Id
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

0 K
A

Id 0

( )
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

FNL(z)
T z

0
 

The temporal resolution can be carried out starting 
from a discretization of the equations with formulas of 
the Runge-Kutta type. It consists in determining z(t), 
starting from an initial state at a given time interval [t0, 
tf]. 

To consider one case, the static and stability studies 
showed the existence of a flutter unstable equilibrium. 
The wiper system was initially positioned near its 
equilibrium position without velocity. The temporal 
resolution was carried out from 0s to 20s. The system 
evolved around its equilibrium position with constant 
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amplitude. Fig. 8 to 10 present the limit cycles of the 
variable states.  It must be noticed that if the system is 
initially positioned in an area around its equilibrium, the 
system oscillates with the same limit cycle. On the 
contrary, the amplitude of the limit cycles depends on 
the value of the friction coefficient. 

Fig. 8: Limit cycle of  v  

Fig. 9: Limit cycle of  θ  

Fig. 10: Limit cycle of  φ 

VI. Conclusion
This paper has presented the stability analysis and 

dynamics of a non-linear windscreen wiper blade. A 

non-linear phenomenological system has been 
developed in order to analyze chatter vibrations. It has 
been shown that unstable motions may be described by 
considering only the mode coupling of the rubber blade, 
the contact friction and the  leading angle between the 
rubber blade and the surface glass during wiping 
motion. The stability of all the equilibrium points of the 
non-linear system has been determined. Parametric 
studies have shown the system’s highly non linear 
aspect and high sensitivity to the parameters, in terms of 
equilibrium and stability. Finally, the non-linear 
behaviour and the limit cycles of this non-linear 
mechanical system when the equilibrium points are 
unstable have been obtained using a Runge-Kutta 
method.  

Appendix 
The governing nonlinear system equation is 

( ) ( )
[ ]

       ,

with 

+ + =

=

MX + KX B X X FNL X X 0

X Tv θ φ
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( cos(2 ) ) ( cos( )sin( )
cos sin( )) sin( )( cos( )

cos( ) )

= −

− − + − − +

+ − + −

+ − +

g v v q

q b q
q q L

L q

θ φ θ φ θ γ

θ θ γ φ φ α θ γ
θ φ γ θ γ θ α

φ α

( )3 7 0 4
2

3 4 10 4
2

5 11 8 6 4 1

2 8

( , , , , , )  F sin

( sin( ) cos( ) sin cos( ))

( sin(2 ) ) sin( )( cos( )
cos( ) )

= − +

− + + + −

− − − + − + −

+ − +

g v v r

r r

r b r L
L r

θ φ θ φ φ γ

θ φ γ θ γ θ φ α

φ φ γ φ γ θ α
φ α

    bi, pi, qi, ri, γi  are coefficients which depend on the 
system’s parameters. 
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