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Oscillatory Dynamics Induced in Polyelectolyte Gels by a
Non-Oscillatory Reaction: A Model.

J. Boissonade

Université de Bordeaux and CNRS, Centre de recherche Paul Pascal, 115 av. Schweitzer, F-33600 Pessac.

Abstract. We develop a general model and the associated numerical algorithm to compute the swelling
dynamics of chemo-responsive polyelectrolyte gels immersed in a reactive ionic solution kept at a non-
equilibrium stationary state by a permanent feed of fresh reactants. Using an autocatalytic bistable but
non-oscillatory reaction, namely, the bromate-sulfite reaction, we predict that a piece of hydrogel that
swells/shrinks as a function of pH, can exhibit spontaneous mechanical and chemical oscillations. This
constitutes the extension to realistic and experimentally feasible conditions of results previously obtained
on a toy model with artificial swelling conditions.

PACS. 8 2.40.Ck, 82.40.Bj, 82.33.Ln

1 Introduction

The swelling of gels under the action of external physi-
cal or chemical parameters is raising a growing interest in
view of multiple potential applications in sensors, actua-
tors, biomimetic systems or drug delivery. Among swelling
agents able to induce swelling, the chemical composition of
the solvent has received particular attention [1–5]. In this
article, we consider the coupling of chemical reactions with
chemo-responsive gels as a source of spontaneous mechani-
cal oscillations. Different strategies to get such mechanical
oscillations have been used. In all cases, a small piece of
hydrogel that swells/shrinks as a function of the compo-
sition of the solvent is plunged in a solution of chemicals
in large excess or permanently fed with fresh reactants.
These reactants diffuse into the gel where the reaction is
going on and drive the swelling process. More extensive re-
views than the following short introduction will be found
in [5]. First, one can immerse a piece of gel in an oscil-
lating reaction carried out in a continuous stirred tank
reactor (CSTR) or a large reservoir. The periodic changes
of concentrations induce periodic swelling/shinking cycles
of the gel [6,7]. The process was simulated with toy mod-
els by Villain et al. [8,9]. Alternatively, one can attach to
the gel a catalyst necessary for the reaction to oscillate by
grafting it on the polymer network. This has been done
for the Belousov-Zhabotinskii reaction (B.Z.) by Yoshida
and coworkers [10–12] and a model has been proposed by
Yashin and Balasz [13]. In this case, only the gel and its
contents are oscillating since the required conditions are
only fulfilled within it. However, in both cases, the source
of the oscillations is a purely chemical instability. Mechan-
ical oscillations are slaved to chemical oscillations that
would also occur in an inert gel (apart from slight changes
due to the dilution of the catalyst during swelling). Unfor-

tunately, oscillating reactions remain rare and the domain
of parameters where oscillations occur is often very small.

Other strategies based on bistability and on the as-
sociated hysteresis, a common phenomenon in nonlinear
physics, have been proposed. The basic principle is to cre-
ate a feedback that makes both states slightly unstable
so that the system permanently switches between them,
following periodically the hysteresis cycle. Siegel et al. use
the hysteresis of the volumic transition in a membrane
made of a gel responsive to pH to modulate its porosity
and the coupling through this membrane of two compart-
ments where an autocatalytic reaction takes place, leading
to chemical oscillations [14–16]. Instead, we proposed to
take advantage of chemical bistability and to use the vol-
ume changes caused by swelling/shrinking as a feedback
[17–19]. This was partly supported by a series of experi-
ments performed with the chlorite-tetrathionate (CT) re-
action in a poly(NiPAA-co-AA) gel [20–22]. We shall now
focus on this approach.

Although our former work [17–22] have clearly demon-
strated the validity of chemical spatial bistability as a
potential source of oscillations, there were still two sorts
of problems to be solved to get a coherent whole. First,
even in a non-responsive gel, the CT reaction exhibits,
in addition to spatial bistability, complex dynamics [23]
which perturbs the interpretations. Moreover, although a
description in terms of effective diffusion coefficients is suf-
ficient to understand the essential dynamics, the kinetic
model breaks down when the motion of ionic charges is
accounted for. The choice of a more apropriate reaction is
advisable. The second problem is also fundamental. In our
former toy models, the gel swelling properties were related
to the chemical composition of the solvent in an heuristic
way through an arbitrary dependence of the Flory param-
eter χ with one of the concentrations. More satisfactory
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models should rely on a more pertinent description of the
swelling source. In pH sensitive polyelectrolytes, the most
commonly used responsive hydrogels, the swelling is in-
duced by the osmotic pressure due to the partial ionisa-
tion of the polymer network. The purpose of this arti-
cle is to demonstrate that occurence of oscillations that
originate in pure chemomechanical instabilities based on
spatial chemical bistability can be predicted on the basis
of reasonable and more realistic models. We shall use the
Bromate-Sulfite reaction (BS) for which a good kinetic
model is available [25,26] and we shall develop a model of
swelling for a polyelectrolyte in presence of the reaction.
Beforehand, we shall briefly summarize the principles of
the chemo-mechanical instability. For more extensive de-
velopments on spatial bistability see [23,24] and on the
chemo-mechanical instability itself, see [18,19,23].

Many autocatalytic reactions carried on in a CSTR
exhibit bistability as a function of the residence time τ
[27] . At short τ , the extent of reaction ξ is low. The reac-
tion time is longer than the time to refill the reactor with
fresh reactants and the composition remains close to the
concentrations in the input flow. On the opposite, for a
long τ , ξ is large and the reaction is almost completed.
At intermediate values of τ , there are two stable states,
one with low ξ (the “flow” state F) and the other with
large ξ (the “thermodynamic” state T) selected accord-
ing with the previous history of the system. If a piece of
a chemically inert gel, plunged in the same almost unre-
acted medium – most often a CSTR kept in the F state – a
similar phenomenon called “spatial bistability” occurs as
a function of the typical size l of the gel. This parameter,
which determines the time to transport by diffusion the
reactants to the deep core of the gel, plays a role analog to
τ . If l is small, exchanges with the environment are faster
than reaction rates. The whole gel remains in a state close
to the reservoir (low ξ) and is again referred as a flow state
(F). If l is large, the reaction becomes dominant at some
distance of the boundary, so that the deep core of the gel
is at large ξ, except for a boundary layer that insures con-
tinuity of concentrations with the reservoir. This defines
the “mixed state” M. At intermediate sizes linf < l < lsup,
both states can be stable, which defines the spatial bista-
bility. A number of reactions have already been shown to
exhibit this phenomenon [23,26,28–30]. Obviously, other
parameters such as a concentration in the feeding medium
can be used to define the bistability domain, but l is the
most relevant to our goal. If one could slowly and continu-
ously increase l, starting from l < linf , one could follow the
F state branch until the system switches to the M state at
l = lsup. If, now, we reverse this change, l decreases and
the system follows the M branch down to l = linf , where it
switches back to the F state. In this way, one follows the
whole hysteresis cycle associated to the spatial bistability.
If we replace the inert gel by a chemo-responsive gel, the
changes of size l are spontaneously driven by the chemical
state. For instance, in the BS reaction that will be studied
further, the F state is alkaline and tends to make the poly-
acid gel to swell, whereas the M state is mainly acid and
tends to make the gel to shrink. If l is appropriate and the

swelling/shrinking process is slow enough in regard to the
reaction-difusion process, one can start on state F, swell
up to l = lsup, switch to state M, shrink down to l = linf ,
and switch back to state F. The process is repeated in-
definitely, leading to periodic oscillations both of the vol-
ume of the gel and of the concentrations within the gel.
One does not need an oscillating reaction, only a much
more common bistable one, to produce such a chemo-
mechanical instability. Some models have been proposed
to predict the dynamics of swelling in neutral gels with-
out reaction [31–35] or with reaction [9,13,18,19]. In the
second case, the chemical sensitivity of the gel is descibed
by an assumed and somewhat arbitrary dependence of the
Flory parameter χ, which gathers all the energetic inter-
actions of monomer and solvent molecules, on the con-
centration of a chemical species. However, most gels that
exhibit large volume variations are polyelectrolytes that
mainly swell under the action of the ionic osmotic pres-
sure [36–38]. Only a few dynamical complex models have
been developed to simulate the swelling of polyelectrolytes
in presence of simple ionic reactions [39,40]. With com-
plicated reactions implying both ions and neutral species,
the situation is still more complex in regard to the number
of involved primary and secondary phenomena with un-
known parameters. Thus, to work out a model that could
be applied to a realistic reaction, namely, the BS reaction,
we had to resort to some simplifications.

In this article, we consider a piece of gel immersed in a
CSTR kept in the F state by a permanent feed of fresh re-
actants. The equations are general but will be eventually
applied to the BS reaction. We limit ourselves to a one
dimensional (1-D) system. A gel swelling in a capillary is
not very realistic from an experimental point of view but
a good approximation to such a 1-D system could be ob-
tained by grafting a flat piece of gel on the bottom of the
reactor, provided that the thickness l is much smaller than
the size in the transverse directions for the effects of the
deformations in these directions to be limited to the edges
and to be neglected. In Section 2, we introduce a simple
model for the mechanism of swelling of the polyelectrolyte
in presence of a reaction. In Section 3, we establish gen-
eralized reaction-diffusion equations within such a gel. In
Section 4, are discussed some aspects of the spatial bista-
bility of the BS reaction. In section 5, we gather all the ele-
ments of the model and perform the numerical simulation
which demonstrate, that chemomechanical oscillations of
the type described above can actually be predicted. In an
inert gel, the model previously developed for the kinet-
ics and transport in the BS reaction is in good agreement
with experimental data [26]. Its extension to the swelling
gel remains more likely valid, but modeling the swelling
process itself needs a simplified description in which only
the main contributions are accounted for. Thus, it must be
clear that we do not claim we give an almost exact quan-
titative modeling of the dynamics, but we believe that
this approach captures the main phenomena, the orders
of magnitude, and the general trends. It should be consid-
ered as a first guide for experimentalists.
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2 The swelling model

There are three type of constituents in the gel: the solvent
(water), the polymer, and the solutes (the chemicals).

The concentrations ci of the chemicals are low so their
volume fraction is assumed to be negligible in regard to
the volume fraction φ of the polymer and the volume frac-
tion 1− φ of the solvent. The polymer is assumed to be a
polyacid. The concentration of ionisable sites in the poly-
mer in the absence of solvent would be ca0, so that their
concentration in the gel is given by ca = φ ca0. In the ref-
erential of the laboratory, the dynamics at a given point
in the gel are characterized by the velocity of the polymer
matrix vP . The permeation flow of the solvent through
the polymer matrix is associated to the relative velocity
δv = vP − vS where vS is the velocity of the solvent in
the same referential. Hydrogels are elastomeric materials
that can be considered as uncompressible. Then, in sys-
tems with stagnation points or fixed walls (like here), the
equation for mass balance expressed in terms of volume
fractions is given by the conservation law:

φvP + (1 − φ)vS = 0 (1)

which allows to express vS and δv as a function of vP .
The local force density acting on the polymer matrix is
given by f = ∇ · ¯̄σ where ¯̄σ is the stress tensor. These
forces result from the form of the free energy associated
to the mixing of the polymer molecules with the solvent
molecules, from the elastic forces exerted by the network
when deformations are applied, and from those associated
to the partial ionisation of the network. The stress tensor
can be splitted in two parts that correspond respectively
to an isotropic contribution and an anisotropic contribu-
tion in the form:

σij = −δijΠ
︸ ︷︷ ︸

isotropic

+ σ
(noniso)
ij
︸ ︷︷ ︸

nonisotropic

(2)

where Π can be considered as a pressure and is commonly
refered to as the “osmotic pressure”. It can be decomposed
in three terms corresponding to the three sources of forces:

Π = Πmix + Πelas + Πion (3)

For a unidimensional deformation, there is only one coor-
dinate and the anisotropic part of the stress tensor, which
is only due to the elastic forces, can be included in the
elastic contribution Πelas to the osmotic pressure. Then,
the system is at equilibrium when Π = 0. Out of equi-
librium, the osmotic forces are counterbalanced by the
friction forces exerted by the solvent on the network and
proportional to their relative velocity δv:

Friction forces = Osmotic forces

ζ(φ)δv = −∇Π (4)

where ζ(φ) is a friction coefficient which increases with
φ. The exact shape of this function is not well known.
Many authors use a dependence in φ3/2 on the basis of

theoretical arguments only valid for semidilute polymers.
At the low polymer densities on which we focus, we have
preferred the Ogston model based on flow analysis in fiber
networks [44], as proposed in [34]:

ζ(φ) =
RT

VS

1

D0
φ eη

√
φ (5)

where η is of the order of the ratio of the radius of the
polymer chains to the size of the solvent molecule and VS

the molar volume of the solvent. In the original theory,
D0 should be the autodiffusion coefficient of this solvent
but it was found in swelling experiments that the actual
value should be almost two orders of magnitude larger [34].
Thus, we shall consider D0 as an expandable parameter
in the range 0.01 mm2/s ≤ D0 ≤ 0.1 mm2/s.

The mixing term is written in agreement with the clas-
sical Flory-Huggins theory [36,41]:

Πmix = −
RT

VS
[φ+ log(1 − φ) + χφ2] (6)

The two first terms depend on the entropy of mixing, the
third one depends on the mutual energetic interactions
between the different molecules (solvent and monomers).
A more rigorous theory would need to introduce virial
coefficients specific to each gel [42]. Large swelling gen-
erally occurs when χ is slightly larger than 0.5. There
has been a great number of debates about the form of
the elastic terms without definite and universal answer.
At our level of description and in the absence of precise
experimental data – to be determined for each composi-
tion of gel – we shall follow the simple phenomenologic
approach of Barrière and Leibler [35] based on the work
of Bastide and Candau [43]. The authors assert that both
the free energy by unit volume and the elastic modulus
G(φ) scale like (φ/ψ)n. To fit at best with other theories
and recover Flory’s expressions [36], we use n = 1/3 and
ψ = φ0 where the reference state of volume fraction φ0 is
supposed to be in a relaxed state (normally a condensed
state before swelling). During swelling, the network expe-
riences deformations and a point i of initial coordinate Xi

is moved to coordinate xi at time t. In the following, we
consider the relaxed state as an initial undeformed state.
To remain unidimensional during swelling, the gel has to
be constrained by external walls or grafting. This implies
that, contrary to a gel that swells freely in its solvent, the
final equilibrium is not an isotropic state. The local defor-
mation at point i and time t is measured in a 1-D system
by :

λ =
dxi

dXi
(7)

A unidirectional transformation dXi → dxi can be de-
composed in an isotropic swelling dXi → dX ′

i with defor-

mation λ′ = (φ/φ0)
1

3 followed by an anisotropic stretch-
ing imposed by the constraints at constant volume (in-
compressibility condition) dX ′

i → dx′i with deformation

λ = (φ0/φ)
2

3 . On the basis of the above assertions, the
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following expression can be derived [35]:

Πelas = −Knet
RT

VS

(
φ

φ0

) 1

3

[

1 + Cλ

(

λ2
−

1

λ

)]

(8)

where Knet is a constant which depends on the network
properties and Cλ is a constant of order unity propor-
tional to the shear modulus G(φ). The terms that contain
λ represent the nonisotropic contribution to the osmotic
pressure.

To give an expression for Πion, we shall first consider
the equilibrium. In accordance with many authors [38],
we neglect, in this simple approach, all the electrostatic
interactions between the ions in the network to keep only
the entropy terms that should be dominant. We closely
follow the approach of Ric̆ka and Tanaka [37]. In the gel,
the ionisable monomers HA, the concentration of which
is ca0φ in the absence of dissociation, are actually partly
ionised into H+ and A− according to:

HA ⇆ H+ + A− (9)

with the equilibrium constant:

Kg =
[H+][A−]

[HA]
(10)

From equation (10), one gets:

ca =
Kgca0φ

Kg + [H+]
(11)

Whereas other ions are mobile, the ions A− are attached to
the network. According to the classical theory of the Don-
nan equilibrium, this creates an excess of mobile ions in
the gel in regard to their concentrations in the surround-
ing medium (here, the CSTR contents). This creates in
turn a pressure difference, which, for small concentrations
is analog to the pressure created by a perfect gaz:

Πion = RT
∑

i

(ci − c′i) (12)

where the sum was taken on the mobile ions, the c′i’s are
the concentration of these ions in the CSTR and the affini-
ties have been replaced by the concentrations. To cross the
boundary, the ions have to go through a potential differ-
ence δU in agreement with the Boltzman law:

ci
c′i

= exp

(

−
zi e δU

kBT

)

= Kzi (13)

where e is the charge of the electron, zi is the charge num-
ber of ion i and K is the Donnan ratio, which is com-
mon to all mobile ions. Given the c′i’s, and using equa-
tions (6,8,11,12,13), one can compute K and φ by solving
numerically the system of two nonlinear equations which
respectively express electroneutrality in the gel and me-
chanical equilibrium:

∑

i

cizi + zaca = 0 (electroneutrality) (14)

Π = 0 (mechanical equilibrium) (15)

where the charge number of A− is za=-1. The concentra-
tions of non ionic species are continuous at the boundary.
To solve the dynamical equations, we assume that the sys-
tem it at local Donnan equilibrium at the CSTR boundary
so that, at this point, Πion, φ and K can be computed as
explained above. Consequently, all the ca and ci’s concen-
trations are obtained from equations (11) and (13). This
defines completely the boundary condition. Inside the gel,
the generalisation of the calculation of Πion is not straigh-
forward, because the reaction creates or destroys not only
ions but also neutral molecules. One can assume that the
ionic osmotic pressure is proportional to the degree of ion-
isation of the polymer which can be written in the form:

Πion = Kionca (16)

To remain consistent, at the CSTR boundary, Πion com-
puted from equation (16) must be equal to the value al-
ready computed from equation (12). Thus, the value of
Kion is obtained from equation (16) where ca and Πion

at the boundary are respectively obtained from equations
(11) and (12).

If the distribution of concentrations and φ at time t
is known, it is now possible to compute Π at each point
inside the gel. Then, from equations (1) and (4), one gets
the velocity of the polymer

vP = −
(1 − φ)

ζ(φ)
∇Π (17)

and the velocity of the solvent

vS = −
φ

(1 − φ)
vP (18)

Taking into account the equation of conservation for the
polymer

∂φ

∂t
+ ∇ · (vP φ) = 0 (19)

one gets the dynamical equation for φ

∂φ

∂t
= ∇

(
φ(1 − φ)

ζ(φ)
∇Π

)

(20)

As equation (17), equation (20) describes the motion of
the polymer matrix through the evolution of the gel den-
sity. To solve our problem, one needs now to couple equa-
tion (20) to the equations that describe the reaction and
the transport of the chemical species in the gel.

3 The transport model

Inside the gel, the species are transported by three pro-
cesses, namely, migration due to the internal electric field,
diffusion, and convective motions due to swelling. Our
main hypothesis is that the solutes, indexed by i or k, are
convected like the solvent (i.e. at velocity vS), whereas the
anion A−, indexed by a, is attached to the network and is
obviously convected like the polymer (i.e. at velocity vP ).
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The transport model is a straightforward generalisation
of the transport equations for electrolytes as presented by
Newman [45]. The fluxes are given by the equations

Ni =

Nmi

︷ ︸︸ ︷

−Fziui∇U −Di∇ci + civS (21)

Na = cavP (22)

where F is the Faraday constant, ui is the mobility of
species i, Di its diffusion coefficient, and U is now the
diffusion potentiel created by the distribution of charges
when the diffusion coefficients of the ions are not all equal
[45]. In the expression of Ni, the first term Nmi corre-
sponds to migration, the second term to diffusion, and
the late term to convection. The current density is

j = F (
∑

i

ziNi + zaNa) (23)

Taking into account equations (21) and (22) and the elec-
troneutrality condition

∑

i

zici + zaca = 0 (24)

one gets

j = −κ∇U − F
∑

i

ziDi∇ci + Fδvzaca (25)

where the conductivity κ is defined by κ = F 2
∑

i z
2
i uici.

There is no permanent current, so that, writing j = 0
in equation (25), one can eliminate the potential U from
equation (21). We define the transference numbers

ti =
z2

iDici
∑

i z
2
kDkck

(26)

where the diffusion coefficients replace the mobilities since,
according to the Nernst-Einstein relation one has Di =
RTui. The migration flux Nmi becomes:

Nmi =
ti
zi

(
∑

k

zkDk∇ck − zacaδv

)

(27)

One can also eliminate one ion, indexed by n, from this
expression by rewriting the electroneutrality condition un-
der the form:

−zncn =
∑

k 6=n

zkck + zaca (28)

It is advisable to use a non reactive ion with a well known
diffusion coefficientDn. This is generally Na+ or K+ which
are often the cation of input reactive salts but which, most
of the time, remain spectators of the reaction, being only
involved in the transport by their electric charge. The final
expression for Nmi is:

Nmi =
ti
zi




∑

k 6=n

zk(Dk −Dn)∇ck −Dnza∇ca − zacaδv





(29)

The diffusion coefficients of the solutes depend on the vol-
ume fraction φ of the polymer. The diffusion coefficient
is proportional to the ratio ǫ/τ of the permitivity to the
tortuosity. Since we shall only consider small polymer den-
sities φ≪ 1, we assume that both ǫ and τ depend linearly
on φ. The available volume fraction for the solutes is 1−φ,
so that we can write ǫ = 1−φ. For the tortuosity, one has
τ = 1 + αφ where α is a coefficient of order unity (3/2
for a periodic network of spheres [46]). For diffusion, the
network can be seen as a random network of fibers. Ex-
trapolating the numerical simulations of Tomadakis and
Sotirchos [47] to φ→ 0, one find α ≈ 1. Thus, if D0i is the
diffusion coefficient of species i in pure solvent, we get:

Di(φ) ≈ D0i
1 − φ

1 + φ
≈ D0i(1 − 2φ) (30)

In the computations, we shall use Di(φ) = D0i(1 − 2φ).
The evolution of the concentrations are given by the

conservation laws

∂ci
∂t

= −∇ · Ni +Ri (31)

∂ca
∂t

= −∇ · Na +Ra (32)

where Ri andRa are the reaction terms ruled by the chem-
ical kinetics and Ni and Na are obtained from equations
(21), (22), and (29).

These transport equations are general. In the next sec-
tion, we introduce the kinetic terms Ri and Ra for the BS
reaction.

4 The reaction model

4.1 Kinetic equations for the BS reaction

The Bromate-Sulfite model is a reaction which is autocat-
alytic with H+ and has been studied previously both in
CSTR [25] and in the context of spatial bistability [26].
The reader is invited to refer to [26] for details on the
kinetic model and the experimental procedures. We shall
here report the essentials to understand the next section.
The gel is in contact with the contents of a CSTR fed
with solutions of bromate, sulfite and sulfuric acid at a
residence time τ=500 s. The volume of the CSTR is as-
sumed to be large enough in order that the reaction in-
side is not significantly influenced by the gel contents. The
kinetics equations, kinetic constants, and diffusion coeffi-
cients are the same as those used in [26] except for an ad-
ditional reaction to account for the dissociation of the gel
according to equation (9). The pK of the polyacid has been
fixed to 5.5 which should corresponds to the pK of a gel
of poly(N-isopropylacrylamide-co-acrylic acid) (NiPAAM-
co-AA) which is commonly used in swelling and chemo-
mechanics experiments. The kinetics are described by a
series of balance equations completed by fast equilibria
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BrO−
3 +3HSO−

3 → 3SO2−
4 +Br−+3H+ (R1)

BrO−
3 +3H2SO3 → 3SO2−

4 +Br−+6H+ (R2)
BrO−

3 +6H2SO3 → 3S2O
2−
6 +Br−+6H++3H2O(R3)

SO2−
3 +H+

⇆HSO−
3 (R4)

HSO−
3 +H+

⇆H2SO3 (R5)
SO2−

4 +H+
⇆HSO−

4 (R6)
HSO−

4 +H+
⇆H2SO4 (R7)

H+ + OH−
⇆H2O (R8)

H+ + A−
⇆HA (R9)

with the corresponding rate laws

r1 = k1[HSO−
3 ][BrO−

3 ]

r2 = k2[H2SO3][BrO−
3 ]

r3 = k3[H2SO3][BrO−
3 ]

r4 = k4[SO2−
3 ][H+] − k−4[HSO−

3 ]

r5 = k5[HSO−
3 ][H+] − k−5[H2SO3] (33)

r6 = k6[SO2−
4 ][H+] − k−6[HSO−

4 ]

r7 = k7[HSO−
4 ][H+] − k−7[H2SO4]

r8 = k8[H
+][OH−] −Kw

r9 = k9[H
+][A−] − k−9[HA]

The constants and the diffusion coefficients in pure water
used in the numerical simulations are respectively given in
Table 1 and Table 2. When they were unavailable in the
literature, the diffusion coefficients were fixed to reason-
able values and are marked with an asterisk. Results on
spatial bistability in a non responsive and chemically inert
gel have been reported in [26]. The introduction of reaction

Table 1. Kinetic constants used in the numerical simulations

k1 = 0.0653 M−1s−1
k2 = 18 M−1s−1
k3 = 0.7 M−1s−1
k4 = 5 × 1010 M−1s−1; k−4 = 3 × 103 s−1

k5 = 2 × 108 M−1s−1; k−5 = 3.4 × 106 s−1

k6 = 1. × 1010 M−1s−1 ; k−6 = 1. × 103 s−1

k7 = 1 × 1011 s−1; k−7 = 1.148 × 109 M−1s−1

k8 = 1.4 × 1011M−1s−1; Kw = 10−14
× k8

k9 = 1 × 1010M−1s−1; k−9 = 10−5.5
× k8 M−1s−1

Table 2. Diffusion coefficients. Asterisks correspond to values
used for unavailable coefficients.

Species zi Di × 10−5cm2s−1

H+ +1 9.312
BrO−

3 -1 1.485
SO2−

3 -2 1.1∗

HSO−

3 -1 1.5∗

OH− -1 5.26
SO2−

4 -2 1.065
HSO−

4 -1 1.33
S2O

2−

6 -2 1.0∗

Br− -1 2.084
H2SO3 0 1.6∗

Na+ +1 1.334

Fig. 1. Non equilibrium state diagram. F: Flow state. M:
Mixed state. F/M: Spatial bistability. CSTR input flows:
[BrO−

3 ]0=25 mM, [SO2−

3 ]0=60 mM

(R9) in a polyelectrolyte could modify the results. In order
to well distinguish effects of the sole chemistry from those
of chemo-mechanical instabilities, and also check that the
parameters requirements for the emergence such intabil-
ities are still fulfilled, we have repeated some of the pre-
vious simulations when a non diffusive complexing agent
such as A− is present inside the non-responsive gel, but
not in the CSTR. In these preliminary computations, the
purpose is to check the sole possible influence of the pres-
ence of the complex HA. Thus, as in [26], the volume frac-
tion of the gel is neglected. The concentration [HA]0 be-
fore dissociation was fixed to 5×10−2 M, that will be the
typical mean value for ca0φ that will be obtained for the
mechanically responsive polyelectrolytes in the next sec-
tion.

4.2 Spatial bistability of the BS reaction in presence of
a complexing agent

The concentrations in the input flow, indexed by 0, are
always chosen in order that the CSTR remains in the flow
state, i.e. slighly basic. The F and M states in the gel are
characterized by the pH at the bottom of the gel: basic
or quasi neutral for state F, acid (pH∼ 3) for state M.
The concentrations at the CSTR/gel boundary (x = l)
are derived in agreement with the rules of Donnan equi-
librium (with φ=0) and no flux boundary conditions were
applied at the opposite wall (x = 0). We found that the
presence of the complexing agent does not preclude spa-
tial bistability. In Figure 1, is shown a typical bistability
diagram in the plane ([H2SO4]0, l) where l is the size of
the 1-D system. For a given set of input concentrations,
the range of sizes l for which the system is bistable is an
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Fig. 2. Concentration profiles of H+ and ca in the gel. F: Flow
state. M: Mixed state. F/M: Spatial bistability. CSTR input
flows: [BrO−

3 ]0=25 mM, [SO2−

3 ]0=60 mM, [H2SO2−

4 ]0=6.5 mM,
l=1mm)

essential parameter for the emergence of chemomechanical
oscillations. We found that these limits of the bistability
region are almost independent of [HA]0 in the range of
concentrations we shall consider in the following section.

For information, we also report in Figure 2 the con-
centration profiles of H+ and ca in states F and M for
a set of data within the bistability range. The system
was previously found to exhibit marginal oscillations in
a very narrow domain of parameters for larges values of
[BrO−

3 ]0. However, it is known that, for most oscillatory
reactions, complexation of the catalyst generally kills os-
cillations whereas bistability is preserved. This is actually
the case. We have checked that these marginal oscillations
are totalled killed in the polyelectrolyte gel and that the
oscillations that will be evidenced in the next section are
of pure chemo-mechanical origin.

5 Chemo-mechanical oscillations

We now couple the chemical reactions with gel swelling,
solving simultaneously equations (20), (31), (32) where
the Ri’s and Ra are given by equations (34) and the ex-
pressions of ∇Π, Ni, and Na are computed as explained
in the previous sections.

5.1 Numerical techniques

To solve these equations, it is appropriate to switch to a
lagrangian representation on a fixed grid with a uniform
volume fraction φ0, size l0, and a constant spatial stepsize
δXi. In this 1-D system, the transformation from eulerian
coordinates x to lagrangian coordinates X is operated by
the simple transformation

x −→ X =⇒ ∇x −→
φ

φ0
∇X (34)

in the equations. At each time, one can recover the value
of xi corresponding to the point of coordinate Xi in the
fixed grid from the equation

xi =

∫ Xi

0

φ0

φ(X)
dX (35)

to get the values of ci(xi) and φ(xi) in eulerian coordi-
nates from ci(Xi) and φ(Xi). The integration on the la-
gragian fixed grid is performed with finite differences and
a method of lines based on a stiff fourth order Rosenbrok
temporal integrator [48].

5.2 Parameters choice

We limit ourselves in this presentation to the complete
determination of the oscillatory domain in a ([H2SO4]0,l0)
plane of the phase diagram for a unique representative set
of the other parameters.

Chemical parameters are archetypal of those that were
used in spatial bistability studies of the BS reaction. As
for computational results reported in Figure 1, the bro-
mate and sulfite concentrations in the input flow are re-
spectively fixed to [BrO−

3 ]0=25 mM and [SO2−
3 ]0=60 mM.

Only the size of the gel (through of l0) and [H2SO2−
4 ]0 are

systematically varied.
The choice of gel parameters is more problematic and is

only guided by the necessity to ensure that both the values
of these parameters and the swelling amount are similar
to those encountered in typical experiments. The reference
volume fraction φ0 is assumed to be the value of φ in a
fully contracted gel (acid medium). Since the gel must be
diluted (typically a few percent in the experiments), we
take φ0 = 0.05. To account for the shearing effects, we use
Cλ=1 as in [35]. To produce a significant swelling amount
without a full volume transition, the Flory parameter is
fixed to χ=0.515, i.e. a value slightly larger than 1/2, and
the corresponding value of Knet is obtained in the relaxed
state (no stress) from

Knet = −[φ0 + log(1 − φ0) + χφ2
0]φ

− 1

3

0 . (36)

As in section 4, the pKa of the gel is fixed to 5.5, the value
generally retained for the poly-Nisopropylamide-co-acrylic
acid (NiPAAM-co-AA) gels. In the simulations reported
in the next paragraph, the coefficients of equation (5) are
fixed to D0=0.03mm2/s and η = 5. In these computa-
tions, the size of the gel is changing during time. As a size
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Fig. 3. Non equilibrium state diagram of oscillatory chemo-
responsive gel. Black zone: oscillatory behavior (l is l0). Vertical
bars are covering the variations of gel size l during an oscillation
for three parameters sets (white points). The indicative limits
of spatial bistability for fixed size are reported from Fig. 1.

reference for a given system, we use l0, the size in the fully
contracted state, i.e. at volume fraction φ0. Since there is
always a part of the gel which is in a swollen state, at least
in the region close to CSTR/gel boundary, the real size l(t)
at a given instant t is always larger than this value.

5.3 Simulation results

The domain where oscillations are actually observed is
mapped out as a black region in the ([H2SO4]0, l0) pa-
rameter plane (Figure 3). In the definition of this region,
the ordinate l must be understood as the reference length
l0. The actual range of sizes covered during the oscilla-
tions for three representative sets of parameters (white
points) is represented as vertical bars. In reference to the
heuristic approach, the limits of spatial bistability already
computed in section 4 for the same parameters are also
replicated from Figure 1. One must be aware that they
are given for information but that they should be con-
sidered with caution. They were obtained for a stationary
system and a fixed value of [HA]0. In the present situation,
the polymer volume fraction is not uniform. It has some
influence on the diffusive transport, on the distribution
of charges and additional convective motions are present.
Moreover, the swelling time is not infinite in regard to the
reaction/diffusion characteristic time. However, one can
see that the minima and maxima of size during an oscilla-
tion are close the bistability limits, in agreement with the
heuristic theory.

Fig. 4. Oscillations of size l and of [H+] at the fixed wall
for point (2) in Fig. 3). [BrO−

3 ]0=25 mM, [SO2−

3 ]0=60 mM,
[H2SO4]0=11.10 mM. l0=0.25mm, D0=0.03 mm2/s, η=5.

As expected, the oscillations are periodic. The period
T and the amplitude ∆l of oscillations, for the three rep-
resentative points in Figure 3 are reported in Table 3.
To get a better idea of the effective size of the system,
we have added lm, the median value between the maxima
and minima and the relative amplitude ∆l/lm (expressed
in percent). For illustration, both the oscillations of size
and those of the concentration [H+] at the fixed wall are
shown in Figure 4 for point (2). Coupling the gel and the
reaction not only induces mechanical pulsations but also
gives rise to large pH oscillations in the deep core of the
gel, whereas the CSTR/gel interface keeps fixed concen-
trations.

When the size increases, the period changes from a few
hours to several days, so that using sizes lm > 1 mm would
not be realistic from an experimental point of view. Close
to the limits of the bistability region in a non-responsive
gel, i.e. at the largest [H2SO4]0 values (see point 1) for
which oscillations are observed, the amplitude of oscilla-
tions decreases as does the concentration gap between the
two states. In this region, whereas the swelling time de-
creases with the system size, reaction dynamics exhibit
some slowing down at the approach of the critical point

Table 3. Amplitude and period of oscillations.

point [H2SO4]0 l0 lm ∆l ∆l/lm T
(mM) (mm) (mm) (mm) % (h)

(1) 11.89 0.20 0.303 0.069 23 2.54
(2) 11.10 0.25 0.414 0.159 38 4.75
(3) 8.65 0.385 0.730 0.313 43 17
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Fig. 5. Oscillation shapes for points (1) and (3) in Fig. 3.

so that the two characteristic times are getting closer and
the oscillations present less relaxational features as can be
seen on Figure 5 where we compare the shape of an oscil-
lation at point (1) to the shape of an oscillation at point
(3).

6 Discussion and conclusions

Although our analysis is applied to a 1-D system, one ex-
pects that qualitative behavior and orders of magnitude
should be similar in other geometries since the increase in
size ratio that could result from constraining the system
to swell in a particular direction is somewhat counterbal-
anced by a larger shear stress that reinforces the elastic
forces which limit swelling. Actually, preliminary experi-
ments performed in our laboratory in conical gels evidence
mechanical oscillations with a period of a few hours [49].
More elaborate experimental systems are presently devel-
oped to get confirmation and reliable data for a more sys-
tematic analysis. Examination of Figure 3 provides im-
portant informations for experimentalists. An important
result is that, for [H2SO4]0 lower than a value close to
the critical bistability limit, there is always a small range
of sizes in which the gel exhibits mechanical oscillations.
Another point is that, even close to the critical bistability
limit where small sizes allow for the shortest periods, the
most suitable for experiments, the relative amplitude of
oscillations remains large enough for observations.

Although the model seems able to provide good qual-
itative predictions and general trends, there are some im-
portant limitations and approximation levels that should
be considered in the future. To conclude, let us briefly
summarize the most important assumptions that could
limit the validity of the model or its extensions to other
problems. We have neglected the role of electrostatic in-
teractions within the polymer chains. Their role is contro-
versial, although most authors consider the entropic effect
of the excess of free charges to be dominant. However, for
strong densities of charges, counterions condensation [50]
could significantly modify swelling predictions. We have,
as usual, also replaced activities by concentrations but

the domain of validity of this approximation is smaller for
ionic solutions than for neutral species. We also assumed
than the solutes are convected as the solvent and that their
diffusion is only modified by steric hindrance by means of
equation (30), neglecting all cross terms that would ex-
press other molecular interactions. By using a local Don-
nan equilibrium at the CSTR/gel boundary, we also im-
plicitly assumed that the equilibria of the type H++S−

⇆ HS are must faster that other reactive processes. This
means that in the stationary state of the CSTR, these re-
actions are actually at equilibrium, whereas these other
processes only realize a collective balance. This is actually
quite reasonable in the present case but could be ques-
tioned for other chemical systems. A more serious point
is raised by the expression for Πion inside the gel given
by equation (16) since the constant Kion has to be set by
reference to the values at the boundary. In a 1-D system
with a CSTR at stationary state, the boundary condition
is really invariant during the whole computation. More-
over, the value of this constant was found to present only
small variations when the composition of the CSTR was
changed within the flow state domain. Nevertheless, ex-
tension of the algorithm to non-stationary boundary con-
ditions would need to reconsider this question. Finally, our
approach is limited to the case of continuous size changes,
which excludes a discontinuous volume transition. The dy-
namics of such transitions has only been considered on
simple models with no charge, no ionic pressure and no
chemical reaction [33]. At the present time, extension to
such a situation is still out of reach, since, not only the
dynamics of steep fronts would have to be accounted for,
but the volume fraction of the polymer would be very
large in the shrunken phase so that standard descriptions
of transport would break down.

This work has been supported by CNRS and the Agence Na-
tionale de la Recherche. I am indebted to I. Szalai and P. De
Kepper for numerous discussions on the experimental develop-
ments and communication of their most recent results.

References

1. Nonlinear Dynamics related to Polymeric Systems edited
by I.R. Epstein and J.A. Pojman, Chaos 9 (1999) (focus
issue)

2. N.A. Peppas, P. Bures, W. Leobandund, H. Ichikawa, Eur.

J. Pharm. Biopharm 50,27 (2000)
3. Nonlinear Dynamics in Polymeric Systems, edited by J.A.

Pojman and Q. Tran-Cong-Miyata, p. 80 (ACS Sympo-
sium Series 869, ACS, Washington, 2003)

4. P. Calvert, MRS Bull. 33,207 (2008)
5. Chemomechanical Instabilities in Responsive Material,

edited by P. Borckmans, P. De Keppper, A. Kholkhov,
and S. Métens (Springer), to appear.

6. R. Yoshida, T. Yamaguchi, and H. Ichijo, Mat. Sci. Eng.
C 4, 107 (1996)

7. C.J. Crook, A. Smith, R.A.L. Jones and J. Ryan, Phys.
Chem. Chem. Phys. 4, 1367 (2002)

8. S. Villain: Ph. D. Thesis (in french), Univ. Paris VII (2007)



10 J. Boissonade: Oscillatory Dynamics Induced in Polyelectolyte Gels by a Non-Oscillatory Reaction: A Model.

9. S. Villain, P. Borckmans, and S. Métens in ref. [5]
10. R. Yoshida and T. Takahashi, J. Am. Chem. Soc. 118,

5134 (1996)
11. R. Yoshida , E. Kokufuta, and T. Yamaguchi, Chaos 9,

260 (1999)
12. R. Yoshida , M. Tanaka, S. Onodera, T. Yamaguchi, and

E. Kokufuta, J. Phys. Chem. A104, 7549 (2000)
13. V. V. Yashin and A. C. Balasz, Macromolecules 39, 2024

(2006)
14. A.P. Dhanarajan, G.P. Misra, and R.A. Siegel, J. Phys.

Chem. A106, 8835 (2002)
15. G.P. Misra and R.A. Siegel J. Controlled Release 81, 1

(2002)
16. X. Zou and R.A. Siegel J. Chem. Phys. 110, 2267 (1999)
17. J. Boissonade, Phys. Rev. Lett. 90, 188302 (2003)
18. J. Boissonade, Chaos 15, 023703 (2005)
19. J. Boissonade and P. De Kepper, in ref. [5]
20. F. Gauffre, V.Labrot, J. Boissonade, and P. De Kepper, in

ref. [3]
21. V. Labrot, Ph D Thesis (in french), Univ. Bordeaux (2004)
22. V.Labrot, P.De Kepper, J. Boissonade, I. Szalai, and F.

Gauffre, J. Phys. Chem. B109, 21476 (2005)
23. J. Boissonade, P. De Kepper, F. Gauffre and I. Szalai,

Chaos 16, 037110 (2006)
24. K.Benyaich, T. Erneux, S. Métens, S. Villain, and P. Bor-

ckmans, Chaos 16, 037100 (2006)
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38. U.P. Shröder and W. Oppermann in Physical Properties

of Polymeric Gels edited by J.P. Cohen Addad (Wiley,
Chichester, 1996), p. 19.

39. E.C. Achilleos, K.N. Christodoulou and I.G. Kevrekidis,
J. Comp. Polym. Sci. 11, 63 (2001)

40. J. Dolbow, E. Fried and H. Ji, J. Mech. Phys. Solids 52,
51 (2004)

41. M. Doi, Introduction to Polymer Physics (Clarendon
Press-Oxford Univ. Press, Oxford, 1996)

42. A.Y. Grossberg and A.R. Kholkhlov, Statistical Physics of

Macromolecules (AIP Press, New York 1994)
43. J. Bastide and S.J. Candau,” Structure of gels investigated

by static scattering techniques” in Physical Properties of

polymeric Gels, ed. J.P. Cohen Addad (Wiley, Chichester
1996), 143

44. A.G. Ogston, B.N. Preston and J.D. Wells, Proc. R. Soc.
Lond. A 333, 297 (1973)

45. J. Newman and K.E. Thomas-Alyea, Electrochemical Sys-

tems (Wiley, New-York 2004),Ch. 11.
46. E.M. Cussler, Diffusion: Mass Transfer in Fluid Systems

(Cambridge University Press, Cambridge 1997)
47. M. M. Tomadakis and S. V. Sotirchos, AIChE Journal 39,

397 (1993)
48. P. Kaps and P. Rentrop, Numer. Math. 33,55 (1979)
49. I. Szalai and P. De Kepper, private communication.
50. G. Manning, J. Chem. Phys. 51, 924 (1969)


