Ana-Elena Rugina
email: elena.rugina@astrium.eads.net

Karama Kanoun
email: kanoun@laas.fr

Mohamed Kaâniche
email: kaaniche@laas.fr

The ADAPT Tool: From AADL Architectural Models to Stochastic Petri Nets through Model Transformation

ADAPT is a tool that aims at easing the task of evaluating dependability measures in the context of modern model driven engineering processes based on AADL (Architecture Analysis and Design Language). Hence, its input is an AADL architectural model annotated with dependability-related information. Its output is a dependability evaluation model in the form of a Generalized Stochastic Petri Net (GSPN). The latter can be processed by existing dependability evaluation tools, to compute quantitative measures such as reliability, availability, etc.. ADAPT interfaces OSATE (the Open Source AADL Tool Environment) on the AADL side and SURF-2, on the dependability evaluation side. In addition, ADAPT provides the GSPN in XML/XMI format, which represents a gateway to other dependability evaluation tools, as the processing techniques for XML files allow it to be easily converted to a tool-specific GSPN.

Introduction

The increasing complexity of new-generation systems raises major concerns in various critical application domains, in particular with respect to the validation and analysis of performance, timing and dependability-related requirements. Model-driven engineering (MDE) approaches aimed at mastering this complexity during the development process have emerged and are being increasingly used in industry. They address the problem of complexity by promoting reuse and partial or total automation of certain phases of the development process. These engineering approaches must be supported by languages and tools that provide means to ensure that the implemented system complies with its specifications. In particular, the automatic derivation of models allowing the analysis of quality attributes 1 (such as dependability and performance) from modeling languages used in MDE is of primary interest.

The AADL (Architecture Analysis and Design Language) is considered in a number of projects aiming at defining and implementing tool support for MDE. It has received a growing interest from the embedded safety-critical industry (e.g., Honeywell, Rockwell Collins, Lockheed Martin, the European Space Agency, Astrium, Airbus) and has been standardized in 2004 under the auspices of the International Society of Automotive Engineers [START_REF]SAE Architecture Analysis and Design Language (AADL)[END_REF]. AADL provides a standardized textual and graphical notation for describing software and hardware system architectures and their functional interfaces. The serious consideration of AADL by the embedded safety-critical industry is justified by the AADL's advanced support for modeling reconfigurable architectures and for analyzing quality attributes [START_REF] Blanquart | Toward Model-Based Engineering for Space Embedded Systems and Software[END_REF].

Several tools have been implemented so far in order to support various analyses based on AADL models. [START_REF] Sokolsky | Schedulability Analysis of AADL Models[END_REF] reports the implementation of a tool that automatically translates an AADL model into the real time process algebra ACSR (Algebra of Communicating Shared Resources), for schedulability analysis. Schedulability and memory requirements can be analyzed by simulation and feasibility tests with the Cheddar tool [START_REF] Singhoff | Scheduling and Memory Requirements Analysis with AADL[END_REF]. The Open Source AADL Tool Environment (OSATE)2 supports resource allocation analysis, while the Ocarina toolset3 allows searching for deadlocks and un-initialized variables. As far as quantitative dependability analyses are concerned, to the best of our knowledge, the only tool reported in the literature is a fault tree generator prototype, proprietary of Honeywell [START_REF] Joshi | Automatic Generation of Static Fault Trees from AADL Models[END_REF]. It only targets reliability and safety measures and is not well suited for obtaining other dependability measures, such as availability, if the components' behaviors are not stochastically independent. Our prototype tool ADAPT (from AADL Architectural models to stochastic Petri nets through model Transformation), which is presented in this paper, aims at facilitating the evaluation of various dependability measures (such as reliability and availability) from AADL models. It is based on model transformation rules, from AADL to Generalized Stochastic Petri Nets (GSPNs). The use of GSPNs has several advantages: (1) they can be automatically converted into Markov chains that are very powerful in capturing stochastic dependencies between components and in the evaluation of dependability measures, (2) they allow modular and hierarchical modeling for component-based systems, similarly to AADL, and (3) they provide means for structural verification of the model. Such verification support facilities are very useful when dealing with large models. The AADL architectural model given as input to ADAPT can be used unmodified for several complementary analyses, such as those mentioned above, which enables making tradeoffs during system design with respect to various view points.

The remainder of this paper is structured as follows. Section 2 gives a brief overview of AADL. Section 3 is dedicated to the principles that guided the definition of the model transformation rules from AADL to GSPN. Section 4 presents ADAPT from the developer's and from the user's perspective. Section 5 summarizes the paper and presents perspectives for improving ADAPT.

About AADL

In the AADL, systems are modeled as hierarchical collections of interacting application components (processes, threads, subprograms, data) and a set of execution platform components (processors, memory, buses, devices). The application components are bound to the execution platform. Dynamic aspects of system architectures are captured with the AADL operational mode concept.

The analysis-related information is described separately and then plugged into the architectural model. In particular, the AADL Error Model Annex [START_REF]SAE Architecture Analysis and Design Language (AADL) Annex Volume 1, Annex E: Error Model Annex[END_REF] has been defined and standardized to complement the AADL core language in support to describing dependability-related information (such as faults, fault propagation, repair, fault-tolerance strategies). The AADL architectural model is annotated with error model constructs in order to describe the behavior of components and connections in the presence of faults.

An error model is a stochastic automaton declaring states, events, propagations and transitions between states. Transitions are triggered by events or propagations, which are directional (in or out). Events and propagations are characterized by Occurrence properties (fixed probabilities or distributions). An outgoing propagation of a component is matched to an incoming propagation of another component if the components are connected or bound at the architectural level. When an error model is associated with a component, it is possible to customize it by setting component-specific values for the occurrence for error events and error propagations declared in the error model. It is also possible to filter propagations by using Guard properties.

The behavior of the system is obtained by composing the individual behaviors of components, according to dependency rules specified in the AADL Error Model Annex [START_REF]SAE Architecture Analysis and Design Language (AADL) Annex Volume 1, Annex E: Error Model Annex[END_REF]. Such dependencies may result for example from fault propagations between components, or from functional of structural interactions. The tool ADAPT traverses the AADL architectural model to search for error models and uses these dependency rules to establish correspondences between out propagations of a particular component and name-matching in propagations or Guard properties of other components.

On the model transformation

ADAPT supports the modeling framework published in [START_REF] Rugina | A System Dependabiliy Modeling Framework using AADL and GSPNs[END_REF]. This framework is formed of an iterative modeling approach with modeling guidelines, reusable patterns for fault-tolerant architectures and a model transformation from AADL to GSPN that allows obtaining dependability measures from the AADL model. ADAPT implements the set of transformation rules from AADL to GSPN presented and formalized in [START_REF] Rugina | Dependability Modeling and Evaluation -From AADL to Stochastic Petri Nets[END_REF]. The set of model transformation rules has been designed to be automated. Also, the definition of the rules favors the modularity of the GSPN. Indeed, the resulting GSPN is structured as a set of subnets: component subnets that model the behavior of components in the presence of their own faults and repair events, and dependency subnets that model the dependencies.

We defined two sets of transformation rules. The first set is devoted to the transformation of the AADL models of the components, to create the component subnets: the components' error models are processed by taking into account their states and transitions, triggered by events. The second set of rules is related to the transformation of the dependencies between the system components (i.e., functional, structural, maintenance and fault-tolerance). To this end, we have identified all AADL constructs necessary for describing dependability-related dependencies, and we have defined modeling rules for each type of dependency. We have then defined transformation rules for all these constructs. Thus, the resulting set of rules is necessary and sufficient for obtaining a GSPN describing all the identified types of dependencies.

Dependencies are usually described by namematching inout propagations. In a first step, out propagations are identified. Then, for each out propagation, the AADL architectural model is traversed in order to find in propagations in other components that occur as effects of the out propagation. The name-matching inout propagations are then transformed to obtain dependency subnets.

The subsequent rules are devoted to transforming propagation filtering and masking mechanisms (i.e., Guard_In and Guard_Out properties), mechanisms for connecting error states to operational modes (i.e., Guard_Event and Guard_Transition properties, activate/deactivate transitions) and hierarchical models (i.e., abstract and derived error models).

Overview of ADAPT

ADAPT interfaces the Open Source AADL Tool Environment (OSATE4) on the AADL side and SURF-2 [START_REF] Béounes | Surf-2: a program for dependability evaluation of complex hardware and software systems[END_REF] on the GSPN side. OSATE is the most used AADL modeling tool. From a developer's point of view, OSATE provides useful methods for traversing and processing the AADL architectural model. In addition to OSATE, we also base our tool on the set of plug-ins developed at the Carnegie Mellon Software Engineering Institute that allow parsing the Error Model Annex5 constructs. http://www.aadl.info/downloads/errormodel-1.1.6/osateerrormodel-frontend-1.1.6-08142007.zip

A developer's perspective

ADAPT is built in the Java programming language on top of the Eclipse IDE 6 (integrated development environment). This implementation choice is due to the fact that we interfaced our tool with OSATE. Other implementation alternatives are recent metamodelbased transformation languages such as ATL [START_REF] Jouault | Transforming Models with ATL[END_REF], MOLA [START_REF] Kalnins | Model Transformation Language MOLA[END_REF], MTL 7 or GReAT [START_REF] Agrawal | Graph Transformations on Domain-Specific Models[END_REF]. Model transformation techniques supported by them are compared in [START_REF] Czarnecki | Classification of Model Transformation Approaches[END_REF]. ADAPT consists of 10 kilo lines of code, half of which are automatically generated from an Ecore8 metamodel using the Eclipse Modeling Framework (EMF) [START_REF] Budinsky | Eclipse Modeling Framework[END_REF]. EMF is a modeling framework and code generation facility for building tools and other applications based on a structured data model. From a metamodel specification described in XMI or Ecore, EMF provides tools and runtime support to produce a set of Java classes for the model. We have used this facility to automatically generate the Java classes for handling GSPN elements (see Section 4.1.1).

Figure 1 presents an overview of ADAPT: its structure and interfaces with AADL and GSPN tools respectively. ADAPT is depicted in dark gray together with its outputs. The AADL and GSPN tools it interfaces are shown in light gray. The black dotted arrows represent interactions of type "depends on", e.g., ADAPT depends on OSATE and the Error Model Annex plug-ins.

ADAPT is structured as a set of three Eclipse plugins: 1) gspnModel plug-in: contains methods for the creation and handling of GSPN objects. 2) dependency plug-in: contains methods for identifying the existence of dependencies in the AADL model. 3) aadl2gspn plug-in: implements our transformation rules. This is the main plug-in of ADAPT. It depends on the methods implemented in the dependency plug-in to handle the AADL model and identify possible dependencies. It also depends on the gspnModel plug-in to build the GSPN. The generated GSPN is saved in two forms: a generic XML/XMI file and a tool-specific file complying with the file format of the dependability evaluation tool SURF-2. Both files are obtained from the same GSPN object model, internal to ADAPT. The tool-specific file may also be obtained directly from the XML/XMI file. Possible interfaces with other GSPN-based dependability evaluation tools are represented with dashed arrows. 4.1.1. gspnModel plug-in: Ecore metamodel. This plug-in offers all the methods necessary for creating and customizing GSPN elements (places, transitions and arcs) and for traversing a GSPN model. The code of this plug-in has been automatically generated from an Ecore metamodel of GSPN using the EMF. The GSPN built by ADAPT is compliant with this metamodel. An XML/XMI schema is also generated from the Ecore metamodel. ADAPT saves the GSPN under XML/XMI format, which is compliant with this schema.

Figure 2 shows the Ecore metamodel used by the Eclipse Modeling Framework to generate the code. 4.1.2. dependency plug-in. This plug-in is a library of methods aimed at identifying possible dependencies between components of the AADL model. The details of this library are presented in [START_REF] Bruffa | A Library Implementing Propagation Rules defined in the AADL Error Model Annex[END_REF]. From a practical point of view, this plug-in implements the elementary dependency rules specified by the AADL Error Model Annex. They determine the possible dependencies between error models associated with components and connections, based on the various interactions in the architectural model. Besides a few special cases, most of the interactions fall into the three following categories: 1) They may be due to the fact that application components run on top of platform components. For example, out propagations declared in an error model associated with a processor are visible in all threads bound to that processor. 2) They may be due to the fact that application components interact through connections, accesses to shared data and calls to services provided by other components. For example, out propagations declared in an error model associated with a component can impact all components reachable through connections. 3) They may be due to the fact that platform components are connected to each other through shared access to buses. For example, out propagations declared in an error model associated with a bus arrive to all components accessing the bus. The methods implemented in this plug-in allow identifying receiver and sender components or connections for a given error propagation declared in an error model associated with a component or a connection of the system instance. Once the dependencies are identified, the aadl2gspn plug-in takes over to perform the model transformation. 3. aadl2gspn plug-in. This is the main plug-in of our tool. It performs the transformation of error model elements into GSPN elements, according to the rules presented in [START_REF] Rugina | Dependability Modeling and Evaluation -From AADL to Stochastic Petri Nets[END_REF]. It implements a metamodelbased transformation. It uses the metamodels of the AADL [START_REF]SAE Architecture Analysis and Design Language (AADL) Annex Volume 1, Annex C: AADL Meta-Model and Interchange Formats[END_REF] and of the AADL Error Model Annex [START_REF] Feiler | Error Model Meta Model and Plug-in[END_REF] as a source and of the GSPN as a target.

The transformation is performed iteratively. First, the model transformation rules for independent components are applied. Then possible dependencies are identified and the transformation rules for dependencies are applied.

A user's perspective

An OSATE user installs ADAPT as an Eclipse feature and a set of plug-ins. ADAPT requires that the Error Model Annex support plug-ins, provided by the Carnegie Mellon Software Engineering Institute, be installed too. In order to run the AADL to GSPN transformation tool, the user must instantiate an AADL system model, and select the resulting system instance. The system instance must have an associated Derived_State_Mapping expression that we use to derive the state partitions necessary to the dependability evaluation tool, to evaluate measures. A Derived_State_Mapping expression represents the behavior of a component in the presence of faults in terms of global states as a logic expression of the states of its subcomponents.

The Derived_State_Mapping expression associated with the system instance must explicitly define the Failed global state of the system instance as a Boolean expression of states of its components. If safety is among the targeted measures, a Catastrophic global state must also be defined.

The ultimate goal is to obtain quantitative dependability measures. Thus, ADAPT requires that all events and propagations have Occurrence properties (fixed probabilities or Poisson distributions). If an event or a propagation does not have an Occurrence property specified, ADAPT assumes it is immediate of probability 1.

The GSPN obtained after transformation is saved in two files with different formats: -a generic XML/XMI file, which is a gateway for interfacing other dependability evaluation tools with a minimum amount of effort. -a tool-specific file that can be imported in the dependability evaluation tool SURF-2. SURF-2 allows the user to customize the model by giving particular values or value ranges to model parameters corresponding to symbolic Occurrence properties coming from the AADL model. The user is also required to define rewards and the measures of interest.

Summary and future work

This paper presented ADAPT, a model transformation tool whose input is an AADL architectural model annotated with dependabilityrelated information and whose output is a dependability evaluation model in the form of a GSPN. The tool interfaces OSATE on the AADL side and SURF-2 on the dependability evaluation side. Also, it can be easily interfaced with other GSPN-based dependability evaluation tools as it generates a GSPN in a generic XML/XMI format. It is noteworthy that ADAPT is available upon request as open-source, so that it can be reused for further AADL-related developments.

ADAPT is built as a set of plug-ins on top of the Eclipse platform. In the current prototype, all transformation rules presented in [START_REF] Rugina | Dependability Modeling and Evaluation -From AADL to Stochastic Petri Nets[END_REF] are implemented, except for the rules for activate/deactivate transitions and derived error models. As a consequence, it is assumed that the behavior of the system in the presence of faults is identical in all operational modes. Future work includes the implementation of the remaining rules.

We have used the current ADAPT prototype to transform the AADL dependability model of a subsystem of the French Air Traffic Control System including two hardware components sharing a repairman, a fault-tolerant software unit and eight dependencies of several types.

Finally, it is worth to mention that PNML (Petri Net Markup Language) [START_REF] Iso/Iec | Software and Systems Engineering -Highlevel Petri Nets, Part 2: Transfer Format[END_REF] is intended to become an extensible interchange standard for Petri nets. Our work can be easily extended by using the PNML instead of the rather simple meta model for GSPN illustrated in Figure 2.

Figure 1 .

 1 Figure 1. Overview of ADAPT The three plug-ins forming our model transformation tool are described successively in subsections 4.1.1, 4.1.2 and 4.1.3.

 PetriNet object contains several Arcs and several PlaceOrTransition elements. Arcs are described by a weight while PlaceOrTransition elements are identified by names. Arcs and PlaceOrTransition elements cannot be instantiated directly (they are abstract). Concrete arcs of types PlaceToTransition and TransitionToPlace can be instantiated and inherit from the Arc elements. Place and Transition elements inherit from the PlaceorTransition elements. A Place is characterized by an initial marking. A Transition is characterized by an Occurrence type and a parameter. Associations are established between the TransitionToPlace / PlaceToTransition arcs and Place and Transition elements.

Figure 2 .

 2 Figure 2. Ecore metamodel for GSPN 4.1.3. aadl2gspn plug-in. This is the main plug-in of our tool. It performs the transformation of error model elements into GSPN elements, according to the rules presented in[START_REF] Rugina | Dependability Modeling and Evaluation -From AADL to Stochastic Petri Nets[END_REF]. It implements a metamodelbased transformation. It uses the metamodels of the AADL[START_REF]SAE Architecture Analysis and Design Language (AADL) Annex Volume 1, Annex C: AADL Meta-Model and Interchange Formats[END_REF] and of the AADL Error Model Annex[START_REF] Feiler | Error Model Meta Model and Plug-in[END_REF] as a source and of the GSPN as a target.The transformation is performed iteratively. First, the model transformation rules for independent components are applied. Then possible dependencies are identified and the transformation rules for dependencies are applied.

Quality attributes are also referred to as non-functional properties in the literature.

http://www.aadl.info/OpenSourceAADLToolEnvironment.html

http://ocarina.enst.fr

http://www.aadl.info/OpenSourceAADLToolEnvironment.html

http://www.eclipse.org/

http://modelware.inria.fr/article66.html

Ecore is a small and simplified subset of UML, used in the Eclipse Modeling Framework.

Acknowledgements. This work is partially supported by 1) the European Commission (ReSIST Network of Excellence No. IST 026764), 2) the European Social Fund and 3) Zonta International Foundation.