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Introduction

In continuation of [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF], we have analyzed in [START_REF] Helffer | On minimal partitions: new properties and applications to the disk[END_REF] the question of minimal 3partitions for the disk and introduced new tools for this partially successful analysis. In the same spirit, we discuss here the similar question for the rectangle where λ(D i ) is the ground state energy of the Dirichlet Laplacian on D i . We denote the infimum on every k-partitions of Ω by

L k (Ω) = inf D∈O k Λ(D) . (1.2) 
We look for minimal k-partitions, that is partitions such that L k (Ω) = Λ(D) .

It has been observed in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] that, when 0 < a b < 3 8 the minimal 3partition is given by the three nodal domains of the third eigenfunction corresponding to the three rectangles ] -a 2 , a

2 [×] -b 2 , -b 6 [ , ] -a 2 , a 2 [×] -b 6 , b 6 [ and ] -a 2 , a 2 [×] b 6 , b 2 [ . 
In the case when 3 8 < a b ≤ 1 , we can show as for the disk, see [START_REF] Bonnaillie-Noël | Numerical simulations for nodal domains and spectral minimal partitions[END_REF], that L 3 (R a,b ) is not an eigenvalue. Indeed, λ 2 (R a,b ) = λ 3 (R a,b ) < λ 4 (R a,b ). By Theorem 2.4 below, see [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] for the proof, L 3 (R a,b ) cannot be an eigenvalue and hence the associated minimal partition cannot be nodal.

We will describe in Section 4 a possible mechanism of transition for increasing a b between these nodal minimal 3-partitions and non nodal minimal 3-partitions at the value 3 8 and discuss the existence of symmetric candidates for giving minimal 3-partitions when 3 8 < a b ≤ 1 in Sections 6-7. We can exhibit numerically some candidates for the minimal 3-partition using symmetry. Assuming that there is a minimal partition which is symmetric with respect to the axis {y = 0} , and intersecting the partition with the half-square ]- 1 2 , 1 2 [×]0, 1 2 [ , one is reduced to analyze a family of Dirichlet-Neumann problems. Numerical computations 2 performed by V. Bonnaillie-Noël and G. Vial (in January 2006) lead to a natural candidate D for a symmetric minimal partition (see Figure 1(a)). We observe numerically that the three lines of N (D) (i.e. the interior boundary of the subdomains D i of the partition, see Definition (2.6)) meet at the center (0, 0) of the square. As expected by the theory they meet at this critical point with equal angle 2π 3 and meet the boundary orthogonally. This choice of symmetry is not unique. By exploring numerically the possibility of a minimal partition with another symmetry (diagonal), we get the surprise to find another candidate D new with Λ(D new ) = Λ(D) (see Figure 1(b)). This leads very naturally to nice questions of isospectrality which are solved using Aharonov-Bohm Hamiltonians or by going on the double covering of the punctured rectangle. Sections 5-6 concern these questions.

The paper is organized as follows:

In Section 2, we recall some notation and properties concerning the nodal partitions. In Section 3, we start with the analysis of the rectangle based on results of [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] and enumerate in particular all the possible Courant-sharp situations. There appears the limiting case a/b = 3/8 detailed in Section 4 in which a mechanism is proposed which explains the transition between the nodal 3-partition and the non nodal one. Motivated by the numerical simulations for the square we find two candidates for the minimal 3-partition with the same energy. We analyze in Section 5 the Aharonov-Bohm Hamiltonian and give some isospectral properties for rectangles. This theory is applied in Section 6 to explain numerical simulations for the minimal 3-partitions on the square. The paper ends in Section 7 with some heuristics on the deformation of symmetric minimal partitions corroborated with numerical simulations for rectangles ]

-ǫπ 2 , ǫπ 2 [×] -π 2 , π 2 [ from ǫ = 3 8 to ǫ = 1.

Definitions, notation and previous results

As in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] (see also [START_REF] Helffer | On minimal partitions: new properties and applications to the disk[END_REF]), we consider the Dirichlet Laplacian on a bounded domain Ω ⊂ R 2 , which is piecewise C ∞ . We denote, for any open domain D, the lowest eigenvalue of the Dirichlet realization H(D) of -∆ in D by λ(D).

For any function u ∈ C 0 0 (Ω) , we introduce

N (u) = {x ∈ Ω u(x) = 0} (2.1)
and call the components of Ω \ N (u) the nodal domains of u. The number of nodal domains of such a function is denoted by µ(u).

We now recall the main definitions and results concerning spectral minimal partitions and refer to [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] for proofs and details. For

k ≥ 1 (k ∈ N), we call a k-partition of Ω a family D = {D i } k i=1 of pairwise disjoint open domains in Ω. Such a partition is called strong if Int (∪ k i=1 D i ) \ ∂Ω = Ω . (2.2) 
We denote by O k the set of such partitions.

For D ∈ O k we introduce Λ(D) = max i=1,...,k λ(D i ) , (2.3) 
and

L k = inf D∈O k Λ(D) . (2.4) D is called a (spectral) 3 minimal k-partition if L k (Ω) = Λ(D)
and a nodal minimal k-partition if D consists of the nodal domains of an eigenfunction of H(Ω).

To each strong partition D we associate a graph G(D) in the following way:

We say D i , D j ∈ D are neighbors, and we denote this by

D i ∼ D j , if Int (D i ∪ D j ) \ ∂Ω is connected. (2.5)
We associate to each D i ∈ D a vertex v i and for each pair D i ∼ D j an edge e i,j . This defines a planar graph G(D). We say that the partition is admissible if the corresponding graph is bipartite. We recall that a nodal partition is always admissible. Attached to a partition D, we can associate a closed set N ∈ Ω defined by

N (D) = i (∂D i ∩ Ω) . (2.6)
This leads us to introduce the set M(Ω) of regular closed sets N which share with nodal sets all the standard properties except at isolated critical points where they have only 4 the equal angle meeting property. More precisely, we recall from [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] the following definition.

Definition 2.1 A closed set N ⊂ Ω belongs to M(Ω) if N satisfies (i)
There are finitely many distinct x i ∈ Ω ∩ N and associated positive integers ν(x i ) ≥ 3 such that, in a sufficiently small neighborhood of each x i , N is the union of ν(x i ) smooth arcs (non self-crossing) with one end at x i and such that in the complement of these points in Ω, N is locally diffeomorphic to a regular curve. The set of these critical points of N is denoted by X(N ).

(ii) ∂Ω ∩ N consists of a finite set of points z i such that at each z i , ρ(z i ) arcs hit the boundary with ρ(z i ) ≥ 1. We denote the set of critical points of N ∩ ∂Ω by Y (N ).

A partition D is called regular if the corresponding N (D) is regular. Let us now recall the main theorems.

Theorem 2.2

For any k there exists a minimal regular strong k-partition and any minimal k-partition admits a representative which is regular and strong.

The existence of a minimal regular strong partition has been shown5 by Conti-Terracini-Verzini in [START_REF] Conti | An optimal partition problem related to nonlinear eigenvalues[END_REF][START_REF] Conti | A variational problem for the spatial segregation of reaction-diffusion systems[END_REF][START_REF] Conti | On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae[END_REF], while the second part of the theorem has been shown in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF]. In the following, we always consider the regular representative without mentioning it explicitly. We have now the following converse theorem, see [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF].

Theorem 2.3

Assume that there is a minimal admissible k-partition. Then this partition is associated to the nodal set of an eigenfunction corresponding to L k (Ω). This result was completed in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] in relation with the Courant-sharp property. We recall that if u is an eigenfunction of the Dirichlet Laplacian in Ω attached to the k-th eigenvalue λ k , then Courant's Theorem says that the number of nodal domains µ(u) satisfies µ(u) ≤ k . Pleijel's Theorem says that, when the dimension is ≥ 2, then the previous inequality is strict for k large. As in [START_REF] Ancona | Nodal domain theorems à la Courant[END_REF], we say that u is Courant-sharp if µ(u) = k. For any integer k ≥ 1, we denote by L k (Ω) the smallest eigenvalue for which the eigenspace contains an eigenfunction with k nodal domains. In general we have

λ k (Ω) ≤ L k (Ω) ≤ L k (Ω) .
(2.7)

The next result of [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] gives the full picture of the equality cases:

Theorem 2.4 If L k (Ω) = L k (Ω) or λ k (Ω) = L k (Ω), then λ k (Ω) = L k (Ω) = L k (Ω) .
In addition, any minimal (regular) k-partition is a nodal partition corresponding to an eigenfunction associated to λ k (Ω).

As a consequence of Euler's Formula, we have described in [START_REF] Helffer | On minimal partitions: new properties and applications to the disk[END_REF] the possible topological types of a non admissible minimal 3-partition of a connected regular open set.

Proposition 2.5

Let Ω be simply connected and let us consider a minimal 3-partition D = (D 1 , D 2 , D 3 ) of Ω associated to L 3 (Ω). Let us suppose that

λ 3 (Ω) < L 3 (Ω) .
(2.8)

For N = N (D), we denote by ν(x i ) and ρ(z i ) the number of arcs associated with x i ∈ X(N ), respectively z i ∈ Y (N ). Then there are three possibilities (see Figure 2): (a) X(N ) consists of one point x with ν(x) = 3 and Y (N ) consists of either three distinct y 1 , y 2 , y 3 points with ρ(y

1 ) = ρ(y 2 ) = ρ(y 3 ) = 1 , two distinct points y 1 , y 2 with ρ(y 1 ) = 2, ρ(y 2 ) = 1 or one point y with ρ(y) = 3 . (b) X(N ) consists of two distinct points x 1 , x 2 with ν(x 1 ) = ν(x 2 ) = 3 . Y (N ) consists either of two points y 1 , y 2 such that ρ(y 1 ) + ρ(y 2 ) = 2 or of one point y with ρ(y) = 2 . (c) X(N ) consists again of two distinct points x 1 , x 2 with ν(x 1 ) = ν(x 2 ) = 3, but Y (N ) = ∅ . • • • • • • • • • • Figure 2:
The three configurations (a), (b) and (c), with an additional symmetry with respect to the x-axis.

A first analysis of the rectangle

This part is taken from [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF]. Note that when Ω is a rectangle

R a,b := ] -a 2 , a 2 [×] -b 2 , b 2 [, the spectrum of H(R a,b
) and the properties of the eigenfunctions are analyzed as toy models in [26, §4]. The spectrum is given by

λ m,n := π 2 m 2 a 2 + n 2 b 2 with (m, n) ∈ (N * ) 2 .
These eigenvalues are simple if a 2 /b 2 is irrational. Except for specific remarks concerning the square or the case when a 2 /b 2 = 3/8, we assume

a 2 /b 2 is irrational. (3.1)
So we can associate to each eigenvalue λ m,n , up to a non-zero multiplicative constant, a unique eigenfunction u m,n such that µ(u m,n ) = mn. Given k ∈ N * , the lowest eigenvalue corresponding to k nodal domains is given, at least under Assumption (3.1), by

L k (R a,b ) = π 2 inf mn=k m 2 a 2 + n 2 b 2 . (3.2)
In the case when a 2 /b 2 is rational we could have problems in the case of multiplicities. We have then to analyze a continuous families of nodal sets of eigenfunctions living in an eigenspace of dimension > 1. We will see in Section 4 that it is just for these values that new nodal partitions may appear, which could be, by deformation, the starting point of non admissible minimal partitions.

We now recall all the possible Courant-sharp situations6 described in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF]:

(i) m = 3, n = 2 and 3 5 ≤ a 2 b 2 ≤ 5 8 . (ii) m = 2, n = 2 and 3 5 ≤ a 2 b 2 ≤ 1 . (iii) m = 1, n > 1 and a 2 b 2 ≤ 3 n 2 -1 .
If we now focus on the case k = 3, we get that

λ 3 (R a,b ) is Courant-sharp iff a 2 /b 2 ≤ 3/8.
Hence, the limiting situation is

a 2 b 2 = 3 8 .
This corresponds to a double eigenvalue and to the pairs (m, n) = (1, 3) and (m, n) = (2, 1).

Transition from Courant-sharp to a non nodal minimal partition

We start from a rectangle with a = πǫ and b = π and would like to analyze L 3 (ǫ) := L 3 (R πǫ,π ). The critical situation corresponds to

ǫ = 3/8 . (4.1)
So the first result (deduced from [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF]) which was recalled in the previous section writes:

Proposition 4.1 (i) If ǫ ≤ 3/8, then L 3 (ǫ) = 9 + 1/ǫ 2 and L 3 (ǫ) is an eigenvalue. (ii) If 3/8 < ǫ ≤ 1, then L 3 (ǫ) < 9 + 1/ǫ 2 .
We would like to understand how the transition occurs at ǫ = 3/8. We make the assumption that in the deformation the minimal partition remains symmetric with respect to y = 0. This is indeed the case for ǫ < 3/8 , because the eigenfunction corresponding to λ 1,3 is cos x ǫ cos 3y and the corresponding nodal lines are composed of two horizontal lines y = -π/6 and y = π/6. This is also the case for ǫ = 3/8 because all the eigenfunctions have this symmetry and any minimal partition is nodal.

The numerical computations for the square (see Figure 1(a) and [9, §3.2]) push us to conjecture that the nodal lines N (D) for the minimal 3-partition D is for ǫ > 3/8 is the union of a segment [-π/2, x 0 (ǫ)] (on the line y = 0) and of two symmetric arcs connecting the point (x 0 (ǫ), 0) to the boundary of the rectangle (up and down).

The first conjecture is that x 0 (ǫ) is increasing monotonically from -π/2 to 0 for ǫ ∈] 3/8, 1]. This has been partially verified (admitting the symmetry and that the minimal 3-partition is of type (a)) numerically. The second conjecture is that the minimal 3-partition will "tend" as ǫ tends to 3/8 from above to a nodal partition, losing there its non bipartite character.

The point here is that, when ǫ = 3/8, we have an eigenvalue of multiplicity two giving the possibility of constructing a continuous family of nodal minimal 3-partitions. For this, we consider the family We first show that the zero set of ϕ α,β has no critical point inside the rectangle for the critical value of ǫ. Using the factorization of ϕ α,β in the form

ϕ α,β (x, y) = cos y cos x ǫ α 1 -4 sin 2 y + 2β sin x ǫ ,
we observe that ϕ α,β = 0 is equivalent inside the rectangle to ψ α,β = 0 with

ψ α,β (x, y) := α 1 -4 sin 2 y + 2β sin x ǫ . (4.2) 
Hence we now look at the (closure of the) zero set of ψ α,β in the rectangle and particularly to the critical points inside and at the boundary. If we look at the zeros of ∂ x ψ α,β , we obtain

β cos x ǫ = 0 .
This implies β = 0 and we get that ϕ α,0 (x, y) = α cos 3y cos x ǫ . Hence we get that, for any (α, β) = (0, 0), there is no critical point inside this rectangle. It remains to look at what is going on at the boundary and to determine the singular points where two lines touch. An analysis of the function (x, y) → α(1 -4 sin 2 y) + 2β sin x ǫ at the boundary shows that critical points at the boundary can only occur for y = 0 and α ± 2β = 0. Hence we have obtained that the only nodal sets having critical sets are (up to a multiplicative constant) the nodal domains of the eigenfunctions ϕ 2,1 and ϕ 2,-1 . Figure 3 gives the nodal set of the functions ϕ α,β for several values of (α, β). 

Aharonov-Bohm Hamiltonian and isospectrality

As explained in the introduction, this new analysis is motivated by numerical computations showing that pushing the same idea as in [START_REF] Bonnaillie-Noël | Numerical simulations for nodal domains and spectral minimal partitions[END_REF] but using the symmetry with respect to the diagonal, one gets the same eigenvalue and again a 3-partition with unique singular point at the center. This will be further explained in more detail in Subsection 6.1.

Basic material

This material appears already in [START_REF] Helffer | Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains[END_REF] and is motivated by the work of Berger-Rubinstein [START_REF] Berger | On the zero set of the wave function in superconductivity[END_REF]. If Ω is an open set such that 0 ∈ Ω, a possibility is to consider the Aharonov-Bohm Laplacian in the punctured Ω = Ω \ {0}, with the singularity of the potential at the center and normalized flux Φ = 1/2. The magnetic potential with flux Φ takes the form

A(x, y) = (A 1 (x, y), A 2 (x, y)) = Φ - y r 2 , x r 2 .
(5.1)

We know that the magnetic field vanishes identically in Ω and, in any cut domain (such that it becomes simply connected), one has

A 1 dx + A 2 dy = Φ dθ , (5.2) 
where z = x + iy = r exp iθ .

(

So the Aharonov-Bohm operator in any open set Ω ⊂ R 2 \ {0} will always be defined by considering the Friedrichs extension starting from C ∞ 0 ( Ω) and the associated differential operator is

-∆ A := (D x -A 1 ) 2 + (D y -A 2 ) 2 .
(5.4)

In polar coordinates (which of course are not very well adapted to the square but permit a good analysis at the origin), the Aharonov-Bohm Laplacian reads:

-

∆ A = (D x + 1 2 sin θ r ) 2 + (D y - 1 2 cos θ r ) 2 , (5.5) 
or

-∆ A = - ∂ 2 ∂r 2 - 1 r ∂ ∂r + 1 r 2 (i∂ θ + 1 2 ) 2 . (5.6)
This operator is preserving "real" functions in some modified sense. Following [START_REF] Helffer | Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains[END_REF], we will say that a function u is K-real, if it satisfies

Ku = u , (5.7) 
where K is an antilinear operator in the form

K = exp iθ Γ , (5.8) 
and where Γ is the complex conjugation Γu = ū .

(5.9)

The fact that -∆ A preserves K-real eigenfunctions is an immediate consequence of

K • (-∆ A ) = (-∆ A ) • K .
(5.10)

Remark 5.1 Note that our choice of K is not unique. K α = exp iαK is also antilinear, satisfies (5.10) and

K 2 α = Id .
As observed in [START_REF] Helffer | Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains[END_REF], it is easy to find a basis of K-real eigenfunctions. These eigenfunctions (which can be identified with real antisymmetric eigenfunctions of the Laplacian on a suitable double covering ΩR of Ω) have a nice nodal structure (which is locally in the covering the same as the nodal set of real eigenfunctions of the Laplacian), with the specific property that the number of lines in Ω ending at the origin should be odd. More generally a path of index one around the origin should always meet an odd number of nodal lines.

Symmetries of the rectangle

We consider now a domain Ω which has the symmetries of a rectangle. More precisely, if we denote by σ 1 and σ 2 the symmetries respectively defined by

σ 1 (x, y) = (-x, y) , σ 2 (x, y) = (x, -y) , (5.11) 
we assume that σ 1 Ω = Ω , σ 2 Ω = Ω .

(5.12)

We assume that Ω is convex (to simplify) and write

Ω ∩ {y = 0} =] - a 2 , a 2 [×{0} ,
and

Ω ∩ {x = 0} = {0}×] - b 2 , b 2 [ . If Σ 1 is the natural action on L 2 ( Ω) associated with σ 1 Σ 1 u(x, y) = u(-x, y) , (5.13) 
we observe that the Aharonov-Bohm operator does not commute with Σ 1 but with the antilinear operator

Σ c 1 := i ΓΣ 1 . (5.14)
So if u is an eigenfunction, Σ c 1 u is an eigenfunction. Moreover, and this explains the choice of "i" before ΓΣ 1 , since K and Σ c

1 commute, K • Σ c 1 = Σ c 1 • K , (5.15) 
Σ c 1 u is also a K-real eigenfunction if u is a K-real eigenfunction. One can do the same thing with Σ 2 , associated with σ 2 , Σ 2 u(x, y) = u(x, -y) .

( 5.16) This leads this time to Σ c 2 = ΓΣ 2 .

(5.17)

Similarly, we have

K • Σ c 2 = Σ c 2 • K , (5.18) 
hence if u is a K-real function, Σ c 2 u is also a K-real eigenfunction. We now show Proposition 5.2 If Ω has the symmetries of the rectangle (5.11), then the multiplicity of the groundstate energy of -∆ A is 2. More generally the multiplicity of any eigenvalue is even.

Proof:

As observed in [START_REF] Helffer | Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains[END_REF], we can reduce the analysis of the Aharonov-Bohm Hamiltonian to the K-real space L 2 K where

L 2 K ( Ω) = {u ∈ L 2 ( Ω) , Ku = u } .
The scalar product on L 2 K , making of L 2 K a real Hilbert space, is obtained by restricting the scalar product on L 2 ( Ω) to L 2 K and it is immediate to verify that u , v is indeed real for u and v in

L 2 K . Observing now that Σ c 1 • Σ c 1 = I , (5.19) 
we obtain by writing

u = 1 2 (I + Σ c 1 )u + 1 2 (I -Σ c 1 )u ,
It remains to show that the first eigenvalue has multiplicity 2. We already know that it has an even multiplicity. It is enough to prove that the multiplicity is at most 2. Here we can use the results of [START_REF] Helffer | Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains[END_REF]. Actually those results have to be extended slightly7 since they are obtained assuming that the domain is homeomorphic to an annulus (so we are in a limiting case). It has been shown in [START_REF] Helffer | Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains[END_REF] that the nodal set of a K-real groundstate is a line joining the center to the outer boundary. If the multiplicity of the groundstate eigenvalue is strictly greater than 2 we can, as in [START_REF] Helffer | Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains[END_REF], construct by linear combination of eigenfunctions a groundstate for which the zeroset hits the outer boundary at two distinct points, hence a contradiction.

We observe that the proof of the proposition gives more explicitly the decomposition of -∆ A on L 2 K into the direct orthogonal sum of two unitary equivalent Hamiltonians. What we have done with Σ c 1 can be similarly done with Σ c 2 . This gives immediately the following proposition.

Proposition 5.4

The four following operators

-∆ A,Σ 1 , -∆ A,a Σ 1 , -∆ A,Σ 2 and -∆ A,a Σ 2 re- spectively defined by the restriction of -∆ A to L 2 K,Σ 1 , L 2 K,a Σ 1 , L 2 K,a Σ 2 and L 2 K,a Σ 2 are isospectral to -∆ A .
Moreover λ is an eigenvalue of any of the first four operators with multiplicity k(λ) if and only if λ is an eigenvalue of multiplicity 2k(λ) of -∆ A .

Now we would like to analyze the nodal patterns of eigenfunctions in the various symmetry spaces.

Lemma 5.5 If u ∈ C ∞ ( Ω) ∩ L 2 K,Σ 2 then its nodal set contains [-a 2 , 0] × {0}. Moreover, in Ω \ {] -a 2 , 0] × {0}} , v = exp - iθ 2 u satisfies Γv = v and Σ 2 v = v .

Proof:

Noting that Ku = u and Σ c 2 u = u for y = 0 and x < 0 we immediately obtain that u(x, 0) = u(x, 0) = -u(x, 0). Hence u(x, 0) = 0 for x < 0. An immediate computation gives

Γv = exp iθ 2 Γu = exp - iθ 2 Ku = exp - iθ 2 u = v , and Σ 2 v = exp iθ 2 Σ 2 u = exp iθ 2 Γu = v .
We would like to compare to some Dirichlet-Neumann problems on halfdomains. We call upperhalf-Ω the set

Ω uh = Ω ∩ {y > 0} , (5.26) 
and introduce similarly the lowerhalf, lefthalf and righthalf domains defined by Of course this applies in particular to the case of the rectangle.

Ω lh = Ω ∩ {y < 0} , Ω leh = Ω ∩ {x < 0} , Ω rih = Ω ∩ {x > 0} . ( 5 
Let us go a little further by giving explicitly a unitary operator from L 2 K,Σ 1 onto L 2 K,Σ 2 proving the isospectrality. This is the object of Lemma 5.8

The operator

U 21 := 1 √ 2 (I + Σ c 2 )
is a unitary operator from L 2 K,Σ 1 onto L 2 K,Σ 2 whose inverse is given by

U 12 := 1 √ 2 (I + Σ c 1 )
.

and therefore the minimal 3-partition is non bipartite. Then we look for non bipartite 3-partitions whose topologies are enumerated in Proposition 2.5 and illustrated by Figure 2. We first use the axial symmetry along the axis {y = 0}. To recover a partition of type (a), (b) or (c), we compute the second eigenfunction and the next ones of the mixed Dirichlet-Neumann Laplacian in Ω lh with Dirichlet conditions except respectively on

• [x 0 , a/2] × {0} for type (a); • [x 0 , x 1 ] × {0} for type (b); • [-a/2, x 0 ] × {0} ∪ [x 1 , a/2] × {0} for type (c).
These boundary conditions are illustrated in Figure 5. We move the points x 0 and x 1 along the segment [-a/2, a/2] × {0}. We expect to find an eigenfunction such that, after symmetrization, their associated nodal sets constitute a 3-partition and the nodal lines meet at the interior critical point with an angle of 2π/3. We recall the guess inherited from numerical computations. When minimizing over Dirichlet-Neumann problems in Ω lh (by putting Dirichlet except Neumann on ]x 0 , a 2 ] × {0}), one observes that the minimal second eigenvalue (as a function of x 0 ) such that the two nodal domains give rise by symmetry to a 3-partition is obtained for x 0 = 0. Doing the same computation on the diagonal, we observe also numerically that the minimal second eigenvalue (as a function of the point on the diagonal) such that the two nodal domains give rise by symmetry to a three partition is obtained at the center. Admitting these two numerical results, what we have proved for the square is that the two minimal second eigenvalues are equal. This could also suggest that we have a continuum of minimal 3-partitions. This point is not completely clear but could result of the analysis of the singularity at {0}.

x 0 • • x 0 • x 1 • x 0 • x 1 • • •

When minimizing over Dirichlet-Neumann-Dirichlet or Neumann-Dirichlet-

Neumann problems in Ω lh , the numerical computations (see [9, §3.3]) suggest that the nodal sets of the second eigenfunction never create a 2-partition of Ω lh leading by symmetry to a 3-partition of Ω. The corresponding eigenmodes lead to too high energy, hence do not qualify as possible candidates for minimal 3-partitions. Remark 6.1 Note that we assumed that the minimal partition is symmetric with respect to an axis of symmetry; the numerical experiments make this assumption plausible. One cannot a priori exclude that the first excited K-real eigenfunction of the Aharonov-Bohm hamiltonian consists of one line joining 0 to ∂Ω and another line joining in Ω two points of ∂Ω.

The symmetries of the square

We now consider a convex domain which in addition to the invariance by σ 1 and σ 2 has an invariance by rotation (centered at the origin) r π 2 of π 2 . We have typically in mind the case of the square. This rotation can be quantized by

R π 2 u(•) = u(r -π 2 • ) , (6.1) 
where r α is the rotation by α in the plane. We observe from (5.6) that this quantization commutes with the operator:

∆ A R π 2 = R π 2 ∆ A , (6.2) 
(and with its Dirichlet realization in Ω).

More generally, we have the following Lemma Lemma 6.2 If u is a K-real eigenfunction of the Aharonov-Bohm Hamiltonian, then u and e i π 4 R π 2 u are linearly independent K-real eigenfunctions.

Proof:

Let us first verify the K-reality. We note that

R π 2 Kv = R π 2 exp iθ Γv = exp -i π 2 exp iθ Γ R π 2 v , hence R π 2 K = exp -i π 2 K R π 2 .
This can be rewritten in the form

exp i π 4 R π 2 • K = K • exp i π 4 R π 2 . (6.3)
This proves the first statement. We now show that exp i π 4 R π 2 u and u are linearly independent (over R) inside the real space L 2 K . Let us look at the points of the nodal set belonging to the exterior boundary. Their cardinality should be odd by a result of [START_REF] Helffer | Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains[END_REF] on K-real eigenfunctions. If u and e i π 4 R π 2 u were proportional, this subset should be invariant by rotation of π 2 and should have consequently an even cardinality. Hence a contradiction.

Proposition 6.3

In the case of a convex domain having the symmetries of the square, the Dirichlet-Neumann problem for the Laplacian on the four half-domains respectively defined by

Ω --dh = Ω ∩ {x + y < 0} , Ω ++dh = Ω ∩ {x + y > 0} , Ω +-dh = Ω ∩ {x -y > 0} , Ω -+dh = Ω ∩ {x -y < 0} , (6.4) 
are also isospectral to the problems introduced in Proposition 5.4. 

Dirichlet

Proof:

We explain below how to get the proposition (which has also been verified numerically). We start from v ∈ L 2 K,Σ 2 . Let us now consider

w = v + exp i π 4 R π 2 v .
We have already shown that w is not zero and hence is an eigenfunction. It remains to analyze its zero set which should contain an half-diagonal. Let us introduce

Σ c 4 = exp i π 4 R π 2 Σ c 2 .
Using the property that The converse does not introduce new problems.

R π 2 Σ c 2 = Σ c 2 R -π 2 ,

The covering approach

As in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF], we can also rewrite all the proofs by lifting the problem on the double covering ΩR , using the correspondence between L 2 K and the real subspace of the functions in L 2 ( ΩR ) such that Σu = -u where Σ is associated with the map σ by (Σu)(ω) = u(σ(ω)). We recall with the notation of [START_REF] Helffer | On minimal partitions: new properties and applications to the disk[END_REF] that σ is defined by associating to each point ω of ΩR the other point σ(ω) of ΩR which has the same projection on Ω. Our initial proof was actually written in this way but we prefer to present in this paper another point of view.

In a recent paper, D. Jakobson, M. Levitin, N. Nadirashvili, I. Polterovich [START_REF] Jakobson | Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond[END_REF] obtain also nice isospectrality results involving Dirichlet-Neumann problems. They actually propose three different proofs of their isospectrality results. The second one is a double covering argument which is quite close to what we mentioned in the previous paragraph. But there is no magnetic version and our magnetic examples seem to be new. So it would be interesting whether the magnetic approach can produce some isospectrality result which differ from the class of results in this paper and the papers by Levitin, Parnovski and Polterovich [START_REF] Levitin | Isospectral domains with mixed boundary conditions[END_REF] or [START_REF] Parzanchevski | Linear representations and isospectrality with boundary conditions[END_REF].

One should also mention that for these questions of isospectrality a covering argument was already present in earlier works of Bérard [START_REF] Bérard | Variétés riemanniennes isospectrales non isométriques[END_REF][START_REF] Bérard | Transplantation et isospectralité[END_REF][START_REF] Bérard | Transplantation et isospectralité[END_REF], Bérard-Besson [START_REF] Bérard | Spectres et groupes cristallographiques[END_REF], Sunada [START_REF] Sunada | Riemannian coverings and isospectral manifolds[END_REF].... 7 Some heuristics on the deformation of symmetric minimal partitions and numerical computations 7.1 Some heuristics

Here we discuss very heuristically in which general context the numerical computations for the family of rectangles can be done.

One might investigate the special situation where tight upper and lower bounds to L 3 are available. We recall from (2.7) that

λ k ≤ L k ≤ L k .
If we have a family of domains depending analytically on a parameter α, Ω(α), such that for some k,

lim α↓0 λ k (α) = L k (0) and λ k (α) < L k (α) for α > 0 , (7.1) 
then we are led to the question how a minimal k-partition of D k (α) of Ω(α) behaves as α tends to zero. In fact we might investigate more directly D k (0) . For α = 0 the only D k (0) are the one which are nodal partitions associated to λ k (0) = L k (0) .

We have investigated this situation for rectangles. One has seen that in this case the nodal partition can only have critical points at the boundary.

Let us start with a slightly more general situation and consider a family Ω(β) of simply connected domains which depends analytically upon a parameter β ≥ 0. We assume that the spectrum and eigenfunctions corresponding to H(Ω(β)) have for small β ≥ 0 the following properties

λ 1 (β) < λ 2 (β) < λ 3 (β) ≤ λ 4 (β) = L 3 (β) , (7.2) 
with λ 3 (β) < λ 4 (β) for β > 0 and λ 3 (0) = λ 4 (0). (7.3) Here as usual H(Ω(β)) is just -∆ with a Dirichlet boundary condition. We further assume that for 0 < β < β 0 , µ(u 3 (β)) = 2, but that for β = 0 the eigenspace U 3 of λ 1 (0) contains an eigenfunction u ∈ U 3 with µ(u) = 3. We hence have for β > 0 that λ 3 (β) is not Courant-sharp and therefore there is a L 3 (β) > λ 3 (β). But for β = 0 we have L 3 (0) = λ 3 (0).

According to Proposition 2.5 we have for β > 0 three types of non bipartite partitions, (a), (b), (c). But we have observed that for L 3 (0), there is no D 3 (0) which is not bipartite. So we would like to understand how a non bipartite partition D 3 (β) can be deformed so that it becomes bipartite. We emphasize that at the moment we have no mathematical tools permitting to rigorously prove the validity of these "deformation argument" but numerical tests show that they are rather good for predicting what is observed. (b) If the family is of type (b), then the two critical points should again tend to the boundary (see Figure 8). We note indeed that in the case when z 1 , z 2 tend to a point z ∈ Ω then we get 4 nodal domains. (c) In the case (c), a new situtation can occur when the two critical points tend to one point in Ω. One could indeed imagine a deformation of type (c) minimal partitions on a 3-partition which is diffeomorphic to the figure eight (see Figure 9). Let us recall that in the case of the rectangle we have explicitly verified that a limiting minimal partition cannot have a critical point inside the rectangle.

• • • • • • • • •

Numerics in the case for a family of rectangles

We look at the case when the parameter β introduced in the heuristic subsection is the ǫ of the computations and we go from ǫ = 3/8 to ǫ = 1. We assume that all the minimal partitions are symmetric with respect to the horizontal axis {y = 0} and of type (a). This permits to use the argument of reduction to an half-rectangle and to use the approach of the Dirichlet-Neumann for each value of ǫ. Figures 10 present the evolution of the candidate to be minimal 3-partition for rectangles R πǫ,π with ǫ from 3/8 to 1. As mentioned in [START_REF] Bonnaillie-Noël | Numerical simulations for nodal domains and spectral minimal partitions[END_REF], numerical simulations on the half-square with mixed con- 

  R a,b :=] -a 2 , a 2 [×] -b 2 , b 2 [, with 0 < a ≤ b. For a given partition 1 D of an open set Ω by k open subsets D i , we can consider Λ(D) = max i=1,...,k λ(D i ) , (1.1)

1

  See the next section for precise definitions. 2 See http://w3.bretagne.ens-cachan.fr/math/simulations/MinimalPartitions/ 2 (a) First candidate D (b) Second candidate D new

Figure 1 :

 1 Figure 1: Candidates for the minimal 3-partition of the square.

  ϕ α,β (x, y) = α cos x ǫ cos 3y + β sin 2x ǫ cos y , with α 2 + β 2 = 0, and analyze their zero set. Of course, for t = 0, ϕ α,β and ϕ tα,tβ have the same zero set.

  (a) α = 1, β = 0 (b) α = 5, β = 1 (c) α = 2, β = 1 (d) α = 1, β = 2 (e) α = 0, β = 1

Figure 3 :

 3 Figure 3: Nodal sets of ϕ α,β (x, y) = α cos x ǫ cos 3y + β sin 2x ǫ cos y.

Figure 4 :

 4 Figure 4: Domains Ω uh , Ω lh , Ω leh , Ω rih .

Figure 5 :

 5 Figure 5: Mixed problems with Dirichlet-Neumann conditions.

Figure 6 :

 6 Figure 6: Domains Ω --dh , Ω ++dh , Ω -+dh , Ω +-dh .

we can verify that Σ c 4 wexp i π 4 = w , exp -i 3π 4 w

 444 = w , Kw = w . (6.5) For θ = -3π 4 and x + iy = r exp iθ, we get w = w , hence w = 0 for θ = -3π 4 . So the restriction of w to Ω -+dh multiplied by a phase factor leads to an eigenfunction of the DN-problem for the Laplacian in Ω -+dh .

( a )Figure 7 :

 a7 Figure 7: Deformation for type (a).

Figure 8 :

 8 Figure 8: Deformation for type (b).

Figure 9 :

 9 Figure 9: Deformation for type (c).

  Dirichlet-Neumann-Dirichlet or Neumann-Dirichlet-Neumann never produce any 3-partitions of type (b) or (c).

Figure 10 :

 10 Figure 10: Simulations for rectangles R πǫ,π with ǫ = (1 -t 20 ) 3 8 + t 20 .

We will omit the word spectral.

We do not assume anymore that the number of lines arriving at a critical point is even.

See also[START_REF] Helffer | Domaines nodaux et partitions spectrales minimales[END_REF] and[START_REF] Caffarelli | An optimal partition problem for eigenvalues[END_REF].

We do not know whether for certain a 2 /b 2 rational additional Courant sharp eigenvalues could show up.

The paper of Alziary-Fleckinger-Takac[START_REF] Alziary | Eigenfunctions and Hardy inequalities for a magnetic Schrödinger operator in R 2[END_REF] is dealing with this case.
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where

Similarly, one can define the projector Π 2 by restriction of Σ c 2 to L 2 K . The second statement of Proposition 5.2 will be a consequence of the following lemma

then Σ c 3 commutes with -∆ A and

where Σ 3 is associated with:

(5.24)

The lemma follows then from the property that if u is a solution of Ku = u and Σ c

, where we have used the anticommutation of Σ c 1 and Σ c 2 :

(5.25)

Proof:

Let u ∈ L 2 K,Σ 1 , then, using (5.25),

The proof that U 21 U 12 = I on L 2 K,Σ 2 is obtained in the same way. Let us prove the norm conservation. If u ∈ L 2 K,Σ 1 , then

This leads to

6 Application to minimal 3-partitions

Discussion on the square

We look at the first excited eigenvalue of the Dirichlet problem in the punctured square. The rules of [START_REF] Helffer | Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains[END_REF] give constraints about the nodal structure of the K-real eigenfunctions, which were already used. In particular we should have an odd number of lines arriving at the center. So it is clear that {0} belongs to the nodal set. If three lines arrive at 0 and if the nodal partition is a 3-partition of type (a) it is reasonable to hope that this will give us a minimal 3-partition.

Let us explain the numerical strategy developed in [9, §3] to exhibit a candidate for the minimal 3-partition of the square. According to Theorem 2.3, if the minimal 3-partition of the square is admissible, it is associatd to the nodal set of an eigenfunction for λ 3 . But there is no such function