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Similarly to β-adic van der Corput sequences, abstract van der Corput sequences can be defined by abstract numeration systems. Under some assumptions, these sequences are low discrepancy sequences. The discrepancy function is computed explicitly, and the bounded remainder sets of the form [0, y) are characterized.

Introduction

Let (x n ) n≥0 be a sequence with x n ∈ [0, 1) for all n ≥ 0, and D(N, I) = #{0 ≤ n < N : x n ∈ I} -Nλ(I) its discrepancy function (or local discrepancy) on the interval I, where λ(I) is the length of I. Then, (x n ) n≥0 is said to be a low discrepancy sequence if sup I D(N, I) = O(log N), where the supremum is taken over all intervals I ⊆ [0, 1). If D(N, I) is bounded in N, then I is called a bounded remainder set. For details on discrepancy, we refer to [START_REF] Kuipers | Uniform distribution of sequences[END_REF][START_REF] Drmota | Sequences, discrepancies and applications[END_REF]. References to results on bounded remainder sets can be found in the introduction of [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF].

In [START_REF] Barat | Distribution properties of G-additive functions[END_REF][START_REF] Ninomiya | Constructing a new class of low-discrepancy sequences by using the β-adic transformation[END_REF][START_REF]On the discrepancy of the β-adic van der Corput sequence[END_REF], β-adic van der Corput sequences are defined, and it is shown that they are low discrepancy sequences if β is a Pisot number with irreducible β-polynomial. Recall that a Pisot number is an algebraic integer greater than 1 with all its conjugates lying in the interior of the unit disk. We refer to Section 3 for the definition of the β-polynomial. In [START_REF] Mori | Low discrepancy sequences generated by piecewise linear maps[END_REF][START_REF] Ichikawa | Discrepancy of van der Corput sequences generated by piecewise linear transformations[END_REF], these results were extended to piecewise linear maps which generalize the β-transformation. The proof in [START_REF] Ninomiya | Constructing a new class of low-discrepancy sequences by using the β-adic transformation[END_REF][START_REF]On the discrepancy of the β-adic van der Corput sequence[END_REF] relies on the fact that cylinder sets of the β-transformation are bounded remainder sets if β is a Pisot number with irreducible β-polynomial. Under the same conditions on β, bounded remainder sets of the form [0, y), 0 ≤ y ≤ 1, were completely characterized in [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF]: the β-expansion of y is finite or its tail is the same as that of the expansion of 1.

If β is a Pisot number, then the language of the β-expansions is regular, which means that it is recognized by a finite automaton. Therefore, these β-expansions are special cases of abstract numeration systems as defined in [START_REF] Lecomte | Numeration systems on a regular language[END_REF][START_REF] Lecomte | On the representation of real numbers using regular languages[END_REF], see Section 3. In Section 2, we define van der Corput sequences related to more general abstract numeration systems. Theorem 1 in Section 4 provides a new class of low discrepancy sequences. Finally, Theorem 2 in Section 5 characterizes the bounded remainder sets of the form [0, y) with respect to these abstract van der Corput sequences, generalizing the results in [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF].

Definitions and first results

Let (A, ≤) be a finite and totally ordered alphabet. Denote by A * the free monoid generated by A for the concatenation product, i.e., the set of finite words with letters in A. The length of a word w ∈ A * is denoted by |w|. Extend the order on A to A * by the shortlex (or genealogical) order, that is to say v ≤ w if v = w or v < w, where v < w means that either |v| < |w| or |v| = |w| and there exist p, v ′ , w ′ ∈ A * , a, b ∈ A such that v = pav ′ , w = pbw ′ and a < b.

According to [START_REF] Lecomte | Numeration systems on a regular language[END_REF], the triple S = (L, A, ≤) is an abstract numeration system if L is an infinite regular language over A, and the numerical value of a word w ∈ L is defined by val S (w) = #{v ∈ L : v < w}.

If val S (w) = n, then we say that w is the representation of n and write rep S (n) = w.

Denote by A ω the set of (right) infinite words with letters in A. It is ordered by the lexicographical order, that is to say t ≤ u if t = u or t < u, where t < u means that there exist

p ∈ A * , a, b ∈ A, t ′ , u ′ ∈ A ω , such that t = pat ′ , u = pbu ′ and a < b.
Assume that the language L grows exponentially, with

lim k→∞ log #{v ∈ L : |v| ≤ k} k = log β > 0.
Suppose that u ∈ A ω is the limit of words w (k) ∈ L, i.e., every finite prefix of u is a prefix of w (k) for all but a finite number of k's. Then, the value of u is the real number

(1) val ω S (u) = lim k→∞ val S (w (k) ) #{v ∈ L : |v| ≤ |w (k) |} ,
if this limit exists and does not depend on the choice of w (k) . Conditions assuring the existence of this value are given in [START_REF] Lecomte | On the representation of real numbers using regular languages[END_REF], see also Lemma 3 and its proof. Let

L ω = u ∈ A ω : u = lim k→∞ w (k) for some w (k) ∈ L .
Since val ω S (u) ∈ [1/β, 1], we define the normalized value

u = β val ω S (u) -1 β -1 ∈ [0, 1].
We extend this definition to finite words w ∈ L which are prefixes of words in L ω by setting w = u , where u is the smallest word in L ω with prefix w. Since we want to define a sequence without multiple occurrences of the same value, we set

L ′ = {w ∈ L : w = v for every v ∈ L with v < w}.
Recall that the mirror image of a word

w = w 1 w 2 • • • w k , w j ∈ A, is w = w k • • • w 2 w 1
and that the mirror image of a language L is L = { w : w ∈ L}. Now, we are ready to define the main object of this paper, abstract van der Corput sequences.

Definition 1 (Abstract van der Corput sequence). Let S = (L, A, ≤) be an abstract numeration system, where L is a regular language of exponential growth, every word w ∈ L is the prefix of some infinite word u ∈ L ω , and the limit in (1) exists for every u ∈ L ω . Then, the abstract van der Corput sequence corresponding to S is given by

x n = w with w = rep S ′ (n),
where S ′ is the abstract numeration system L ′ , A, ≤ . Thus, the set of values of an abstract van der Corput sequence is {x n : n ≥ 0} = { w : w ∈ L} = { w : w ∈ L ′ }, and the position of w , w ∈ L ′ , in the sequence is determined by the shortlex order on the mirror image of L ′ . We need a number of further assumptions on the language L in order to get precise formulae for the discrepancy. All these assumptions are satisfied by the β-adic van der Corput sequence when the language of the β-expansions is regular, cf. Section 3, and by Example 1 at the end of this section.

Let A L = (Q, A, τ, q 0 , F ) be a (complete) deterministic finite automaton recognizing L, with set of states Q, transition function τ : Q × A → Q, initial state q 0 and set of final states F . The transition function is extended to words, τ : Q × A * → Q, by setting τ (q, ε) = q for the empty word ε and τ (q, wa) = τ (τ (q, w), a). A word w ∈ A * is accepted by A L , and thus in L, if and only if τ (q 0 , w) ∈ F .

Definition 2 (Totally ordered automaton). A deterministic automaton (Q, A, τ, q 0 , F ) is said to be a totally ordered automaton if there exists a total order on the set of states Q such that, for all q, r ∈ Q, q ≤ r implies τ (q, a) ≤ τ (r, a) for every a ∈ A.

From now on, all automata will be totally ordered automata. Furthermore, the maximal state will be the initial state and every state except the minimal one will be final. (In case Q = F , where the automaton recognizes A * , we add a non-accessible state to Q.) W.l.o.g., the set of states will be Q = {0, 1, . . . , d} for some positive integer d, and the order on Q will be the usual order on the integers, hence q 0 = d and F = {1, . . . , d}. Moreover, we will assume that τ (0, a) = 0 for every a ∈ A, i.e., the state 0 is a sink. Lemma 1. Let L ⊆ A * be recognized by a totally ordered automaton A L = (Q, A, τ, d, Q \ {0}), with Q = {0, 1, . . . , d} and τ (0, a) = 0 for every a ∈ A. Then, L is recognized by the totally ordered automaton

A L = (Q, A, τ , 0, Q \ {0}), where (2) τ (r, a) = # q ∈ Q : τ (q, a) + r > d for every r ∈ Q, a ∈ A.
In particular, we have τ (0, a) = 0 for every a ∈ A.

Proof. A deterministic automaton A ′ = (Q ′ , A, τ ′ , q ′ 0 , F ′ ) recognizing L is obtained by determinizing the automaton which is given by inverting the transition function τ , see e.g. [START_REF] Sakarovitch | Elements of automata theory[END_REF]. This means that

• Q ′ is a subset of the power set P(Q), • τ ′ (q ′ , a) = {q ∈ Q : τ (q, a) ∈ q ′ } for every q ′ ∈ Q ′ , a ∈ A,
• the set of final states in A L is the initial state of A ′ , i.e., q ′ 0 = {1, . . . , d}, • the final states in A ′ are those elements of Q ′ which contain the initial state of A L , i.e.,

F ′ = {q ′ ∈ Q ′ : d ∈ q ′ }.
We show that Q ′ ⊆ {q ′ 0 , q ′ 1 , . . . , q ′ d }, where q ′ r = {r + 1, . . . , d} (q ′ d being the empty set). Since A L is totally ordered and τ (0, a) = 0, we obtain that τ ′ (q ′ 0 , a) = {q ∈ Q : τ (q, a) > 0} = {r + 1, . . . , d} = q ′ r for some r ∈ Q.

In the same way, we get, for every r ∈ Q with q ′ r ∈ Q ′ , that τ ′ (q ′ r , a) = {q ∈ Q : τ (q, a) > r} = {s + 1, . . . , d} = q ′ s for some s ∈ Q.

This shows that Q ′ ⊆ {q ′ 0 , q ′ 1 , . . . , q ′ d }. It is easy to see that A ′ is a totally ordered automaton, with the order on Q ′ given by q ′ r ≤ q ′ s if q ′ r ⊆ q ′ s , i.e., r ≥ s. We clearly have

F ′ = {q ′ 0 , q ′ 1 , . . . , q ′ d-1 } ∩ Q ′ .
If we extend the set of states to {q ′ 0 , q ′ 1 , . . . , q ′ d } (with possibly non-accessible states) and label the states by d -r instead of q ′ r , we obtain A L . Therefore, A L is a totally ordered automaton, with Q ordered by the usual order on the integers.

The next lemma provides a fundamental characterization of the words in a language L recognized by a totally ordered automaton A L = (Q, A, τ, d, Q\{0}) with Q = {0, 1, . . . , d} and τ (0, a) = 0 for every a ∈ A.

Lemma 2. Let L, τ, τ be as in Lemma 1, Next, we characterize the values of the abstract van der Corput sequence, under the assumption that the incidence matrix of the co-accessible part of A L is primitive. (A state q is co-accessible if τ (q, w) ∈ F for some w ∈ A * .) Lemma 3. Let L be as in Lemma 1 and assume that M L = (#{a ∈ A : τ (q, a) = r}) 1≤q,r≤d is a primitive matrix. Then, the normalized value exists for every u ∈ L ω and is given by

w 1 • • • w k ∈ A * , 0 ≤ j ≤ k. We have w 1 • • • w k ∈ L if and only if τ (d, w 1 • • • w j ) + τ (d, w k • • • w j+1 ) > d. Proof. Let 0 ≤ j ≤ k. With the notation of the proof of Lemma 1, τ (d, w k • • • w j+1 ) = d -r can be written as τ ′ (q ′ 0 , w k • • • w j+1 ) = q ′ r = {r + 1, . . . , d}. In A L , this means that w j+1 • • • w k leads to a final state from the state q, i.e., τ (q, w j+1 • • • w k ) > 0, if and only if q > r. Therefore, we have τ (d, w 1 • • • w k ) = τ (τ (d, w 1 • • • w j ), w j+1 • • • w k ) > 0 if and only if τ (d, w 1 • • • w j ) > r, i.e., τ (d, w 1 • • • w j ) + τ (d, w k • • • w j+1 ) > d. Remark 1. If we consider τ (d, a) + • • • + τ (1, a) as a partition of an integer, then τ (d, a) + • • • + τ (1, a) is the conjugate partition, since τ (d -r, a) = # q ∈ Q : τ (q, a) > r . E.g., if (τ (d,
(3) u = ∞ j=1 ǫ j (u)β -j with ǫ j (u) = a<u j η τ (d,u 1 •••u j-1 a) ,
where β is the Perron-Frobenius eigenvalue of M L , (η 1 , . . . , η d ) t is the corresponding right (column) eigenvector with η d = 1, η 0 = 0, and u = u 1 u 2 • • • with u j ∈ A for all j ≥ 1.

Proof. The definition and primitivity of the incidence matrix

M L give (4) #{v ∈ A k : τ (q, v) > 0} = (0, . . . , 1, . . . , 0)M k L (1, . . . , 1) t = cη q β k + O(ρ k ) with constants c > 0 and ρ < β such that every eigenvalue α = β of M L satisfies |α| < ρ. Due to the assumptions on A L , we have u 1 • • • u k ∈ L for every k ≥ 1. Similarly to [LR01, LR02], we split up {v ∈ L : v < u 1 • • • u k } = {v ∈ L : |v| < k} ∪ 1≤j≤k a<u j {u 1 • • • u j-1 aw ∈ L : w ∈ A k-j }. Since #{v ∈ L : |v| ≤ k} = k j=0 (cβ j + O(ρ j )) = c β k+1 β-1 + O(max(1, ρ) k ), we obtain val S (u 1 • • • u k ) #{v ∈ L : |v| ≤ k} = 1 β + β -1 β k j=1 a<u j η τ (d,u 1 •••u j-1 a) β -j + O max(1, ρ) k β k .
Therefore, we have

val ω S (u) = lim k→∞ val S (u 1 • • • u k ) #{v ∈ L : |v| ≤ k} = 1 β + β -1 β ∞ j=1 ǫ j (u)β -j ,
and u = (β val ω S (u) -1)/(β -1) yields (3).

As a last preparation for the study of the discrepancy of abstract van der Corput sequences, we consider the language L ′ . Lemma 4. Let L be as in Lemma 3 and assume that τ (q, a 0 ) > 0 for every q > 0, where a 0 denotes the smallest letter of A. Then, L ′ consists exactly of those words in L which do not end with a 0 .

Proof. We clearly have t ≤ u if t < u, t, u ∈ L ω . The primitivity of M L implies that η q > 0 for all q > 0. Therefore, t = u if and only if there exists no word u ′ ∈ L ω with t < u ′ < u. For v < w, v, w ∈ L, this means that v = w if and only if v is a prefix of w and w is the smallest right extension of v in L of length |w|. Since τ (q, a 0 ) > 0 for every q > 0, we have

va k 0 ∈ L for all k ≥ 0. It follows that v = w with v < w, v, w ∈ L, if and only if w = va |w|-|v| 0
. Thus, w ∈ L ′ if and only if w ends with a 0 .

Example 1. Let A L = ({0, 1, 2, 3}, {a 0 , a 1 , a 2 }, τ, 3, {1, 2, 3}) be the totally ordered automaton in Figure 1 on the left. The first words in L (in the shortlex order) are ε, a 0 , a 1 , a 2 , a 0 a 0 , a 0 a 1 , a 0 a 2 , a 1 a 0 , a 1 a 2 , a 2 a 0 , a 2 a 2 , a 0 a 0 a 0 , a 0 a 0 a 1 , a 0 a 0 a 2 , a 0 a 1 a 0 , a 0 a 1 a 2 , a 0 a 2 a 0 , a 0 a 2 a 2 , a 1 a 0 a 0 , a 1 a 0 a 1 , a 1 a 0 a 2 , a 1 a 2 a 0 , a 1 a 2 a 2 , a 2 a 0 a 0 , a 2 a 0 a 2 , a 2 a 2 a 0 , a 2 a 2 a 2 .

3 2 The transition functions τ , τ and the incidence matrices M L , M L are given by

1 0 a 0 a 1 a 2 a 0 a 1 a 2 a 0 a 1 a 2 a 0 , a 1 , a 2 3 2 1 0 a 0 , a 2 a 1 a 0 a 1 a 2 a 0 a 1 , a 2 a 0 , a 1 , a 2
τ a 0 a 1 a 2 0 0 0 0 1 2 0 1 2 3 0 1 3 3 2 1 , M L =   1 1 0 1 0 1 1 1 1   , τ a 0 a 1 a 2 0 0 0 0 1 2 0 0 2 3 1 0 3 3 1 3 , M L =   0 1 0 1 0 1 1 0 2   . Recall that M L = (#{a ∈ A : τ (q, a) = r}) 1≤q,r≤3 , M L = (#{a ∈ A : τ (q, a) = r}) 1≤q,r≤3
and that τ can be calculated using Remark 1. Thus, L is recognized by the totally ordered automaton A L in Figure 1 on the right. The characteristic polynomial of M L is x 3 -2x 2 -x+ 1, the dominant eigenvalue is β ≈ 2.247, and (η 1 , η 2 , η 3 ) t = (β 2 -2β, -β 2 + 3β -1, 1) t ≈ (0.555, 0.692, 1) t is a right eigenvector of M L . Since x 3 -2x 2 -x + 1 is irreducible, it must be the characteristic polynomial of M L as well. The conditions of Lemma 4 are satisfied, hence the first elements of the abstract van der Corput sequence corresponding to L are

x 0 = ε = 0, x 1 = a 1 = η 3 β , x 2 = a 2 = η 3 + η 2 β , x 3 = a 0 a 1 = η 3 β 2 , x 4 = a 0 a 2 = η 3 + η 2 β 2 , x 5 = a 1 a 2 = η 3 β + η 3 β 2 , x 6 = a 2 a 2 = η 3 + η 2 β + η 2 β 2 , x 7 = a 0 a 0 a 1 = η 3 β 3 , x 8 = a 1 a 0 a 1 = η 3 β + η 3 β 3 , x 9 = a 0 a 0 a 2 = η 3 + η 2 β 3 , x 10 = a 1 a 0 a 2 = η 3 β + η 3 + η 2 β 3 , x 11 = a 2 a 0 a 2 = η 3 + η 2 β + η 3 β 3 , x 12 = a 0 a 1 a 2 = η 3 β 2 + η 3 β 3 , x 13 = a 0 a 2 a 2 = η 3 + η 2 β 2 + η 2 β 3 , x 14 = a 1 a 2 a 2 = η 3 β + η 3 β 2 + η 2 β 3 , x 15 = a 2 a 2 a 2 = η 3 + η 2 β + η 2 β 2 + η 2 β 3 . x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7
x 8 x 9

x 10 x 11 x 12

x 13 x 14 x 15

β-adic van der Corput sequences

To obtain Ninomiya's β-adic van der Corput sequences, consider a totally ordered automaton A L = ({0, 1, . . . , d}, A, τ, d, {1, . . . , d}) on the alphabet A = {0, 1, . . . , B}, with integers b q ∈ A, 1 ≤ q ≤ d, such that τ (q, a) = d for all a < b q , and τ (q, a) = 0 if and only if a > b q or q = 0. Assume that M L is primitive (which is the only interesting case since τ (q, 0) = d implies b q = 0), and let β be its Perron-Frobenius eigenvalue. Then, we have

ǫ j (u) = a<u j η τ (q,u 1 •••u j-1 a) = a<u j η d = u j for every u = u 1 u 2 • • • ∈ L ω , j ≥ 1. Let t 1 t 2 • • • be the maximal sequence in L ω , i.e., t j = b τ (d,t 1 •••t j-1 ) for all j ≥ 1. Since A L is a totally ordered automaton, τ (d, t 1 • • • t j-1 ) ≤ τ (d, t 1 • • • t k-1 ) implies t j < t k or t j = t k , τ (d, t 1 • • • t j ) ≤ τ (d, t 1 • • • t k ), thus t j t j+1 • • • ≤ t k t k+1 • • • , in particular t j t j+1 • • • ≤ t 1 t 2 • • • . By the maximality of t 1 t 2 • • • , we have ∞ j=1 t j β -j = 1. The sequence t 1 t 2 • •
• is called the infinite expansion of 1 in base β or quasi-greedy expansion of 1, cf. [START_REF] Parry | On the β-expansions of real numbers[END_REF]. By the special structure of A L and the primitivity of M L , we have {τ

(d, t 1 • • • t j ) : 0 ≤ j < d} = {1, . . . , d}, hence τ (d, t 1 • • • t d ) = τ (d, t 1 • • • t m ) for some m < d. Therefore, t 1 t 2 • • • is eventually periodic with preperiod length m and period length d -m, which implies 1 - d j=1 t j β -j = 1 - m j=1 t j β -j β m-d , thus β is a root of the polynomial (5) (x d -t 1 x d-1 -• • • -t d x 0 ) -(x m -t 1 x m-1 -• • • -t m x 0 ).
If A L is the minimal deterministic automaton recognizing L or, equivalently, m and d -m are the minimal preperiod and period lengths of

t 1 t 2 • • • , then (5) is called β-polynomial. If u = u 1 u 2 • • • ∈ L ω , then we have either u = t 1 t 2 • • • or u 1 • • • u k-1 = t 1 • • • t k-1 , u k < t k for some k ≥ 1. Since τ (d, u 1 • • • u k ) = d in the latter case, u ∈ L ω is equivalent with u j u j+1 • • • ≤ t 1 t 2 • • • for all j ≥ 1, cf. [Par60]
. Therefore, u is either the greedy or the quasi-greedy β-expansion of u . Since w00 • • • is a greedy β-expansion for every w ∈ L, the abstract van der Corput sequence given by S = (L, A, ≤) is exactly the β-adic van der Corput sequence defined in [START_REF] Ninomiya | Constructing a new class of low-discrepancy sequences by using the β-adic transformation[END_REF]. Consequently, we call A L a β-automaton.

Conversely, let t 1 t 2 • • • be the infinite expansion of 1 in base β > 1, i.e., the unique sequence of integers satisfying ∞ j=1 t j β -j = 1 and 00

• • • < t j t j+1 • • • ≤ t 1 t 2 • • • for all j ≥ 1, cf. [Par60]. Assume that t 1 t 2 • • • is eventually periodic.
In particular, this holds when β is a Pisot number, see [START_REF] Bertrand | Développements en base de Pisot et répartition modulo 1[END_REF][START_REF] Schmidt | On periodic expansions of Pisot numbers and numbers[END_REF]. Let d be the sum of the minimal preperiod and period lengths, and

q j = #{1 ≤ k ≤ d : t k t k+1 • • • ≤ t j+1 t j+2 • • • } for j ≥ 0.
Then, the β-automaton is given by b q j = t j+1 and τ (q j , t j+1 ) = q j+1 , see Example 2.

Note that β-adic van der Corput sequences were first considered in [START_REF] Barat | Distribution properties of G-additive functions[END_REF] for some cases in which L = L. In this case, the definition of the sequence is simpler beacause the β-expansion of x n is the mirror image of the expansion of n in a numeration system with respect to the linear recurrence corresponding to the β-polynomial. In our notation, L = L is equivalent with τ = τ , see also [START_REF] Brown | β-transformation, natural extension and invariant measure[END_REF][START_REF] Kwon | The natural extensions of β-transformations which generalize baker's transformations[END_REF] for a different characterization.

Example 2. Let β be the real root of x 3 -4x 2 -2. Then, t 1 t 2 • • • = 401401 • • • , hence we have d = 3, q 0 = 3, q 1 = 1, q 2 = 2, q 3 = 3, thus b 3 = 4, b 1 = 0, b 2 = 1, and τ 0 1 2 3 4 0 0 0 0 0 0 1 2 0 0 0 0 2 3 3 0 0 0 3 3 3 3 3 1

, M L =   0 1 0 0 0 2 1 0 4   , τ 0 1 2 3 4 0 0 0 0 0 0 1 2 2 1 1 0 2 3 2 1 1 0 3 3 2 1 1 1 , M L =   2 2 0 2 1 1 3 1 1   .
This example is also given in Section 2.3 in [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF], with different notation. The substitution τ in [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF] plays the role of the transition function τ in this paper.

Discrepancy function

For a given abstract van der Corput sequence (x n ) n≥0 and y ∈ [0, 1], we study now the behavior of the function

D(N, [0, y)) = #{0 ≤ n < N : x n < y} -Ny as N → ∞. Since D(N, [y, z)) = D(N, [0, z)) -D(N, [0, y)), this determines the discrepancy of (x n ) n≥0 .
If L satisfies the conditions of Lemma 3, then every y ∈ [0, 1] is the numerical value of some u ∈ L ω , see [START_REF] Lecomte | On the representation of real numbers using regular languages[END_REF]. We have the following lemma, where a ω 0 = a 0 a 0 • • • . Lemma 5. Let (x n ) n≥0 be an abstract van der Corput sequence with L as in Lemma 4.

For y = u with u = u 1 u 2 • • • ∈ L ω , N ≥ 0 with rep S ′ (N) = w ℓ • • • w 1 , we have #{0 ≤ n < N : x n < y} = ℓ j=1 a<u j ℓ k=j+1 b<w k #L k-j-1 τ (d,u 1 •••u j-1 a), τ (d,w ℓ •••w k+1 b) + C(N, u),
where L m q,r = {v ∈ A m : τ (q, v) + r > d} = {v ∈ A m : q + τ (r, v) > d} and

C(N, u) = ℓ k=1 #{b < w k : bw k+1 • • • w ℓ a ω 0 < u k u k+1 • • • , u 1 • • • u k-1 bw k+1 • • • w ℓ ∈ L}. Since ℓ = O(log N), we have C(N, u) = O(log N).
Proof. We have to count the number of words v ∈ L ′ with val S ′ ( v) < N, i.e., v < w ℓ • • • w 1 , and v < y. As in the proof of Lemma 4, we have va

ℓ-|v| 0 ∈ L, thus v = va ℓ-|v| 0 . Since w ℓ > a 0 , v < w ℓ • • • w 1 holds if and only if a ℓ-|v| 0 v < w ℓ • • • w 1 . Therefore, we can count the number of words v ∈ L ∩ A ℓ with v < w ℓ • • • w 1 and v < y, instead of those in L ′ .
The inequality v < y is equivalent with va ω 0 < u. Thus, we have to count the v in L of the form

v = u 1 • • • u j-1 av j+1 • • • v k-1 bw k+1 • • • w ℓ with a < u j , b < w k , 1 ≤ j < k ≤ ℓ, or v = u 1 • • • u k-1 bw k+1 • • • w ℓ with b < w k , bw k+1 • • • w ℓ a ω 0 < u k u k+1 • • • , 1 ≤ k ≤ ℓ. Lemma 2 yields that u 1 • • • u j-1 av j+1 • • • v k-1 bw k+1 • • • w ℓ ∈ L if and only if v j+1 • • • v k-1 ∈ L k-j-1 τ (d,u 1 •••u j-1 a), τ (d,w ℓ •••w k+1 b)
, which provides the main part of the formula. The other words give C(N, u). We have ℓ = O(log N) since L grows exponentially and the same holds for L ′ by Lemma 4. Since A is finite, we obtain C(N, u) = O(log N).

Similarly to [START_REF] Ninomiya | Constructing a new class of low-discrepancy sequences by using the β-adic transformation[END_REF][START_REF]On the discrepancy of the β-adic van der Corput sequence[END_REF][START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF], we assume now that the characteristic polynomial of M L is irreducible. Let β 2 , . . . , β d be the conjugates of the Perron-Frobenius eigenvalue β 1 = β. For any z ∈ Q(β), denote by z (i) ∈ Q(β i ) the image of z by the isomorphism mapping β to β i . Similarly to (4), we have some constants θ 1 , . . . , θ d ∈ Q(β) such that #L k q,r = (0, . . . , 1, . . . , 0)M k L (0, . . . , 0, 1, . . . ,

1) t = d i=1 η (i) q θ (i) r β k i for 1 ≤ q, r ≤ d.
Note that (θ 1 , . . . , θ d ) t is a right eigenvector of M L . Set θ 0 = 0 and define

(6) γ k (N) = b<w k θ τ (d,w ℓ •••w k+1 b) for N = val S ′ (w ℓ • • • w 1 ), 1 ≤ k ≤ ℓ,
similarly to ǫ j (u). Then,

a<u j b<w k #L k-j-1 τ (d,u 1 •••u j-1 a), τ (d,w ℓ •••w k+1 b) = d i=1 ǫ (i) j (u)γ (i) k (N)β k-j-1 i , N = ℓ k=1 b<w k #L k-1 d, τ (d,w ℓ •••w k+1 b) = ℓ k=1 b<w k d i=1 η (i) d θ (i) τ (d,w ℓ •••w k+1 b) β k-1 i = d i=1 ℓ k=1 γ (i) k (N)β k-1 i .
For y = u , we have thus

D(N, [0, y)) = ℓ j=1 a<u j ℓ k=j+1 b<w k #L k-j-1 τ (d,u 1 •••u j-1 a), τ (d,w ℓ •••w k+1 b) + C(N, u) -N ∞ j=1 ǫ j (u)β -j = ∞ j=1 d i=1 ℓ k=j+1 ǫ (i) j (u)γ (i) k (N)β k-j-1 i - ℓ k=1 γ (i) k (N)β k-1 i ǫ j (u)β -j + C(N, u) = ∞ j=1 ℓ k=j+1 d i=2 γ (i) k (N)β k-1 i ǫ (i) j (u)β -j i -ǫ j (u)β -j (7) - min(j,ℓ) k=1 d i=1 γ (i) k (N)β k-1 i ǫ j (u)β -j + C(N, u).
Since the series converges absolutely, we can change the order of summation, and get

D(N, [0, y)) = ℓ k=1 k-1 j=1 d i=2 γ (i) k (N)β k-1 i ǫ (i) j (u)β -j i -ǫ j (u)β -j - ∞ j=k d i=1 γ (i) k (N)β k-1 i ǫ j (u)β -j + C(N, u). (8)
The following theorem states that

D(N, [0, y)) = O(log N) if |β i | < 1 for 2 ≤ i ≤ d, i.e., if β 
is a Pisot number. The conditions on M L are subsumed in the following definition.

Definition 3 (Pisot automaton). A deterministic automaton is said to be a Pisot automaton if the incidence matrix of its restriction to the states which are both accessible and co-accessible has one simple eigenvalue β > 1, and all other eigenvalues satisfy |α| < 1.

Theorem 1. Let S = (L, A, ≤) be an abstract numeration system where L is recognized by a totally ordered Pisot automaton A L = ({0, 1, . . . , d}, A, τ, d, {1, . . . , d}) with τ (0, a) = 0 for every a ∈ A, τ (q, a 0 ) > 0 for the minimal letter a 0 ∈ A and every q > 0. Then, the corresponding abstract van der Corput sequence is a low discrepancy sequence.

Proof. If A L is a Pisot automaton, then the characteristic polynomial of M L is irreducible, thus M L is primitive. Therefore, the conditions of Lemma 5 are satisfied, and D(N, [0, y)) is given by (8). Since γ k (N) and ǫ j (u) take only finitely many different values and ℓ = O(log N), we obtain As Section 3 shows, the β-adic van der Corput sequences defined by Pisot numbers β with irreducible β-polynomial considered in [START_REF] Ninomiya | Constructing a new class of low-discrepancy sequences by using the β-adic transformation[END_REF][START_REF]On the discrepancy of the β-adic van der Corput sequence[END_REF] are special cases of the abstract van der Corput sequences in Theorem 1. By Lemma 2, S = ( L, A, ≤) is another, usually different, abstract numeration system satisfying the conditions of Theorem 1 whenever τ (q, a 0 ) > 0 for every q > 0, in particular when A L is a β-automaton. The abstract van der Corput sequence considered in Example 1 is also a new low discrepancy sequence.

D(N, [0, y)) = ℓ k=1 O(1) + O(log N) = O(log N),

Bounded remainder sets

Under the conditions of Theorem 1, (7) gives

(9) D(N, [0, y)) = ∞ j=1 ℓ k=j+1 d i=2 γ (i) k (N)ǫ (i) j (u)β k-j-1 i - min(j,ℓ) k=1 γ k (N)ǫ j (u)β k-j-1 + C(N, u) + O(1)
for y = u . If there exists some m ≥ 0 such that u j = a 0 for all j > m, then ǫ j (u) = 0 for all j > m and C(N, u) is bounded. It follows that the interval [0, v ) = [0, va ω 0 ) is a bounded remainder set for every finite word v ∈ L.

For any β-adic van der Corput sequence where β is a Pisot number with irreducible β-polynomial, the bounded remainder sets [0, y) have been characterized in [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF] by the fact that the tail of the β-expansion of y is either 0 ω or a suffix of t 1 t 2 • • • . With our notation and the β-automaton defined in Section 3, this means that ∞ j=m+1 u j β m-j = η q for some m ≥ 0, q ∈ Q. In the more general case, we have the following partial characterization. Note that the proof is simpler than the one in [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF].

Proposition 1. Let (x n ) n≥0 be an abstract van der Corput sequence satisfying the conditions of Theorem 1, u ∈ L ω . If there exists some m ≥ 0, q ∈ Q, such that

ǫ m+1 (u)ǫ m+2 (u) • • • = ǫ q,1 (t q )ǫ q,2 (t q ) • • • ,
where t q = t q,1 t q,2 • • • is the maximal sequence in A ω with τ (q, t q,1 • • • t q,j ) > 0 for all j ≥ 1 if q > 0, t 0 = a ω 0 , ǫ q,j (t q ) = a<t q,j η τ (q,t q,1 •••t q,j-1 a) , then D(N, [0, u )) is bounded.

Proof. If q = 0, then ǫ j (u) = 0 for every j > m, and we have already seen that the boundedness of D(N, [0, u )) follows from (9). For q > 0, note that ǫ q,2 (t q )ǫ q,3 (t q ) • • • = ǫ q ′ ,1 (t q ′ )ǫ q ′ ,2 (t q ′ ) • • • , where q ′ = τ (q, t q,1 ), and that M L is primitive. Therefore, we can assume that m is large enough such that M m L has only positive entries. Hence, there exists some v ∈ L ∩ A m such that τ (d, v) = q. Then, we have vt q ∈ L ω and

ǫ m+1 (vt q )ǫ m+2 (vt q ) • • • = ǫ q,1 (t q )ǫ q,2 (t q ) • • • , thus D N, [0, u ) = D N, [0, vt q ) + O(1) by (9).
It only remains to show that D N, [0, vt q ) = O(1). If vt q = t d , then vt q = 1 and D N, [0, vt q ) = 0. Otherwise, the successor v ′ of v in L has length m, and

vt q = v ′ since no sequence u ′ ∈ L ω satisfies vt q < u ′ < v ′ a ω 0 , hence D N, [0, u ) = D N, [0, vt q ) + O(1) = D N, [0, v ′ + O(1) = O(1).
Clearly [y, z) is a bounded remainder set if both [0, y) and [0, z) have this property. For the converse, the following holds.

Proposition 2. Let (x n ) n≥0 be an abstract van der Corput sequence satisfying the conditions of Theorem 1. If D(N, I) is bounded, then λ(I) ∈ Q(β).

Proof. The proof is very similar to that of Theorem 1 in [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF]. Therefore, we only give the main steps. Define a substitution q → τ (q, a q,0 ) • • • τ (q, a q,mq ), with {a q,0 , a q,1 , . . . , a q,mq } = {a ∈ A : τ (q, a) > 0} and a q,0 < a q,1 < • • • < a q,mq , 1 ≤ q ≤ d, which plays the role of the substitution τ in [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF]. Since τ (d, a 0 ) = d, we have d → dw for some w ∈ A * . Then, a continuous successor function on L ω satisfying rep S ′ (n)a ω 0 → rep S ′ (n+ 1)a ω 0 is topologically conjugate to the successor function S on D defined in [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF], see also [START_REF] Berthé | Odometers on regular languages[END_REF]. If D(N, I) is bounded, then λ(I) is an eigenvalue of the dynamical system (D, S), see Theorem 5.1 in [START_REF] Shapiro | Regularities of distribution, Studies in probability and ergodic theory[END_REF] and [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF]. By Proposition 5 in [START_REF] Ferenczi | Substitution dynamical systems: algebraic characterization of eigenvalues[END_REF], these eigenvalues are in Q(β).

If y ∈ Q(β), then y = u for some eventually periodic sequence u, see [START_REF] Rigo | Abstract β-expansions and ultimately periodic representations[END_REF]. Let p be the period length of ǫ 1 (u)ǫ 2 (u) • • • and m the preperiod length. From (8), we get that

D(N, [0, y)) = ℓ k=1 d i=2 γ (i) k (N) k-1 j=1 ǫ (i) j (u)β k-j-1 i -γ k (N) ∞ j=k ǫ j (u)β k-j-1 +C(N, u)+O(1).
Set y k = ∞ j=k ǫ j (u)β k-j-1 . For k > m, we have

y k = ǫ k (u)β p-1 + • • • + ǫ k+p-1 (u) β p -1 , k-1 j=1 ǫ (i) j (u)β k-j-1 i = ǫ (i) k-p (u)β p-1 i + • • • + ǫ (i) k-1 (u) 1 -β p i + O(β k i ) = -y (i) k + O(β k i ) for 2 ≤ i ≤ d, which gives D(N, [0, y)) = C(N, u) - ℓ k=1 d i=1 γ (i) k (N)y (i) k + O(1).
Recall the definition of γ k (N) in (6), and set

(10) ζ r (z) = d i=1 θ (i) r z (i) for r ∈ Q, z ∈ Q(β).
Then, we have

(11) D(N, [0, y)) = C(N, u) - ℓ k=1 b<w k ζ τ (d,w ℓ •••w k+1 b) (y k ) + O(1). Note that (12) ζ r (η q ) = #L 0 q,r = 1 if q + r > d, 0 else.
The main result of this section is the following theorem.

Theorem 2. Let (x n ) n≥0 be an abstract van der Corput sequence defined by an abstract numeration system S = (L, A, ≤), where L is recognized by a totally ordered Pisot automaton A L = ({0, 1, . . . , d}, A, τ, d, {1, . . . , d}) with τ (0, a) = 0 for every a ∈ A, τ (q, a 0 ) > q for the minimal letter a 0 ∈ A and every q ∈ {1, . . . , d -1}. Then, D(N, [0, u )), u ∈ L ω , is bounded in N if and only if u ∈ Q(β) and there exists some m ≥ 0 such that

(13) ζ τ (d, v) (y k ) = 1 if va ω 0 < u k u k+1 • • • and u 1 • • • u k-1 v ∈ L, 0 else, for every v ∈ A * , k > m, where y k = ∞ j=k ǫ j (u)β k-j-1 , τ is as in (2), ζ as 
in (10). Proof. We show first that the conditions on u ∈ L ω are sufficient for the boundedness of D(N, [0, u )). Note that the assumption τ (q, a 0 ) > q for 0 < q < d is not used here, but only the weaker assumption τ (q, a 0 ) > 0 of Lemma 4. For N = val S ′ (w ℓ • • • w 1 ), we have

ℓ k=1 b<w k ζ τ (d,w ℓ •••w k+1 b) (y k ) = ℓ k=m+1 # b < w k : bw k+1 • • • w ℓ a ω 0 < u k u k+1 • • • , u 1 • • • u k-1 bw k+1 • • • w ℓ ∈ L + O(1) = C(N, u) + O(1), thus D(N, [0, u )) = O(1) by (11). Now, suppose that D(N, [0, u )) = O(1) for u ∈ L ω . By Proposition 2, we have u ∈ Q(β), thus u is eventually periodic by [RS05]. Let m ≥ 0, p ≥ 1 be such that u = u 1 • • • u m (u m+1 • • • u m+p ) ω and τ (d, u 1 • • • u m ) = τ (d, u 1 • • • u m+p ). Consider v ∈ A * and k > m. If v ∈ L, then (13) holds since ζ τ (d,v) (y k ) = ζ 0 (y k ) = 0. If v = v ′
a 0 , then (13) holds for v if and only if it holds for v ′ . Therefore, we can assume v ∈ L ′ . If v is not the empty word, then we define integers

N h = val S ′ ( va g 0 ) h va k-1 0 for h ≥ 0, with g ≥ max(d -1, p) such that g + |v| is a multiple of p. Set v = v k • • • v ℓ , with k ≤ ℓ. We show that (14) C(N h , u) = (h + 1)C(N 0 , u) for all h ≥ 0. If u m+1 • • • u m+p = a p 0 , then C(N h , u) = 0 and (14) holds. If u m+1 • • • u m+p > a p 0 , then g ≥ p implies that bv j+1 • • • v ℓ a ω 0 < u j u j+1 • • • , k ≤ j ≤ ℓ, if and only if bv j+1 • • • v ℓ (a g 0 v) h a ω 0 < u j u j+1 • • • . Since A L is
totally ordered, the assumption τ (q, a 0 ) > q for 0 < q < d implies τ (d, a 0 ) = d and τ (q, a j 0 ) = d for all q > 0, j ≥ d -1, in particular τ (q, a g 0 ) = d. Therefore, we also have

u 1 • • • u j-1 bv j+1 • • • v ℓ ∈ L if and only if u 1 • • • u j-1 bv j+1 • • • v ℓ (a g 0 v) h ∈ L.
Since g + |v| is a multiple of the period length of u, (14) follows.

Since τ (q, a g 0 ) = d for all q > 0, we also have τ (q, a g 0 ) = d for all q > 0, and thus

ζ τ (d,( va g 0 ) h v ℓ •••v j+1 b) (y j ) = ζ τ (d,v ℓ •••v j+1 b) (y j )
. By (11), we get

D(N h , [0, u )) = (h + 1) C(N 0 , u) - ℓ j=k b<v j ζ τ (d,v ℓ •••v j+1 b) (y j ) + O(1). Therefore, D(N, [0, u )) = O(1) implies that (15) ℓ j=k b<v j ζ τ (d,v ℓ •••v j+1 b) (y j ) = C(N 0 , u) for N 0 = val S ′ (v ℓ • • • v k a k-1 0 ), k > m.
We will show that (13) holds, by considering (15) for the integer N ′ 0 defined by the successor of v in L ′ . Let first v be the empty word, and

N ′ 0 = val S ′ (v ′ k a k-1 0 ) with v ′ k such that τ (d, b) = 0 for all b ∈ A with a 0 < b < v ′ k . Then, (15) gives ζ d (y k ) = ζ τ (d,a 0 ) (y k ) = C(N ′ 0 , u) = 1 if a ω 0 < u k u k+1 • • • , 0 else, thus ( 
13) holds if v is the empty word. Assume next that there exists some

v ′ k > v k with τ (d, v ℓ • • • v k+1 v ′ k ) > 0. Choose v ′ k such that τ (d, v ℓ • • • v k+1 b) = 0 for all b ∈ A with v k < b < v ′ k , and set N ′ 0 = val S ′ (v ℓ • • • v k+1 v ′ k a k-1 0 )
. Then, (13) holds because of

ζ τ (d,v ℓ •••v k ) (y k ) = b<v ′ k ζ τ (d,v ℓ •••v k+1 b) (y k ) - b<v k ζ τ (d,v ℓ •••v k+1 b) (y k ) = C(N ′ 0 , u) -C(N 0 , u) = 1 if v k • • • v ℓ a ω 0 < u k u k+1 • • • , u 1 • • • u k-1 v k • • • v ℓ ∈ L, 0 else.
Now, we proceed by induction. We know that (13) holds if v is the empty word. Assume that (13) holds for all words v of length ℓ -k, and consider 

ζ τ (d,v ℓ •••v k+1 ) (y k+1 ) = d i=1 θ (i) τ (d,v ℓ •••v k+1 ) βy k -ǫ k (u) (i) = d i=1 β i θ (i) τ (d,v ℓ •••v k+1 ) y (i) k - d i=1 θ (i) τ (d,v ℓ •••v k+1 ) b<u k η (i) τ (d,u 1 •••u k-1 b) . (16 
β i θ (i) τ (d,v ℓ •••v k+1 ) y (i) k = d i=1 b∈A θ (i) τ (d,v ℓ •••v k+1 b) y (i) k = b∈A ζ τ (d,v ℓ •••v k+1 b) (y k ) = ζ τ (d,v ℓ •••v k ) (y k ) + #{b < v k : bv k+1 • • • v ℓ a ω 0 < u k u k+1 • • • , u 1 • • • u k-1 bv k+1 • • • v ℓ ∈ L}. Using this equation, d i=1 θ (i) τ (d,v ℓ •••v k+1 ) b<u k η (i) τ (d,u 1 •••u k-1 b) = b<u k #L 0 τ (d,u 1 •••u k-1 b), τ (d,v ℓ •••v k+1 ) = #{b < u k : u 1 • • • u k-1 bv k+1 • • • v ℓ ∈ L}
and the induction hypothesis, (16) yields

ζ τ (d,v ℓ •••v k ) (y k ) = ζ τ (d,v ℓ •••v k+1 ) (y k+1 ) + #{b < u k : u 1 • • • u k-1 bv k+1 • • • v ℓ ∈ L} -#{b < v k : bv k+1 • • • v ℓ a ω 0 < u k u k+1 • • • , u 1 • • • u k-1 bv k+1 • • • v ℓ ∈ L} = 1 if v k+1 • • • v ℓ a ω 0 < u k+1 u k+2 • • • and u 1 • • • u k v k+1 • • • v ℓ ∈ L, 0 else, +    1 if v k < u k and u 1 • • • u k-1 v k • • • v ℓ ∈ L, -1 if v k > u k , v k+1 • • • v ℓ a ω 0 < u k+1 u k+2 • • • , u 1 • • • u k v k+1 • • • v ℓ ∈ L, 0 else, = 1 if v k • • • v ℓ a ω 0 < u k u k+1 • • • and u 1 • • • u k-1 v k • • • v ℓ ∈ L, 0 else,
where we have used that u 1 • • • u k-1 bv k+1 • • • v ℓ can be in L only if b ≤ v k . Therefore, (13) holds for all words v of length ℓ -k + 1, and Theorem 2 is proved.

In the case of β-adic van der Corput sequences, all bounded remainder sets satisfy the conditions of Proposition 1, see [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF]. The following example shows that this is probably not true in the more general setting, i.e., that there might be sequences u satisfying the conditions of Theorem 1, but not those of Proposition 1. However, A L is not a Pisot automaton in this example, and we have not found an example where A L satisfies the conditions of Theorem 1.

  a), . . . , τ (1, a)) = (4, 2, 1, 0), then ( τ (d, a), . . . , τ (1, a)) = (3, 2, 1, 1), and the corresponding Ferrers diagram is 3
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 1 Figure 1. The totally ordered automata A L (left) and A L (right) of Example 1.

  where the constants implied by the O-symbols do not depend on y. With D(N, [y, z)) = D(N, [0, z))-D(N, [0, y)), we get sup I D(N, I) = O(log N), and the theorem is proved.

)

  Let v k be the maximal letter with τ (d,v ℓ • • • v k+1 v k ) > 0. Since (θ 1 , . . . , θ d ) t is an eigenvector of M L and we already know that ζ τ (d,v ℓ •••v k+1 b) (y k ), b < v k ,is given by (13), we have d i=1
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Example 3. Let A L = ({0, 1, 2, 3, 4}, {a 0 , a 1 , a 2 , a 3 }, τ, 4, {1, 2, 3, 4}) be the totally ordered automaton with τ, τ given by the transition tables τ a 0 a 1 a 2 a 3 0 0 0 0 0 1 3 2 1 0 2 3 2 2 1 3 4 4 3 1 4 4 4 4 2 , τ a 0 a 1 a 2 a 3 0 0 0 0 0 1 2 2 1 0 2 4 2 2 0 3 4 4 3 1 4 4 4 4 3

. 12). It can be easily verified that (13) holds for all v ∈ A * , k ≥ 3, but the conditions on u of Proposition 1 are not satisfied.

We conclude by the remark that the boundedness of D(N, I) is not invariant under translation of the interval, i.e., D(N, [y, z)) can be unbounded if [0, z -y) is a bounded remainder set and vice versa, see [START_REF] Steiner | Regularities of the distribution of β-adic van der Corput sequences[END_REF].