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REGULARITIES OF THE DISTRIBUTION OF ABSTRACT VAN DER

CORPUT SEQUENCES

WOLFGANG STEINER

Abstract. Similarly to β-adic van der Corput sequences, abstract van der Corput se-
quences can be defined for abstract numeration systems. Under some assumptions, these
sequences are low discrepancy sequences. The discrepancy function is computed ex-
plicitely, and a characterization of bounded remainder sets of the form [0, y) is provided.

1. Introduction

Let (xn)n≥0 be a sequence with xn ∈ [0, 1) for all n ≥ 0, and

D(N, I) = #{0 ≤ n < N : xn ∈ I} − Nλ(I)

its discrepancy function on the interval I, where λ(I) denotes the length of I. Then
(xn)n≥0 is a low discrepancy sequence if supI D(N, I) = O(log N), where the supremum is
taken over all intervals I ⊆ [0, 1). If D(N, I) is bounded in N , then I is called a bounded
remainder set. For details on the discrepancy, we refer to [KN] and [DT]. References to
results on bounded remainder sets can be found in the introduction of [St].

In [Ni], β-adic van der Corput sequences are defined, and it is shown that they are low
discrepancy sequences if β is a Pisot number with irreducible β-polynomial. Recall that
a Pisot number is an algebraic integer greater than 1 with all its conjugates lying in the
interior of the unit disk. For these low discrepancy sequences, the interval [0, y), 0 ≤ y ≤ 1,
is a bounded remainder set if and only if the β-expansion of y is finite or its tail is the
same as that of the expansion of 1, see [St].

If β is a Pisot number, then the language of β-expansions is regular, which means that
it is recognized by a finite automaton. Therefore these β-expansions are special cases of
abstract numeration systems as defined in [LR], see Section 2. This article is devoted to the
study of van der Corput sequences defined by more general abstract numeration systems.

2. Definitions

Let (A, <) be a finite and totally ordered alphabet. Denote by A∗ the free monoid
generated by A for the concatenation product, i.e., the set of finite words with letters in A.
The length of a word w ∈ A∗ is denoted |w|. Extend the order on A to A∗ by the shortlex
(or genalogical) order, which means that v < w if either |v| < |w| or |v| = |w| and there
exist p, v′, w′ ∈ A∗, a, b ∈ A such that v = pav′, w = pbw′ and a < b.
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2 WOLFGANG STEINER

The triple S = (L, A, <) is an abstract numeration system if L is an infinite regular
language over A and the numerical value of a word w ∈ L is defined by

valS(w) = #{v ∈ L : v < w}.

If valS(w) = n, then we say that w is the representation of n and write repS(n) = w.
Assume that the language L grows exponentially, with

lim
m→∞

log #{v ∈ L : |v| ≤ m}

m
= log β.

Then real numbers are represented by infinite words which are limits of sequences of words
in L. The value of an infinite word u = limj→∞ w(j), w(j) ∈ L, is

valωS(u) = lim
j→∞

valS(w(j))

#{v ∈ L : |v| ≤ |w(j)|}
.

Let Lω the set of these words u. Since valωS(u) ∈ [1/β, 1], we define the normalized value

〈u〉 =
β valωS(u) − 1

β − 1
∈ [0, 1].

We extend this definition to finite words w ∈ L which are prefixes of words in Lω by
setting 〈w〉 = 〈u〉, where u is the lexicographically smallest word in Lω with prefix w. Since
we want to define a sequence without multiple occurrences of the same value, we set

L′ = {w ∈ L : 〈w〉 6= 〈v〉 for all v ∈ L with v < w}.

The mirror image of a word w = w1w2 · · ·wk, wj ∈ A, is w̃ = wk · · ·w2w1. The mirror

image of a language L is L̃ = {w̃ : w ∈ L}.
Assume that every w ∈ L is the prefix of some u ∈ Lω. Then we define the abstract van

der Corput sequence corresponding to S by setting

xn = 〈w〉 with w̃ = rep
S̃′(n),

where S̃ ′ = (L̃′, A, <). This means that {xn : n ≥ 0} = {〈w〉 : w ∈ L} = {〈w〉 : w ∈ L′},
where the w ∈ L′ are ordered by the shortlex order on their mirror images.

Let AL = (Q, q0, A, τ, F ) be a (complete) deterministic finite automaton recognizing L,
with set of states Q, initial state q0, transition function τ : Q × A → Q and set of final
states F . The transition function is extended to words, τ : Q × A∗ → Q, by setting
τ(q, ε) = q for the empty word ε and τ(q, wa) = τ(τ(q, w), a). A word w ∈ A∗ is accepted
by AL, and thus in L, if and only if τ(q, w) ∈ F .

Assume that there exists an ordering of the states such that

• the maximal state is the initial state,
• all states except the minimal state are final,
• τ(q, a) < τ(r, a) for some q, r ∈ Q, a ∈ A implies q < r,
• τ(s, a) = s for the minimal state s and all a ∈ A.

An automaton satisfying this property will be called automaton with ordered states.
From now on, all automata will be automata with ordered states with set of states

Q = {0, 1, . . . , d}, thus initial state q0 = d and set of final states F = {1, . . . , d}.
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Lemma 1. If L is recognized by an automaton with ordered states AL = (Q, d, A, τ, Q\{0}),

Q = {0, 1, . . . , d}, then L̃ is recognized by AL̃ = (Q, d, A, τ̃ , Q \ {0}), where

τ̃(r, a) = #{q ∈ Q : τ(q, a) + r > d} for all r ∈ Q, a ∈ A.

AL̃ is an aumaton with ordered states as well.

Proof. A deterministic automaton A′ recognizing L̃ is obtained by choosing the set of final
states in AL as initial state of A′ and setting recursively τ ′(r, a) = {q ∈ Q : τ(q, a) ∈ r}.
The initial state of A′ is thus {1, . . . , d}. Because of the ordering of the states, τ(q, a) = 0
implies that τ(q′, a) = 0 for all q′ ≤ q, hence τ ′({1, . . . , d}, a) = {d− r + 1, . . . , d} for some
r ∈ Q (with r = 0 corresponding to the empty set). Similarly, we obtain for all r ∈ Q,
a ∈ A, that τ ′({d − r + 1, . . . , d}, a) = {d − r′ + 1, . . . , d} for some r′ ∈ Q, with

r′ = #{q ∈ Q : τ(q, a) ∈ {d − r + 1, . . . , d}} = #{q ∈ Q : τ(q, a) + r > d}.

The final states of A′ are all sets containing the initial state d of A: {d − r + 1, . . . , d},
1 ≤ r ≤ d. If we label the states by r instead of {d − r + 1, . . . , d}, then we obtain AL̃,
which is easily seen to be an automaton with ordered states. �

The next lemma provides a fundamental characterization of the words in a language
recognized by an automaton with ordered states.

Lemma 2. Let w1 · · ·wk ∈ A∗. For any j ∈ {0, 1, . . . , k}, we have w1 · · ·wk ∈ L if and
only if τ(d, w1 · · ·wj) + τ̃ (d, wk · · ·wj+1) > d.

Proof. By the proof of Lemma 1, τ̃(d, wk · · ·wj+1) = r means that τ(q, wj+1 · · ·wk) > 0 if
and only if q > d−r. Therefore we have τ(d, w1 · · ·wk) = τ(τ(d, w1 · · ·wj), wj+1 · · ·wk) > 0
if and only if τ(d, w1 · · ·wj) + τ̃ (d, wk · · ·wj+1) > d. �

Remark. If τ(d, a)+· · ·+τ(1, a) is considered as a partition, then τ̃(d, a)+· · ·+τ̃(1, a) is the
conjugate partition. E.g., if (τ(4, a), . . . , τ(1, a)) = (4, 2, 1, 0), then (τ̃ (4, a), . . . , τ̃(1, a)) =
(3, 2, 1, 1), and the corresponding Ferrers diagram is

3 2 1 1
4
2
1
0

Let ML = (#{a ∈ A : τ(q, a) = r})d≥q,r≥1 be the incidence matrix of the co-accessible
part of AL. (A state q is co-accessible if τ(q, w) ∈ F for some w ∈ A∗.) Assume that
ML is primitive, let β > 1 be its Perron-Frobenius eigenvalue and (ηd, . . . , η1)

t be the
corresponding right eigenvector of ML with ηd = 1. Set η0 = 0 and ǫq(b) =

∑
a<b ητ(q,a) for

b ∈ A, q ∈ Q.
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For an infinite word u = u1u2 · · · with u1 · · ·uj ∈ L for every j ≥ 1, let q0q1 · · · be the
corresponding sequence of states defined by τ(qj−1, uj) = qj for all j ≥ 1. It was shown in
[LR] that valωS(u) = 1/β + (β − 1)

∑∞
j=1 ǫqj−1

(uj)β
−j and thus

〈u1u2 · · · 〉 =
∞∑

j=1

ǫqj−1
(uj)β

−j.

We clearly have 〈u1u2 · · · 〉 ≤ 〈u′
1u

′
2 · · · 〉 if u1u2 · · · is lexicographically smaller than u′

1u
′
2 · · · .

The primitivity of ML implies that ηq > 0 for all q > 0, thus ǫq(a) < ǫq(b) if a < b and
τ(q, a) > 0. Therefore we have 〈v〉 = 〈w〉 for v, w ∈ L if and only if v is a prefix of w and
no right extension of v with length |w| is lexicographically smaller than w.

Let a0 be the smallest letter of A and assume that τ̃(d, a0) = d, i.e., τ(q, a0) > 0 for all
q > 0. Then we have vak

0 ∈ L for all v ∈ L, k ≥ 0, where ak
0 means that the letter a0 is

repeated k times. This implies that 〈v〉 = 〈w〉 with v < w if and only if w = va
|w|−|v|
0 ,

hence L′ consists exactly of those words in L which do not end with a0.

Example. Let AL be an automaton with ordered states on the alphabet A = {0, 1, . . . , B}
with integers bq ∈ A, q ∈ {1, . . . , d}, such that τ(q, a) = d for all a < bq and τ(q, a) = 0
for all a > bq. Assume that ML is primitive and let β be its Perron-Frobenius eigenvalue.
Then we have

〈u1u2 · · · 〉 =
∞∑

j=1

∑

a<uj

ητ(qj−1,a)β
−j =

∞∑

j=1

∑

a<uj

ηdβ
−j =

∞∑

j=1

ujβ
−j for all u1u2 · · · ∈ Lω.

Let t1t2 · · · be the lexicographically maximal sequence in Lω and q0q1 · · · the correspond-
ing sequence of states, i.e., tj = bqj−1

and qj = τ(qj−1, bqj−1
) for all j ≥ 1. Since AL is

an automaton with ordered states, qj < qk implies bqj
< bqk

or bqj
= bqk

, qj+1 < qk+1,
thus tj+1tj+2 · · · ≤ tk+1tk+2 · · · (with the lexicographical ordering). In particular, we have
tj+1tj+2 · · · ≤ t1t2 · · · . Since

∑∞
j=1 tjβ

−j = 1, the sequence t1t2 · · · is the expansion of 1 with

respect to β if tj+1tj+2 · · · < t1t2 · · · for all j ≥ 1, cf. [Pa, St]. Otherwise, the expansion of 1
is t1 · · · tj−1(tj +1)00 · · · , where j is the minimal positive integer with tj+1tj+2 · · · = t1t2 · · · .
(The sequence t1t2 · · · is sometimes called quasi-greedy or infinite expansion of 1.)

If u1u2 · · · ∈ Lω, then we have either u1u2 · · · = t1t2 · · · or some k ≥ 1 such that
u1 · · ·uk−1 = t1 · · · tk−1, uk < tk. Since qk = d in the latter case, we obtain u1u2 · · · ∈ Lω

if and only if ujuj+1 · · · ≤ t1t2 · · · for all j ≥ 1. Therefore, u1u2 · · · is either the (greedy)
β-expansion of 〈u1u2 · · · 〉 or its quasi-greedy expansion. Since the abstract van der Corput
sequence is defined by finite words u1 · · ·uk ∈ L, and u1 · · ·uk00 · · · is always a (greedy)
β-expansion, we obtain exactly the β-adic van der Corput sequence defined in [Ni, St].
Therefore we call AL a β-automaton.
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3. Discrepancy function

Let C(N, I) = #{xn ∈ I : 0 ≤ n < N}. Then we have, for y = 〈u1u2 · · · 〉,

D(N, [0, y)) =

∞∑

j=1

(
C
(
N, [〈u1 · · ·uj−1〉, 〈u1 · · ·uj−1uj〉

)
− Nǫqj−1

(uj)β
−j
)
.

If we set rep
S̃′(N) = wℓ · · ·w1, wj = a0 for j > ℓ, rj = τ̃ (d, wℓ · · ·wj+1) for 0 ≤ j ≤ ℓ,

rj = d for j > ℓ, and

Lk
q,r = {v1 · · · vk ∈ Ak : τ(q, v1 · · · vk) + r > d} = {v1 · · · vk ∈ Ak : q + τ̃(r, vk · · ·1) > d}

for all q, r ∈ Q, k ≥ 0, then we obtain the following lemma.

Lemma 3. If L is recognized by an automaton with ordered states and τ̃(d, a0) = d, then

C
(
N, [〈u1 · · ·uj−1〉, 〈u1 · · ·uj−1uj〉

)
=

ℓ∑

k=j+1

∑

a<uj

∑

b<wk

#Lk−j−1
τ(qj−1,a),τ̃(rk ,b) + µj(N, y),

µj(N, y) =





#{a < uj : τ(qj−1, a) + rj > d} if uj ≤ wj,
#{a < wj : τ(qj−1, a) + rj > d} if uj > wj, uj−1 · · ·u1 ≥ wj−1 · · ·w1,
#{a ≤ wj : τ(qj−1, a) + rj > d} if uj > wj, uj−1 · · ·u1 < wj−1 · · ·w1.

Proof. We have to consider the words v ∈ L′ with ṽ = rep
S̃′(n) for some n < N . Since

ṽ < wℓ · · ·w1 if and only if a
ℓ−|v|
0 ṽ < wℓ · · ·w1, and va

ℓ−|v|
0 ∈ L because of τ̃ (d, a0) = d,

we can consider the words v1 · · · vℓ ∈ L with vℓ · · · v1 < wℓ · · ·w1 instead. The set of these
words can be written as

⋃ℓ

k=1

⋃
b<wk

{v1 · · · vk−1bwk+1 · · ·wℓ : τ̃(rk, bvk−1 · · · v1) > 0}.

If j ≤ ℓ, then 〈v1 · · · vℓ〉 is in
[
〈u1 · · ·uj−1〉, 〈u1 · · ·uj−1uj〉

)
if and only if v1 · · · vj−1 =

u1 · · ·uj−1 and vj < uj. For j < k ≤ ℓ, every word in u1 · · ·uj−1aLk−j−1
τ(qj−1,a),τ̃(rk,b)bwk+1 · · ·wℓ

with a < uj, b < wk provides therefore some xn in the given interval, which proves the
main part of the formula. It remains to count the words u1 · · ·uj−1awj+1 · · ·wℓ ∈ L with
a < uj and auj−1 · · ·u1 < wj · · ·w1, which provides µj(N, y).

If j > ℓ, then we have 〈v1 · · · vℓ〉 = 〈v1 · · · vℓa
j−ℓ
0 〉 ∈

[
〈u1 · · ·uj−1〉, 〈u1 · · ·uj−1uj〉

)
if and

only if uj > a0 = wj, uj−1 · · ·uℓ+1 = a0 · · ·a0 = wj−1 · · ·wℓ+1, and uℓ · · ·u1 = vℓ · · · v1 <
wℓ · · ·w1. Since τ(qj−1, a0) is positive and rj = d, we have τ(qj−1, wj) + rj > d. �

Assume that the characteristic polynomial of ML is irreducible and let β2, . . . , βd be the
conjugates of β1 = β. Then the characteristic polynomial of ML̃ is equal to that of ML.
Since #Lk

q,d = #{v ∈ Ak : τ(q, v) > 0} and #Lk
d,r = #{v ∈ Ak : τ̃(r, v) > 0}, we have

#Lk
q,r =

d∑

i=1

η(i)
q θ(i)

r βk
i ,

where (θd, . . . , θ1)
t is a right eigenvector of M

L̃
to the eigenvalue β, θ0 = 0 and z(i) denotes

the image of z by the isomorphism from Q(β) to Q(βi) mapping βj to βj
i .
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Assume furthermore that β is a Pisot number, i.e., that its conjugates satisfy |βi| ≤ ρ

for some ρ < 1. With N =
∑ℓ

k=1

∑
b<wk

#Lk−1
d,τ̃ (rk,b), we obtain

D(N, [0, y))=

∞∑

j=1

(
ℓ∑

k=j+1

∑

a<uj

∑

b<wk

#Lk−j−1
τ(qj−1,a),τ̃(rk ,b)+ µj(N, y) −

ℓ∑

k=1

∑

b<wk

#Lk−1
d,τ̃ (rk,b)

ǫqj−1
(uj)

βj

)

=

∞∑

j=1

(
∑

a<uj

ℓ∑

k=j+1

∑

b<wk

d∑

i=2

θ
(i)
τ̃(rk,b)

(
η

(i)
τ(qj−1,a)β

k−j−1
i − ητ(qj−1,a)β

k−1
i β−j

)
+µj(N, y)(1)

−
∑

a<uj

j∑

k=1

∑

b<wk

d∑

i=1

θ
(i)
τ̃(rk,b)ητ(qj−1,a)β

k−1
i β−j

)
=

∞∑

j=1

∑

a<uj

O(1).

Changing the order of summation gives

D(N, [0, y)) =

ℓ∑

k=1

∑

b<wk

(
k−1∑

j=1

d∑

i=2

θ
(i)
τ̃(rk ,b)

(
ǫ(i)
qj−1

(uj)β
k−j−1
i − ǫqj−1

(uj)β
k−1
i β−j

)

−
∞∑

j=k

d∑

i=1

θ
(i)
τ̃(rk ,b)ǫqj−1

(uj)β
k−1
i β−j

)
+

∞∑

j=1

µj(N, y)

=
ℓ∑

k=1

(
µk(N, y)−

∑

b<wk

θτ̃(rk,b)

∞∑

j=k

ǫqj−1
(uj)

βj−k+1
+
∑

b<wk

d∑

i=2

θ
(i)
τ̃(rk ,b)

k−1∑

j=1

ǫ(i)
qj−1

(uj)β
k−j−1
i

)
+ O(1)

=

ℓ∑

k=1

∑

b<wk

O(1) + O(1) = O(log N).

An automaton satisfying the above assumptions that the incidence matrix of the co-
accessible part has one simple eigenvalue β > 1 and all other eigenvalues in the interior of
the unit disk will be called a Pisot automaton. The above calculations prove the following
theorem.

Theorem 4. Let S = (L, A, <) be an abstract numeration system where L is recognized
by a Pisot automaton with ordered states and τ̃ (d, a0) = d for the minimal letter a0 ∈ A.
Then the corresponding abstract van der Corput sequence is a low discrepancy sequence.

This theorem is a generalization of Ninomiya’s result for β-adic van der Corput sequences:
If β is a Pisot number, then the infinite expansion of 1 is eventually periodic, i.e., t1t2 · · · =
t1 · · · tm(tm+1 · · · td)

ω with d > m ≥ 0. If d is chosen minimally and the β-polynomial
(xd− t1x

d−1−· · ·− td)− (xm− t1x
m−1−· · ·− tm) is irreducible, then the β-automaton with

bq = tj for q = #{k ≤ d : tktk+1 · · · ≤ tjtj+1 · · · } satisfies the assumptions of this theorem.
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Now assume y ∈ Q(β), which is equivalent to u1u2 · · · being eventually periodic, see [RS].
If we set yk =

∑∞
j=k ǫqj−1(uj)β

k+1−j, and u1u2 · · · , q0q1 · · · have period length p, then

k−1∑

j=1

ǫ(i)
qj−1

(uj)β
k−j−1
i =

(
ǫ(i)
qk−p−1

(uk−p)β
p−1
i + · · ·+ ǫ(i)

qk−2
(uk−1)

)(
1 + βp

i + β2p
i + · · ·

)
+ O(βk

i )

=
(ǫqk−1

(uj)β
p−1 + · · · + ǫqk+p−2

(uk+p−1)

1 − βp

)(i)

+ O(βk
i ) = −y

(i)
k + O(βk

i )

for 2 ≤ i ≤ d. This gives

D(N, [0, y)) =
ℓ∑

k=1

(
µk(N, y) −

∑

b<wk

d∑

i=1

θ
(i)
τ̃ (rk,b)y

(i)
k

)
+ O(1).

If we set ζr(x) =
∑d

i=1 θ
(i)
r x(i) for x ∈ Q(β), r ∈ Q, then

(2) D(N, [0, y)) =

ℓ∑

k=1

(
µk(N, y) −

∑

b<wk

ζτ̃(rk,b)(yk)

)
+ O(1).

4. Bounded remainder sets

In this section, we prove the following theorem.

Theorem 5. Let (xn)n≥0 be an abstract van der Corput sequence defined by (L, A, <) where
L is recognized by a Pisot automaton with ordered states and τ̃(q, ad−1

0 ) = d for the minimal
letter a0 ∈ A and all q > 0. Let y = 〈u1u2 · · · 〉, yk =

∑∞
j=k ǫqj−1

(uj)β
k+1−j for k ≥ 1.

Then D(N, [0, y)) is bounded in N if and only if y ∈ Q(β) and there exists some m ≥ 1
such that either ym = 0 or

(3) ζτ̃(d,vℓ···vk)(yk) =

{
1 if vk · · · vℓ ≤ uk · · ·uℓ and u1 · · ·uk−1vk · · · vℓ ∈ L
0 else

for all vk · · · vℓ ∈ A∗, m ≤ k ≤ ℓ.

The proof of the theorem is split up into three propositions. Note that the conditions
for Propositions 6 and 7 are weaker than those for Theorem 5.

Proposition 6. Let (xn)n≥0 be an abstract van der Corput sequence defined by (L, A, <)
where L is recognized by an automaton with ordered states, τ̃(d, a0) = d, and the incidence
matrix ML is primitive with Perron-Frobenius eigenvalue β.

If D(N, I) is bounded, then λ(I) ∈ Q(β).

Proof. Proposition 6 is proved in the same way as Theorem 1 in [St]. Define a substitution
q 7→ τ̃ (q, a1) · · · τ̃ (q, am), with {a1, . . . , am} = {a ∈ A : τ̃(q, a) > 0} and a1 < · · · < am,
1 ≤ q ≤ d, which plays the role of the substitution τ in [St]. Since τ̃(d, a0) = d, we have
d 7→ dw for some w ∈ A∗. Then a continuous successor function on Lω (with the usual
topology on right infinite words) satisfying rep

S̃′(n)aω
0 7→ rep

S̃′(n + 1)aω
0 is topologically

conjugate to the successor function on D defined in [St]. �
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Proposition 7. Let (xn)n≥0 be an abstract van der Corput sequence defined by (L, A, <)
where L is recognized by a Pisot automaton with ordered states and τ̃ (d, a0) = d.

If y ∈ Q(β) and there exists some m ≥ 1 such that either ym = 0 or (3) holds for all
vk · · · vℓ ∈ A∗, m ≤ k ≤ ℓ, then D(N, [0, y)) is bounded.

Proof. Let rep
S̃′(N) = wℓ · · ·w1 and rk = τ̃ (d, wℓ · · ·wk+1), 0 ≤ k ≤ ℓ. If ym = 0 for some

m ≥ 1, then uj = a0 for all j ≥ m and the result follows from (1). Otherwise, we have

ζτ̃(rk ,b)(yk) = ζτ̃(d,wℓ···wk+1b)(yk) =

{
1 if bwk+1 · · ·wℓ ≤ uk · · ·uℓ, τ(qk−1, b) + rk > d,
0 else,

for k ≥ m, thus

µk(N, y)−
∑

b<wk

ζτ̃(rk,b)(yk) =





1 if uk > wk, uk−1 · · ·u1 < wk−1 · · ·w1, qk−1 + rk−1 > d,
−1 if uk < wk, uk+1 · · ·uℓ ≥ wk+1 · · ·wℓ, qk + rk > d,
0 else.

Denote this difference by ∆k. If ∆k = −1, m ≤ k ≤ ℓ, and uk+1 · · ·uℓ > wk+1 · · ·wℓ, then
we have ∆j = 1, where j > k is defined by uk+1 · · ·uj−1 = wk+1 · · ·uj−1, uj > wj, and
∆k+1 = · · · = ∆j−1 = 0. If ∆k = 1, m ≤ k ≤ ℓ, then let uk−1 · · ·uj+1 = wk−1 · · ·wj+1,
uj < wj, j < k, and we obtain ∆j = −1 if j ≥ m. Therefore the 1’s and (−1)’s alternate

in ∆m · · ·∆ℓ, hence
∑ℓ

k=1 ∆k is bounded and D(N, [0, y)) = O(1) by (2). �

Proposition 8. Let (xn)n≥0 be as in Theorem 5. If D(N, [0, y)) is bounded, then y ∈ Q(β)
and there exists m ≥ 1 such that either ym = 0 or (3) holds for all vk · · · vℓ ∈ A∗, m ≤ k ≤ ℓ.

Proof. By Proposition 6, we have y ∈ Q(β) and thus u1u2 · · · = u1 · · ·um′(um′+1 · · ·um′+p)
ω,

q0q1 · · · = q0 · · · qm′−1(qm′ · · · qm′+p−1)
ω for some m′ ≥ 0, p ≥ 1, by [RS]. We can assume

um′+1 · · ·um′+p > a0 · · ·a0 since ym′+1 = 0 otherwise.
Let m = m′+max(d, p+1) and vk · · · vℓ ∈ A∗, m ≤ k ≤ ℓ. If vk · · · vℓ 6∈ L, then (3) holds

since ζτ̃(d,vℓ···vk)(yk) = ζ0(yk) = 0. If vk · · · vℓ ∈ L \ a∗
0, then assume w.l.o.g. vℓ > a0, since

τ̃(d, ad−1
0 ) = d implies τ̃(d, a0) = d, thus (3) holds for a0vℓ−1 · · · vk if it holds for vℓ−1 · · · vk.

Let J ≥ 1 be such that Jp ≥ ℓ − k + d. Then τ̃(vℓ · · · vka
Jp−ℓ+k−1
0 ) = d, and we define

NK = val
S̃′

(
(vℓ · · · vka

Jp−ℓ+k−1
0 )Kvℓ · · · vka

k−1
0

)

for K ≥ 0. If furthermore Jp > ℓ−k+p, then µj(N0, y) = µj+hJp(NK , y) for k ≤ j < k+Jp,
0 ≤ h ≤ K. With (2), we obtain

D(NK , [0, y)) = (K + 1)

( k+Jp−1∑

j=k

µj(N0, y) −

ℓ∑

j=k

∑

b<vj

ζτ̃(d,vℓ···vj+1b)(yj)

)
+ O(1).

Therefore D(N, [0, y)) = O(1) implies

(4)
∞∑

j=k

µj(N0, y) =
∞∑

j=k

∑

b<vj

ζτ̃(rj ,b)(yj),

where rj = τ̃(d, vℓ · · · vj+1) for k ≤ j ≤ ℓ, rj = d and vj = a0 for j > ℓ.
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Assume first that there exists some v′
k > vk such that v′

kvk+1 · · · vℓ ∈ L, and consider
N ′

0 = val
S̃′(vℓ · · · vk+1v

′
ka

k−1
0 ). Then we have

∞∑

j=k+1

µj(N
′
0, y) −

∞∑

j=k+1

µj(N0, y) =





1 if vk ≤ uk < v′
k, uk+1 · · ·uj−1 = vk+1 · · · vj−1,

uj > vj , τ(qj−1, vj) + rj > d for some j > k,
0 else.

=

{
1 if vk ≤ uk < v′

k, vk+1 · · · vℓ ≤ uk+1 · · ·uℓ, qk + rk > d,
0 else.

If τ̃(rk, b) = 0 for vk < b < v′
k, then we have furthermore

∑

b<v′
k

ζτ̃(rk ,b)(yk) −
∑

b<vk

ζτ̃(rk,b)(yk) = ζτ̃(rk ,vk)(yk),

µk(N
′
0, y) − µk(N0, y) =

{
1 if vk < uk, qk−1 + rk−1 > d,
0 else.

By using (4) for N0 and N ′
0, we obtain

ζτ̃(d,vℓ···vk)(yk) = ζτ̃(rk,vk)(yk) =

{
1 if vk · · · vℓ ≤ uk · · ·uℓ, qk−1 + rk−1 > d,
0 else,

since vk < uk < v′
k implies τ̃ (rk, uk) = 0, thus qk + rk ≤ d, and vk = uk implies that

qk + rk > d is equivalent with qk−1 + rk−1 > d. Thus (3) holds in this case.
If vk · · · vℓ = a0 · · ·a0, then similar arguments apply, hence ζd(yk) = 1 unless yk = 0.
Assume now τ̃ (rk, b) = 0 for all b > vk, and consider

ζrk
(yk+1) =

d∑

i=1

θ(i)
rk

(
βyk − ǫqk−1

(uk)
)(i)

=
d∑

i=1

βiθ
(i)
rk

y
(i)
k −

d∑

i=1

θ(i)
rk

∑

b<uk

η
(i)
τ(qk−1,b).

Using βiθ
(i)
rk =

∑
b∈A θ

(i)
τ̃(rk ,a) since (θ

(i)
d , . . . , θ

(i)
1 )t is an eigenvector of ML̃, and

d∑

i=1

η
(i)
τ(qk−1,b)θ

(i)
rk

= #L0
τ(qk−1,b),rk

=

{
1 if τ(qk−1, b) + rk > d,
0 else,

we obtain

ζrk
(yk+1) =

∑

b∈A

ζτ̃(rk,b)(yk) − #{b < uk : qk−1 + τ̃ (rk, b) > d}.

We already know that (3) holds for ζτ̃(rk ,b)(yk) = ζτ̃(d,vℓ···vk+1b)(yk), b < vk, hence

ζrk
(yk+1) = ζτ̃(rk ,vk)(yk) +





−1 if vk < uk, qk−1 + rk−1 > d,
1 if vk > uk, vk+1 · · · vℓ ≤ uk+1 · · ·uℓ, qk + rk > d,
0 else.

If vk+1 < max{b ∈ A : τ̃(rk+1, b) > 0}, then (3) holds for ζrk
(yk+1) = ζτ̃(d,vℓ···vk+1)(yk+1).

If ζrk
(yk+1) = ζτ̃(rk,vk)(yk) − 1, then vk < uk implies ukvk+1 · · · vℓ 6∈ L, hence ζrk

(yk+1) = 0.
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Since ζrk
(yk+1) = ζτ̃(rk,vk)(yk) + 1 implies ζrk

(yk+1) = 1, we get

ζτ̃(rk,vk)(yk) =

{
1 if 0 = ζrk

(yk+1) = ζτ̃(rk,vk)(yk) − 1 or 1 = ζrk
(yk+1) = ζτ̃(rk,vk)(yk),

0 else,

hence (3) holds for ζτ̃(d,vℓ···vk)(yk) in this case as well.
Finally, there exists some j ≥ k such that vj < max{b ∈ A : τ̃(rj , b) > 0}. Then we

obtain inductively that (3) holds for ζτ̃(d,vℓ···vj)(yj), . . . , ζτ̃(d,vℓ···vk)(yk). �

In the case of β-adic van der Corput sequences, the bounded remainder sets [0, y) are
characterized by the fact that ym = ηq for some m ≥ 1, q ∈ Q. In the more general case,
we have the following partial characterization.

Proposition 9. Let (xn)n≥0 be an abstract van der Corput sequence defined by (L, A, <)
where L is recognized by a Pisot automaton with ordered states and τ̃ (d, a0) = d.

If there exists some m ≥ 1 and some s ∈ Q such that, for all k ≥ m, ǫqk−1
(uk) =

ǫτ(s,um···uk−1)(uk) and τ(s, um · · ·uk−1b) = 0 for all b > uk, then D(N, [0, y)) is bounded.

Proof. Let sk = τ(s, um · · ·uk−1) for k ≥ m. If sk = 0 for some k ≥ m, then we have
yk = 0 and D(N, [0, y)) is bounded. Therefore we can assume sk > 0 for all k ≥ m.
Then umum+1 · · · is the lexicographically maximal sequence accepted from s, which implies
ym = ηs, in particular y ∈ Q(β). We provide two differents ways to complete the proof.

First, assume w.l.o.g. m ≥ d. Then the primitivity of ML implies τ(d, v1 · · · vm−1) = s for
some v1 · · · vm−1 ∈ L. Let z = 〈v1 · · · vm−1umum+1 · · · 〉. If v1 · · · vm−1 is the maximal word
of length m−1 in L, then v1 · · · vm−1umum+1 · · · is the lexicographically maximal sequence
in Lω, hence z = 1 and D(N, [0, z)) = 0. Otherwise, we have z = 〈w1 · · ·wm−1a0a0 · · · 〉,
where w1 · · ·wm−1 is the successor of v1 · · · vm−1 in L, thus D(N, [0, z)) is bounded as well.
We have yk = zk for all k ≥ m and µk(N, y) = µk(N, z) for almost all k ≥ m, thus

D(N, [0, y)) =

ℓ∑

k=m

(
µk(N, y) −

∑

b<wk

ζτ̃(rk,b)(yk)

)
+ O(1) = D(N, [0, z)) + O(1) = O(1).

The second proof uses Proposition 7. Since yk = ηsk
for all k ≥ m, we have ζr(yk) =

#L0
sk,r for all r ∈ Q. By the ordering of the states and the primitivity of the matrix,

q > r implies ηq > ηr, and ǫq(a) = ǫr(a) implies therefore τ(q, b) = τ(r, b) for all b < a. In
case vk · · · vℓ < uk · · ·uℓ, we have thus τ(qk−1, vk · · · vℓ) = τ(sk, vk · · · vℓ), which means that
u1 · · ·uk−1vk · · · vℓ ∈ L is equivalent with sk + τ̃ (d, vℓ · · · vk) > d, which is equivalent with
ζτ̃(d,vℓ···vk) = 1. For vk · · · vℓ = uk · · ·uℓ, we have τ(sk, vk · · · vℓ) > 0, hence ζτ̃(d,vℓ···vk) = 1.
In case vk · · · vℓ > uk · · ·uℓ, we have τ(sk, vk · · · vℓ) = 0 and thus τ̃ (d, vℓ · · · vk) + sk ≤ d,
ζτ̃(d,vℓ···vk) = 0. Therefore, (3) holds for all vk · · · vℓ ∈ A∗, m ≤ k ≤ ℓ. �

We conclude with an example which shows that there might be bounded remainder sets
[0, y), where y does not satisfy the conditions of Proposition 9.
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Example. Let A = Q = {0, 1, . . . , 4}, and AL be given by the transition table

(τ(q, a))4≥q≥1, 0≤a≤4 =




4 4 4 4 2
4 4 4 3 1
3 3 2 2 1
3 3 2 1 0


 , hence (τ̃(q, a))4≥q≥0, 0≤a≤3 =




4 4 4 4 3
4 4 4 3 1
4 4 2 2 0
2 2 2 1 0


 .

(Remember that the columns τ̃ (., a) are obtained by conjugating the Ferrers diagram cor-
responding to τ(., a).) If y = 〈4033 · · · 〉, then q0q1 · · · = 4233 · · · . For k ≥ 3, we have thus
ǫqk−1

(uk) = 3η4, yk = η3 − η2 + η1, which implies ζ4(yk) = ζ2(yk) = 1, ζ3(yk) = ζ1(yk) = 0.
It can be easily verified that (3) holds for all vk · · · vℓ ∈ A∗, 3 ≤ k ≤ ℓ, but the conditions
on y of Proposition 9 are not satisfied. However, AL is not a Pisot automaton.

It is an open question whether there exists an abstract van der Corput sequence with a
bounded remainder set [0, y) such that ym 6= ηq for all m ≥ 1, q ∈ Q.

We conclude by the remark that the boundedness of D(N, I) is not invariant under
translation of the interval, i.e., D(N, [z, y + z)) can be unbounded if [0, y) is a bounded
remainder set and vice versa, see [St].
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