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Abstract

The deterministic point of view on turbulent fluid motion is to consider the Cauchy
problem for equations of Navier-Stokes type associated with large Reynolds numbers
and with singular initial data. Although the corresponding mathematical study has a
lot progressed, it remains limited by fundamental difficulties related to the presence
of instabilities. Precisely, the purpose of this article is to show on a realistic two
dimensional model that, up to some extent, such instabilities can be managed. This
is achieved in the framework of a supercritical nonlinear geometric optics. The aim is
to provide a theory allowing to take into account the interaction of a large amplitude
monophase oscillating wave with waves oscillating at smaller frequencies in the other
direction. The effect is that very complicated phenomena can occur in the inertial
range, including for instance the production of new scales.
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1 Introduction.

This Section 1 details the contents. First, we introduce the equations. Secondly,
we specify the kind of singular solutions we deal with (these are oscillations).
Then, we discuss issues related to stability and instability. Our main result
claims the well-posedness of some oscillating Cauchy problem. It guarantees
(locally in time) the existence of solutions showing turbulent aspects.
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1.1 The equations.

The time and space variables are respectively t ∈ R+ and x ∈ R
d with d = 2.

Given a function u : R
2 −→ R

2 depending on x = (x1, x2), note

u := t(u1, u2) , divu := ∂1u
1 + ∂2u

2 , ∂1 :=
∂

∂x1

, ∂2 :=
∂

∂x2

.

A turbulent flow is characterized by a hierarchy of scales through which the
energy cascade occurs. In this process, the kinetic energy is transferred from
large scale structures to smaller scales until viscous effects become impor-
tant. Mathematically, the dissipation is mostly described through a (fixed)
positive second order operator. Let ε ∈ [0, 1] be a (small) parameter. Select
(µ, κ, τ, ν) ∈ N

4 and define

Pµ,κ
τ,ν (ε, ∂)u =







P1
ε u

P2
ε u





 :=







ε2µ ∂1(divu) + ε2τ ∂2
22u

1 + ε2ν ∂2
11u

1

ε2µ ∂2(divu) + ε2κ ∂2
22u

2 + ε2ν ∂2
11u

2





 .

We appeal here to a basic model in fluid mechanics: the compressible isentropic
Navier-Stokes equations. Fix a positive constant a (with a > 0). Note γ (with
γ ∈ ]1,+∞[) the adiabatic exponent. The state variables are the density ̺ ∈ R

and the velocity u := t(u1, u2) ∈ R
2. They evolve with the time according to











∂t̺ + div (̺ u) = 0

∂t(̺ u) + div (̺ u⊗ u) + a ∇̺γ − ̺ Pµ,κ
τ,ν (ε, ∂)u = 0 .

(1)

In (1), the symbol u⊗u is for the 2×2 matrix whose first line is (u1, u2)u1 and
whose second line is (u1, u2)u2. The action Pε := Pµ,κ

τ,ν (ε, ∂) inherits special
features which are stressed below along the subparagraphs a, b and c.

a. The viscosity is vanishing with ε : the parameter ε ∈ ]0, 1] is intended to
tend towards 0. In this asymptotic, the two components u1 and u2 can
actually carry oscillations in both directions x1 and x2.

b. The viscosity is anisotropic : the derivatives ∂1 and ∂2 as well as the com-
ponents u1 and u2 are weighted with different powers of ε. From now on,
we adjust µ, κ, τ and ν according to the following constraints.

Assumption H :

(H) 0 ≤ κ ≤ µ , κ ≤ τ , µ+ 2 τ < ν .

c. The viscosity is degenerate regarding the density : there is no contribution
at the level of the first equation (that is on ̺). This hypothesis is coherent
with what is usually faced in physics [4].
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In practice, the numbers µ, κ and τ are taken of the same size and fairly
small (but still they are intended to be positive). They represent the turbulent
diffusion (which has not a true physical meaning but only a phenomenological
sense). On the other hand, the number ν is supposed to be as large as wished
(ν ≫ 1). The part ε2ν ∂2

11u represents the molecular diffusivity. Virtually no
control is imposed on it. The hypothesis (H) gives some freedom in choosing
the parameters µ, κ, τ and ν. By adjusting them adequately, many vanishing
and anisotropic viscosities (which may come from the physical or geometrical
specificities of the flow) can be taken into account.

Our aim is to look at special solutions of (1). In particular, we need to specify
the amplitudes of the components ̺, u1 and u2 with respect to the parameter
ε ∈ ]0, 1]. Select (ι0, ι1, ι2) ∈ R

3
+. We suppose that

̺ = O
(

ε2 ι0/(γ−1)
)

, u1 = O(ει1) , u2 = O(ει2) . (2)

When ι0 ∈ R
∗
+, the condition (2) amounts to impose a smallness assumption

for the density ̺. In such a context of vanishing pressure, it is classical [17] to
introduce the new state variable

q :=

√
a γ

c
̺c = ει0 q̆ = O(ει0) , q̆ = O(1) , c :=

γ − 1

2
. (3)

From now on, the letter v will be employed to designate the vector

v = (v1,v2,v3) := t(q, u1, u2) ∈ R
3 .

The change which is achieved in (3) allows to transform the conservative form
(1) into the quasilinear symmetric form

N (v; ∂)v :=











∂tq + (u · ∇)q + c q divu = 0 ,

∂tu + (u · ∇)u + c q ∇q − Pµ,κ
τ,ν (ε, ∂)u = 0 .

(4)

The system (4) is non linear. It can be decomposed into a linear part and a
quadratic part. More precisely, we have N (v; ∂)v = L(∂)v + Q(v; ∂)v with

L(∂)v :=







∂tq

∂tu− Pε u





 , Q(v; ∂)v :=







(u · ∇)q + c q divu

(u · ∇)u+ c q ∇q





 .

Observe that the equation (4) is invariant when the variables t, x and v are
simultaneously replaced respectively by λ2 t, λx and λ−1 v. In what follows,
we will work on a fixed time interval [0, T ] with T ∈ R

∗
+ independent of the

parameter ε ∈ ]0, 1]. This choice of the life span T is important because it
implies that the sizes (measured in terms of ε ∈ ]0, 1]) of both x and v (and
thereby Pε) inherit a special meaning.
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As already explained, the most interesting situations are when the viscosity
Pε is vanishing with ε. In this case, for ε = 0, we recover the compressible
isentropic Euler equations











∂tq + (u · ∇)q + c q divu = 0 ,

∂tu + (u · ∇)u + c q ∇q = 0 .
(5)

For ε ∈ ]0, 1] small enough (ε ≪ 1), the equations (4) are a slight parabolic
perturbation of (5). The study of (4) when ε goes to 0 combines both hyperbolic
and parabolic aspects. It is in this interplay that the analysis of turbulence
takes place. It is precisely such features which we want to examine.

We must emphasize the following fact. Our main purpose is to face problems
induced by instabilities (see the subsections 1.3 and 1.4). Of course, when
studying such aspects, the three dimensional situation (d = 3) is in general
much more complicated than the case d = 2. When d = 3, other phenomena
can come along. However, our aim is to study very specific difficulties. That is
to say some kind of instabilities which may occur in the proximity of special
oscillations. Now, it turns out that, from this perspective, the discussion seems
to be essentially of the same kind when d = 2 or d ≥ 3. On the one hand,
in the inviscid situation (5), all the oscillating objects we deal with are very
unstable whatever the choice of the space dimension d is. On the other hand,
all the arguments we will use might be adaptable (with only minor changes of
procedure but with many supplementary technicalities) to higher dimensions
d ≥ 3. All things considered, the main reason why in this paper we select
d = 2 is that it simplifies by far the presentation.

When ε goes to 0, the system (4) has a more and more sensitive dependence
on variations of initial data. More and more irregular solutions are allowed to
propagate. In the present approach, these singularities manifest themselves in
the concrete form of oscillations.

1.2 The oscillations.

Fix some N ∈ N
∗. An oscillation is a function f : ]0, 1] × R

2 −→ R
N . Such

an application (ε, x) 7−→ f(ε, x) can be identified with the family (fε)ε∈ ]0,1]

composed of the functions fε : R
2 −→ R

N defined through the formulas
fε(x) := f(ε, x). The role of the parameter ε ∈ ]0, 1] is to measure (when
ε→ 0) how the regularity of fε deteriorates. This can be done by prescribing
the functional settings of (fε)ε. Below, in the description of the oscillations,
some aspects are classical while others are not. For the sake of completeness,
we will still recall the usual notions.
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In the subsection 1.2.1, we describe the general oscillating surroundings. Then,
in the subsection 1.2.2, we refine the oscillating framework by taking into ac-
count the density of the oscillations and by imposing specificities related to (4).
At last, in the paragraph 1.2.3, we identify the notion of compatible oscillations
which collects the properties allowing to recover some kind of stability.

1.2.1 The general oscillating framework.

For α = (α1, α2) ∈ N
2 and β = (β1, β2) ∈ N

2, we note

|α| = α1 + α2 , ∂αx := ∂α1

1 ∂α2

2 , α · β := α1 β1 + α2 β2 .

We also adopt the following conventions

β ≤ α ⇐⇒ β1 ≤ α1 and β2 ≤ α2 ,

β < α ⇐⇒ β ≤ α and ( β1 < α1 or β2 < α2 ) .

In what follows, the multi-indice γ = (γ1, γ2) will be used to measure the
regularities in the directions x1 (with γ1) and x2 (with γ2). In a first approach,
the singularities are revealed by the explosion of the sup norm. From this point
of view, functional spaces based on L∞ are good measuring instruments. With
this in mind, introduce the norm

‖ f ‖α,γ ≡‖ (fε)ε ‖α,γ := sup
ε∈ ]0,1]

∑

{β∈N2 ;β≤ γ}

εα·β ‖ ∂βxfε ‖L∞(R2;RN ) .

The corresponding normed space is

Oα,γ(R
2; RN) ≡ Oα,γ :=

{

f : ]0, 1] × R
2 −→ R

N ; ‖ f ‖α,γ < +∞
}

.

The notion of oscillation [13a] may be implemented as follows.

Definition 1 Let γ = (γ1, γ2) ∈ N
2 and ι ∈ N. We say that the function

f : ]0, 1] × R
2 −→ R

N is an oscillation of regularity γ and of amplitude ει if
we can find α ∈ N

2 such that the family (ε−ι fε)ε is in Oα,γ(R
2; RN).

When ι = 0, we talk about waves having a large amplitude (see the articles
inside [7] and [11]). The result of this convention is that an oscillation (fε)ε is
of amplitude ει if and only if the functions fε can be put in the form fε = ει f̆ε
with (f̆ε)ε ∈ Oα,γ . From now on, the presence of the sign ˘ on the symbol ∗ε
will clearly indicate that we deal with a large amplitude wave, namely (∗̆ε)ε.
The informations contained in the constraint (ε−ι fε)ε ∈ Oα,γ are all the more
restrictive as γ is large whereas the numbers α1, α2 and ι are small. By the way,
we can say that an oscillation of regularity γ and amplitude ει has minimal
frequency α if α is adjusted in an optimal way, that is (ε−ι fε)ε ∈ Oα,γ and

‖ (ε−ι fε)ε ‖α̃,γ = +∞ , ∀ α̃ ∈ N
2 ; α̃ < α . (6)
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Example 2 Select some couple (ι0, ι2) ∈ R
2
+ with ι2 ≤ ι0. Choose any profile

k(x1, θ) ∈ C∞(R × T; R) whose support with respect to x1 is compact

∃X1 ∈ R
∗
+ ; k(x1, θ) = 0 , ∀x1 6∈ [−X1, X1] (7)

and which is not trivial that is

∃ (x1, θ) ∈ [−X1, X1] × T ; ∂θk(x1, θ) 6= 0 . (8)

For all ε ∈ ]0, 1], define the expression

veε0(x) = t
(

qeε0(x), u
e1
ε0(x), u

e2
ε0(x)

)

:= t
(

c
−1 ει0 , 0 , ει2 k(x1,

x1

εν
)
)

. (9)

In the case of (9), we have N = 3. Then, taking α = (ν, 0), it is easy to check
that the family (veε0)ε is an oscillation of regularity γ (for all γ ∈ N

2) and of
amplitude ει2. The frequency (ν, 0) is minimal.

Two principal aspects about O(ν,0),γ(R
2; RN) must be kept in mind :

- First, the multi-indice (ν, 0) expresses constraints on frequencies which are
involved at main amplitudes. At the level of large amplitude waves, we allow
a complete range of scales (from εν to 1) in the direction x1 but we forbid
the oscillations with respect to x2.

- Secondly, the presence of γ means that only a finite number of derivatives
are taken into account. It follows that almost no restriction is imposed on the
frequencies carried by waves of small amplitude. To illustrate this assertion,
select L ∈ C∞

0 (R2 × T
2; R3) and remark that

(

veε0(x) + ε|γ|n L
(

x,
x1

εn
,
x2

εn

))

ε
∈ O(ν,0),γ(R

2; RN) , ∀n ∈ N
∗ . (10)

Now, select f ∈ Oα,γ(R
2; R) and, for (ζ, υ) ∈ R

2
+, compute the quantity

‖ f ‖ζ,υα,γ ≡‖ (fε)ε ‖ζ,υα,γ := sup
(ε,x,j)∈ ]0,1]×R2×{0,··· ,γ2}

ε−ζ
∫ x1+1

x1

|(εα2 j ∂j2fε)(ε
υ y, x2)| dy .

Given an oscillation f of minimal frequency α, the Definition 1 does not explain
how the oscillations can fill in the direction x1 the intervals of length ευ. This
aspect is taken into account below.

Definition 3 Let (ζ, υ) ∈ R
2
+. We say that f ∈ Oα,γ(R

2; R) is an oscillation
with a ζ-vanishing υ-rescaled L1

loc-density if ‖ f ‖ζ,υα,γ <∞.

In the Appendix (in the subsection 3.1), we will come back on the notions
introduced in the Definitions 1 and 3. In particular, we will provide (see the
Lemma 33) a simple way to build elements f belonging to Oζ,υ

α,γ.
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Here, just retain the notation

Oζ,υ
α,γ(R

2; RN) :=
{

f ∈ Oα,γ(R
2; RN) ; ‖ f ‖ζ,υα,γ < +∞

}

.

Example 4 The profile k is as in the Example 1. Select any smooth (C∞)
cutoff function ϕ : R −→ R whose support is contained in the interval ]0, 1[.
Then, introduce

k(x1, θ, θ̃) := ϕ(θ − θ̃) k(x1, θ) , (x1, θ, θ̃) ∈ R × T
2 .

Choose ζ ∈ [0, ν] and consider the expression

f ζνε(x) ≡ f ζνε(x1) :=
∑

l∈Z

k
(

x1,
x1

εν
,
l

εζ

)

, ε ∈ ]0, 1] . (11)

For all x1 ∈ R, the above sum is finite. More precisely, at most one integer l
(namely the integer part of εζ−ν x1) is able to bring a non trivial contribution
when computing f ζνε(x1). Moreover, the number of integers l which are thus
solicited is limited. Retain that

f ζνε(x) =
∑

l∈ϑε

k
(

x1,
x1

εν
,
l

εζ

)

, ϑε := Z ∩ [−εζ−ν X1 − 1, εζ−ν X1] .

It is easy to check that, for all γ ∈ N
2, the oscillation f ζν is in O(ν,0),γ(R

2; R).
Since f ζνε(·) does not depend on the variable x2, we have

‖ f ζν ‖ζ,ν−ζ(ν,0),γ ≡ sup
(ε,x1)∈ ]0,1]×R

ε−ζ
∫ x1+1

x1

|f ζνε(εν−ζ y)| dy ≤ 2 ‖ k ‖L∞ ‖ ϕ ‖L1 <∞ .

In other words, the family (f ζνε)ε is in Oζ,ν−ζ
(ν,0),γ for all (ν, ζ) ∈ R

∗
+ × [0, ν].

The graph of the function f ζνε is made of a repetition at intervals of length
εν−ζ of a profile which is concentrated at a scale of the order εν. Thus, it can
be conceived as an overlapping of two different scales. The situations ζ = ν
and ζ = 0 correspond to two extreme cases. On the one hand, the restriction
f ∈ Oν,0

α,γ means that f is a succession of solitary waves [14] or short pulses
[1] or even boundary layer profiles [12] separated by a distance of size 1. On
the other hand, the condition f ∈ O0,ν

α,γ indicates that f can be a complete
oscillation [7] or a wave train [13a]. In fact, by adjusting conveniently ζ and
ν, it is also possible to take into account all other intermediate situations.

In what follows, we will manipulate oscillations f depending also on the time
variable t ∈ [0, T ] with T ∈ R

∗
+. Then, by convention, we will still write

f ∈ Oα,γ or f ∈ Oζ,υ
α,γ when the preceding corresponding estimates are uniform

with respect to t ∈ [0, T ] meaning respectively that

sup
{

‖ f(t, ·) ‖α,γ; t ∈ [0, T ]
}

<∞ , sup
{

‖ f(t, ·) ‖ζ,υα,γ ; t ∈ [0, T ]
}

<∞ .
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1.2.2 Oscillating approximate solutions.

Talking about oscillations in the parabolic framework (4) requires some ex-
planation because the system (4) does not allow the propagation of general
oscillations. Restrictions are certainly induced by the presence of the viscosity.
To guess which ones, a possibility is to compute the quantity

∫

R

∫

R

tu(t, x) ·
[

Pµ,κ
τ,ν (ε, ∂)u

]

(t, x) dx . (12)

Then, integrations by parts give rise to

∫

R

∫

R

(εµ divu)(t, x)2 dx +
∫

R

∫

R

(ετ ∂2u
1)(t, x)2 dx

+
∫

R

∫

R

(εκ ∂2u
2)(t, x)2 dx +

∫

R

∫

R

ε2ν
[

∂1u
1(t, x)2 + ∂1u

2(t, x)2
]

dx .

In view of (H), the natural expectation can be summarized by the assertion

The quantities εµ ∂1u
1, ετ ∂2u

1, εν ∂1u
2 and εκ ∂2u

2 should

be uniformly bounded (with respect to ε ∈ ]0, 1]) in L2(R2).
(13)

In fact, we will see at the end of the subsection 2.2.2 that our procedure does
not give access to (13) but, instead, to more complicated estimates. At all
events, bounds on derivatives are crucial tools to get the stability and, from
this point of view, uniform L2-controls such as in (13) are far to be sufficient.
In any case, weakly nonlinear geometric optics [13a] requires much more.

Definition 5 We say that the family (vaε)ε with vaε : [0, T ] × R
2 −→ R

3 is a
weak oscillation if the functions vaε = t(va0ε ,v

a1
ε ,v

a2
ε ) ≡ t(qaε , u

a1
ε , u

a2
ε ) are of

class C1 and if, for all (j, k) ∈ {1, 2} × {1, 2, 3}, we have

sup
{

‖ ∂jvakε ‖L∞([0,T ]×R2;R) ; ε ∈ ]0, 1]
}

< +∞ . (14)

The situation (14) is well-known. It is in this context of weakly nonlinear geo-
metric optics that the first quasilinear rigorous results about the propagation
of oscillations have been obtained [7a,13a,18].

Example 6 Solve the scalar parabolic equation

∂tkε − ε2ν ∂2
11kε − ∂2

θθkε = 0 , kε(0, x1, θ, θ̃) = k(x1, θ, θ̃) . (15)

The solution kε(·) is globally defined on the domain R+×R
3 and it is a smooth

function of ε ∈ [0, 1]. Consider the oscillation

veε(t, x) = t
(

c
−1 ει0 , 0 , ve2ε (t, x)

)

, (ε, t, x) ∈ ]0, 1] × [0, T ] × R
2

9



where the third component ve2ε is defined according to

ve2ε (t, x) ≡ ve2ε (t, x1) := ει2
∑

l∈ϑε

kε
(

t, x1,
x1

εν
,
l

εζ

)

. (16)

Then, the family (ve2ε )ε belongs to the functional algebra Oι2+ζ,ν−ζ
(ν,0),γ . Moreover,

the oscillation (veε)ε is weak if and only if ι2 ≥ ν.

In contrast with (14), we can also consider the following situation (which has
first been investigated in [7e]).

Definition 7 We say that the family (vaε)ε with vaε : [0, T ] × R
2 −→ R

3 is a
strong oscillation if the functions vaε = t(va0ε ,v

a1
ε ,v

a2
ε ) ≡ t(qaε , u

a1
ε , u

a2
ε ) are of

class C1 and if there exists (j, k) ∈ {1, 2} × {1, 2, 3} such that

sup
{

| ln ε|−1 ‖ ∂jvakε ‖L∞([0,T ]×R2;R) ; ε ∈ ]0, 1]
}

= +∞ . (17)

Another aspect of (13), in view of choosing as announced ν ≫ 1, is that it
requires almost no control on the quantity ∂1u

a2
ε . Precisely, the more inter-

esting situations are when the L∞-norm of ∂1u
a2
ε is allowed to explode as ε

goes to zero. In this case (called supercritical in accordance with [2,7]), we say
that the strong oscillation (vaε)ε is polarized on the component ua2ε and that
it involves the direction x1. We still have (14) for all (j, k) 6= (1, 2) but for the
special case (j, k) = (1, 2), we find

sup
{

| ln ε|−1 ‖ ∂1v
a2
ε ‖L∞([0,T ]×R2;R) ; ε ∈ ]0, 1]

}

= +∞ . (18)

Example 8 When ι2 < ν, the family (veε)ε of the Example 6 is a strong
oscillation falling within the preceding category because

lim
ε−→ 0

| ln ε|−1 ‖ ∂1v
e2
ε ‖L∞([0,T ]×R2;R) = lim

ε−→ 0
| ln ε|−1 ει2−ν = +∞ .

Now, we can recall the following classical terminology.

Definition 9 Let (T,M, α) ∈ R
∗
+ × R+ × N

2. We say that the family (vaε)ε
with vaε : [0, T ]×R

2 −→ R
3 is an approximate solution of (4) having the order

M and the frequency α if we can find ε0 ∈ ]0, 1] and a constant C ∈ R+ such
that gaε := ε−M N (vaε ; ∂)vaε can be bounded according to

sup
s∈[0,T ]

∑

{β∈N2 ;β≤(3,3)}

εα·β ‖ ∂βxgaε(s, ·) ‖L2(R2;R3) ≤ C , ∀ ε ∈ ]0, ε0] . (19)

Observe that, in this Definition 10, the functional framework is L2 in place
of L∞. On the other hand, the threshold for regularity γ = (3, 3) is so fixed
because we will later need to qualify for L∞-inclusions.
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Example 10 The context is as in the Example 6 but we assume this time that
ι2 ≤ ι0 < ν. For all ε ∈ ]0, 1], the expression veε(·) is on the domain [0, T ]×R

2

an exact solution of (4). Hence, the family (veε)ε is an approximate solution
of (4) having the order M for any M ∈ R+. Moreover, for all t ∈ [0, T ],

the family
(

veε(t, ·)
)

ε
is a strong oscillation having the amplitude ει2 and the

minimal frequency α = (ν, 0). Easy computations indicate also that ve2(t, ·)
has a (ι2 + ζ)-vanishing (ν − ζ)-rescaled L1

loc-density.

In this article, we focus on families (vaε)ε whose main features are inspired from
the model (veε)ε. The above example is produced to confirm that strong oscil-
lations can actually propagate without any contradiction with the presence of
the viscosity Pµ,κ

τ,ν (ε, ∂).

1.2.3 The notion of compatible oscillations.

At this stage, many informations are still lacking. In order to recover some
kind of stability in the proximity of a strong approximate solution (vaε)ε, the
family (vaε)ε must be adjusted according to a subtle balance. On the one hand,
the oscillations contained in vaε should not be absorbed by the viscosity. On the
other hand, the Sobolev perturbations have to be stabilized by the damping
effect due to the parabolic perturbation Pµ,κ

τ,ν (ε, ∂).

To achieve this compromise, we must adjust the parameters ι0, ι1 and ι2
(governing the amplitudes of q, u1 and u2) adequately. We have also to pay
special attention to the dependence of vaε on the second variable x2. In fact,
many auxiliary constraints (depending among other things on the size of κ,
µ, τ and ν) are still needed. These restrictions are listed in the next definition
which is mostly a compilation of the notions introduced before. Fix T ∈ R

∗
+.

Definition 11 We say that the family (vaε)ε with vaε : [0, T ] × R
2 −→ R

3 and
vaε = t(qaε , u

a1
ε , u

a2
ε ) is an oscillation which is compatible with (4) if all the

following restrictions are verified.

i) The component qaε is an oscillation of amplitude ει0 with ι0 ≥ µ. We have

qaε = ει0 q̆aε , (q̆aε )ε ∈ O(ν,0),(6,6) . (20)

Moreover, the family (q̆aε )ε undergoes relatively slow spatial variations. This
means concretely that

(εκ+µ−τ ∂1q̆
a
ε )ε ∈ O(ν,0),(5,5) , (εκ+µ−ν ∂2q̆

a
ε )ε ∈ O(ν,0),(5,5) . (21)

ii) The component ua1ε is of amplitude ει1 with ι1 ≥ ν. We have

ua1ε = ει1 ŭa1ε , (ŭa1ε )ε ∈ O(ν,0),(6,6) . (22)
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Moreover, the family (ŭa1ε )ε is subjected to

(εµ ∂1ŭ
a1
ε )ε ∈ O(ν,0),(5,5) . (23)

iii) The component ua2ε is of amplitude ει2 with ι2 ≥ κ and there exists two

numbers ζ ∈ [τ − κ, ν] and σ ∈
[

max(ζ, τ + µ+ 1 − ι2), ν] such that

ua2ε = ει2 ŭa2ε , (ŭa2ε )ε ∈ Oζ,σ−ζ
(ν,0),(6,6) . (24)

We also require that the oscillations (ŭa2ε )ε undergo very slow variations with
respect to the direction x2 in the precise following sense

(ε2κ+µ−τ−ν ∂2ŭ
a2
ε )ε ∈ O(ν,0),(5,5) . (25)

iv) The family (vaε)ε is an approximate solution of (4) having the order M
with M ≥ 4 ν and the frequency (ν, 0).

Given an approximate solution (vaε)ε, the matter is of course to recover some
kind of stability near vaε with a viscosity Pε as small as possible. In other words,
the numbers µ, κ and τ must be selected as large as possible (knowing already
that ν ≫ 1). Now, it is interesting to identify concrete criterions allowing to
raise the numbers µ, κ and τ .

The size of µ is limited by the number ι0 (which itself is governed by the
smallness of the pressure). The size of κ must be less than ι2. This restriction
cannot be ignored. In particular, when ι2 = 0 (the case of a large amplitude
wave), the non vanishing part ∂2

22u
2 must remain in P2

ε . In addition, we have
to impose τ ≤ κ+ ζ. We see here that the parabolic part ε2 τ ∂2

22u
1 inside P1

ε

can be adjusted all the more small that ζ can be chosen large. The ins and
outs of the restriction (24) will be discussed in detail in the Appendix 4.1, just
before the Lemma 32.

Example 12 Select M ∈ [5 ν,+∞[ and a smooth function ψ ∈ C∞
b (R; R).

Then, define

veψε(t, x) = (ve0ψε,v
e1
ψε,v

e2
ψε)(t, x) := ψ(εM x2) veε(t, x1) .

For ψ ≡ 1, we simply recover the exact solution veε. When ψ ∈ C∞
0 (R; R), the

support in R
2 of the initial data veψε(0, ·) becomes compact so that we are sure

to recover veψε(0, ·) ∈ L2(R2; R3). This property is important because it gives
to the approximate solution veψε a more physical meaning.

The family (veψε )ε satisfies clearly the condition iv) of the Definition 11. To
obtain the other restrictions i) and ii), we can take ι0 ≥ µ. To guarantee the
paragraph iii), we can first adjust ι2 such that ι2 ≥ κ and then it suffices to
impose on the parameter ζ ∈ [0, ν] the condition ζ ≥ τ − ι2.

12



This last condition on ζ is perhaps not obvious, at least in comparison with
the more restrictive assumption ζ ≥ τ−κ which is written in iii). To see from
where it comes, just apply the Definition 11 with ŭa2ε = ει2−κ ve2ψε and observe
that for this special choice, we have

(ŭa2ε )ε ∈ Oζ′,ν−ζ
(ν,0),(6,6) ⊂ Oζ′,ν−ζ′

(ν,0),(6,6) , ζ ′ := min (ν, ζ + ι2 − κ)

with as required ζ ′ ≥ τ − κ. By imposing further ι2 < ν, the compatible oscil-
lation (veψε)ε becomes also a strong oscillation.

Physically, a turbulent flow is a fluid regime which is characterized by chaotic
property changes and by eddies of many different sizes. The dissipation of
kinetic energy occurs at small scales while, at large scales, the viscosity does
not play a role in the dynamics. In between, the energy cascade takes place
involving rapid variations of pressure and velocity (both in space and time)
that are apparently difficult to predict. This is precisely what happens in the
proximity of a strong compatible oscillation such as veψ.

Now, the construction of compatible objects which are more general than
the basic example veψ is far from being evident, especially if the matter is
to incorporate small waves oscillating in the direction x2. A natural way to
proceed is to seek the function vaε(t, x) in the form of a WKB expansion. This
subject is delicate when taking into account (as much as possible) the variety
offered by the functional algebra Oζ,υ

α,γ and when dealing (moreover) with strong
oscillations. To develop such aspects requires a WKB analysis of a new type
(again called supercritical) with interesting applications at stake because it is
at this level that many complicated phenomena (involving different sorts of
interactions between waves) can be concretely described.

The subsection 3.2 of the Appendix is a brief incursion in this field. It begins
with a rapid overview of known results. Then, it presents a few perspectives
issued from the current method which allows to derive simplified, justified and
stable models describing turbulent aspects.

1.3 The existence result.

Let va be a compatible oscillation. We know that

N (vaε ; ∂)vaε = εM gaε , M ≥ 4 ν (26)

with (gaε)ε as in (19). Our aim is to get an exact solution vε of (4) associated
with vaε . In other words, we want to absorb the small remainder εM gaε . This
amounts to solve the Cauchy problem

N (vε; ∂)vε = 0 , vε(0, ·) ≡ vaε(0, ·) . (27)

13



The local in time existence of vε does not raise any problem. There is some
maximal life span Tε ∈ R

∗
+. Now, it is difficult to show that

∃ (ε0, T ) ∈ (R∗
+)2 ; Tε ≥ T , ∀ ε ∈ ]0, ε0] . (28)

Recall here that turbulence is usually addressed through a statistical theory
whose aim is to provide a qualitative and quantitative description of the un-
derlying phenomena. This approach has been followed initially by Kolmogorov
and Richardson. It is still very active with recent developments [8] including
tools coming from functional analysis, ergodic methods, dynamical systems,
attractors and so on.

On the other hand, the deterministic point of view on fluid motion (see for
instance [6a,11a,11b,15,16,19] is to consider the Cauchy problem for Navier-
Stokes type equations. The flow is qualified as turbulent when it is associated
with large Reynolds numbers and with singular solutions. This is precisely
what does the Definition 11. But, the difficulty which is pointed for example
in the articles [7e,10] and [12] is the following. The evolution in the proximity
of veψε is marked by many instabilities which prevent to follow long enough
(by classical arguments) what’s happening. To understand why, look at the
linearized equations associated with (4) along vaε , that is







































































∂tq̇ε+ (uaε · ∇)q̇ε + c qaε div u̇ε

+ (u̇ε · ∇)qaε + c divuaε q̇ε = 0 ,

∂tu̇
1
ε+ (uaε · ∇)u̇1

ε + qaε ∂1q̇ε − P1
ε u̇ε

+ ∂1u
a1
ε u̇1

ε + ∂2u
a1
ε u̇2

ε + c ∂1q
a
ε q̇ε = 0 ,

∂tu̇
2
ε+ (uaε · ∇)u̇2

ε + qaε ∂2q̇ε − P2
ε u̇ε

+ ∂1u
a2
ε u̇1

ε + ∂2u
a2
ε u̇2

ε + c ∂2q
a
ε q̇ε = 0 .

(29)

Introduce v̇ε = t(q̇ε, u̇ε) = t(q̇ε, u̇
1
ε, u̇

2
ε) ∈ R

3. Perform classical L2-energy esti-
mates at the level of the linear system (29) that is multiply the equation (29)
by tv̇ε. This method indicates that the L2-norm of v̇ε(t, ·) can increase with
the time at an exponential rate like

‖ v̇ε(t, ·) ‖L2(R2) ≤ eCε t ‖ v̇ε(0) ‖L2(R2) , ∀ (ε, t) ∈ ]0, 1] × [0, T ] . (30)

The constant Cε can be evaluated by looking at the L∞-size of the coefficients.
In view of the assumptions in the Definition 11, the main term is the one which
at the level of (29) is framed. We find

∃C ∈ R
∗
+ ; Cε ≤ C

(

1+ ‖ ∂1u
a2
ε ‖L∞

)

, ∀ ε ∈ ]0, 1] . (31)
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Suppose that (30) is optimal. Then

‖ v̇ε(0, ·) ‖L2(R2) ≃ εn =⇒ ‖ v̇ε(t, ·) ‖L2(R2) ≃ εn eCε t , t ∈ R
∗
+ .

Thus, the L2-size of v̇ε(t, ·) is kept under control as long as t is less than
tnε := n | ln ε|C−1

ε . When dealing with weak oscillations, the constant Cε is
uniformly bounded with respect to ε ∈ ]0, 1]. We can find some T ∈ R

∗
+ such

that T . tnε for all ε ∈ ]0, 1] and it is possible to infer the property (28).

On the contrary, in the case of strong oscillations, the quantity | ln ε|−1Cε
tends to +∞ when ε goes to 0 so that we are faced with

∀n ∈ N , 6 ∃T ∈ R
∗
+ ; T ≤ tnε , ∀ ε ∈ ]0, 1] . (32)

In the situation (32), the discussion is much more delicate. The construction
of strong oscillations and the study of their stability have motivated many
contributions. We can cite all the articles [3,11,7,9,10,11b] and [16] which
differ depending on the choice of the fluid equations, the oscillating context
or the questions which are tackled. We can now state our main results.

Theorem 13 Select any oscillation (vaε)ε which is compatible with (4). Then,
the property (28) is satisfied. In other words, the oscillating Cauchy problem
(27) is (locally in time) well-posed.

Thus, to any compatible oscillation (vaε)ε corresponds a family of exact so-
lutions (vε)ε of (27) which are uniformly defined on a strip [0, T ] × R

2 with
T ∈ R

∗
+. The proof of the Theorem 13 reveals also that vε and vaε remain

(relatively) close to one another. Indeed, the distance separating them can be
evaluated in the following way.

Theorem 14 Introduce the number ̟ := max (µ − κ; ν − ι2) ∈ R+. There
exists a constant C ∈ R+ such that for all ε ∈ ]0, ε0], we have

sup
t∈[0,T ]

‖ (vε − vaε)(t, ·) ‖L2 ≤ C ε−̟
∫ t

0
‖ N (vaε ; ∂)vaε(s, ·) ‖L2 ds . (33)

Keep in mind that the right hand side of (33) is of the order O(εM−̟) with
M ≥ 4 ν > ̟. Thus, it converges to zero all the more fast than M is chosen
large. Of course, the information (33) is not sure to be optimal but it suffices
to guarantee that the approximate solutions vaε have a physical meaning. The
supercritical WKB analysis is thus justified.

What is said in (33) can be completed in two directions. First, we can explain
what happens when the initial data vaε(0, ·) is (slightly) modified. Secondly,
we can look at higher order Sobolev estimates. These questions are examined
in details at the end of the subsection 2.2.3.
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Observe that, due to the factor ε−̟, the control (33) can deteriorate when ε
goes to zero. Such a (fixed) loss (of a negative power of ε ∈ ]0, 1]) when esti-
mating in a nonlinear equation the L2-sensibility of the solutions in function
of the source term is not usual in nonlinear geometric optics. The situation
is here somewhat intermediate between the nonlinear instability result of [12]
and the usual stability results of [13a].

1.4 Instability and stability issues.

This subsection 1.4 is divided in two parts. First, we consider the hyperbolic
situation (5). We explain again in this case why simple waves like veε are very
unstable objects. Then, we focus on the parabolic system (4). The addition
of the vanishing viscosity Pµ,κ

τ,ν (ε, ∂) modifies completely the discussion since
it allows to get some non linear stability. In a second stage, we will briefly
describe the strategy we will follow in order to obtain the results 13 and 14.

1.4.1 Inviscid instabilities. Select K ∈ C∞(T; R) satisfying ∂θK 6≡ 0. Define

vhε (x) = t
(

qhε (x), u
h1
ε (x), uh2ε (x)

)

:= t
(

c
−1 εµ , 0 , εν−1 K(

x1

εν
)
)

.

The context is similar to (9) in the case ι0 = µ and ι2 = ν − 1, except that
the profile k has no more a compact support. The family (vhε )ε is obviously
subjected to the conditions i) and ii) of the Definition 11. In view of the
assumption (H), we are sure that ν ≥ τ − κ+ 1. Thus, the restriction (24) is
verified with ζ = τ − κ and σ = ν because we have

‖ (uh2ε )ε ‖τ−κ,ν−τ+κ(ν,0),(6,6) ≡ sup
(ε,x1)∈ ]0,1]×R

ε−τ+κ
∫ x1+1

x1

εν−1 |K(ε−τ+κ y)| dy

≤ εν−τ+κ−1 ‖ K ‖L∞ < ∞ .

The other properties required at the level of iii) are also verified. Since we look
at (5) in place of (4), we need to adapt the constraint iv) to this hyperbolic
context. In fact, there is nothing to do because vhε is an exact (stationary)
solution of (5). Now, the linearized equations associated with (5) along vhε are



























∂tq̇ε + uh2ε ∂2q̇ε + εµ div u̇ε = 0 ,

∂tu̇
1
ε + uh2ε ∂2u̇

1
ε + εµ ∂1q̇ε = 0 ,

∂tu̇
2
ε + uh2ε ∂2u̇

2
ε + εµ ∂2q̇ε + ∂1u

h2
ε u̇1

ε = 0 .

(34)

The system (34) (or the corresponding incompressible version) has been exten-
sively studied [7e,9,12]. It is well-known that the control (30) with Cε estimated
as in the right hand side of (31) can be optimal.
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The L2-norm of well-chosen initial data can effectively be amplified at a time
t ∈ R

∗
+ by a factor like ec t/ε with c ∈ R

+
∗ . This especially happens when

interactions occur between the coefficient uh2ε and the oscillations which inside
u̇ε involve a phase transversal to x1 (like x2) and the frequency ε−ν .

Coming back to the non linear system (5) and modifying at the time t = 0
the expression vhε according to

vpε(0, x) = vhε (x) + εm ϕε(x) , 1 ≪ m ∈ N , (35)

the preceding mechanisms of amplification can persist. In fact, it is possible to
implement them by selecting ϕε(x) = Φ

(

x1, x2,
x1

εν ,
x2

εν

)

with a suitable profile

Φ ∈ C∞
0 (R2 × T

2; R3). It follows that, as big as m is, we are not able to solve
the oscillating Cauchy problem (5)-(35) on the whole domain [0, T ] × R

3.

Classical constructions furnish a solution vpε having a life span Tε only of the
order Tε ∼ ε | ln ε|. Moreover, when approaching Tε, very strong non linear
phenomena may occur [12]. For instance, there is no assurance that the so-
lution vpε(t, ·) stays in the proximity of vhε (t, ·) when t ∼ ε | ln ε|. Thus, the
hyperbolic situation (5) seems out of reach. However, we can wonder to what
extent the introduction of the parabolic perturbation Pµ,κ

τ,ν (ε, ∂) can modify the
preceding instability features.

In the two articles [7b] and [7c], such questions were already investigated. But
only very partial answers were provided either because non physical viscosities
were considered or because the regimes were less singular. We must emphasize
here that the Theorem 13 goes much further.

1.4.2 The strategy to get some kind of stability. A first consequence of intro-
ducing the viscosity Pµ,κ

τ,ν (ε, ∂) can be guessed. In view of the damping effects
taken into account in (13), the velocity uε cannot contain oscillating terms in-
volving the direction x2 and the frequency ε−ν . Thus, the amplification mecha-
nisms alluded above are intuitively avoided. Of course, the preceding argument
is far to be enough (in order to show the Theorem 13) because many other
complex phenomena are likely to occur. In fact, the discussion about stability
lies at the interface between hyperbolic and parabolic arguments.

In the subsection 2.1.1, it is the hyperbolic side which predominates. There,
the method consists in absorbing the singularities through a blow-up of the
state variable vε. In other words, we perform a change of dependent variables.
This operation amounts to add (properly) new state variables. On the other
hand, in the subsection 2.1.2, it is the parabolic point of view which prevails.
It is at this stage that the properties of the algebra Oζ,υ

α,γ (see the Appendix 3,
Lemma 32) must be implemented.
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Briefly, the purpose of the chapter 2.1 is to transfer all the analysis from (4) to
a new system which will be specified in (53). This part of the work is original,
delicate and technically hard. It is the key which gives access to the Theorem
13. Some other interesting implications (related to the WKB analysis) are
mentioned in the subsection 3.2 of the Appendix.

The chapter 2.2 is devoted to the study of the Sobolev stability of (53). At
this level, the approach is rather classical but the context is new. First, in the
subsection 2.2.2, we establish L2-estimates. Then, in the subsection 2.2.3, we
exhibit further estimates.

2 Construction of the solutions.

Select an oscillation (vaε)ε which is compatible with (4). The Theorem 13
asserts the nonlinear stability of the family (vaε)ε. To prove this property, we
work in the proximity of vaε . Concretely, we seek the solution vε of (27) in the
form vaε + εn rbε with n = 4 ν and rbε = t(qbε, u

b1
ε , u

b2
ε ). Introduce faε := εM−n gaε .

In other words, we have faε = t(fa0ε , f
a1
ε , f

a2
ε ) := ε−nN (vaε ; ∂)vaε . In order to

obtain (27), the expression rbε must be subjected to the equation

L(∂) rbε + Q(vaε ; ∂) rbε + Q(rbε; ∂)vaε + εn Q(rbε; ∂) rbε + faε = 0 (36)

completed with the initial data

rbε(0, ·) ≡ 0 . (37)

To show the existence of a solution rbε of the Cauchy problem (36)-(37) with rbε
defined on all the interval [0, T ], we need to obtain estimates which are uniform
with respect to ε ∈ ]0, 1]. To this end, we can try to perform L2- estimates as
explained in the subsection 1.3 but this method which deals with (36) as if
it was only a hyperbolic system (whose quasilinear symmetric structure must
be preserved) is not helpful. It is much too imprecise in order to capture two
important features (which are crucial in the current parabolic framework).

(1) The L∞-bound of the coefficients which is retained in (31) does not see
the nilpotent structure of the matrix containing the singularity, that is

M :=















0 0 0

0 0 0

∂1u
a2
ε 0 0















, M2 = 0 .

(2) Although the size of the coefficient ∂1u
a2
ε becomes very large, it has the

form of a derivative of oscillations.
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To exploit the two preceding informations, the strategy is to appeal to a change
of variables.

Definition 15 A change of dependent variables is a family (Φε)ε of applica-
tions acting (for ε ∈ ]0, 1] and for some integer N > 3) according to

Φε : L∞
(

[0, T ]; (L2 ∩ C∞)(R2; RN)
)

−→ L∞
(

[0, T ]; (L2 ∩ C3)(R2; R3)
)

.

Note rε the state variable on which Φε acts. The introduction of Φε is a way
to implement new unknowns, the components of rε. The interest of using Φε

is that it can allow to transform the system (36) conveniently.

Definition 16 We say that the system

B(rε; ∂) rε = 0 , rε(0, ·) = 0 , ε ∈ ]0, 1] (38)

is issued from a Φ-blow-up of (36)-(37) if the two conditions below are satisfied.

i) There exists T ∈ R
∗
+ and ε0 ∈ ]0, 1] such that, for all ε ∈ ]0, ε0], the Cauchy

problem (38) has a (smooth) solution on the strip [0, T ] × R
2.

ii) For all ε ∈ ]0, ε0], rbε := Φε(rε) is a solution on [0, T ] of (36)-(37).

The Theorem 13 is an obvious consequence of the following statement.

Proposition 17 Assume that the approximate solution (vaε)ε is compatible
with (4). Then, there exists a Φ-blow-up of (36)-(37).

PROOF (of the Proposition 17). This is the matter of the next chapters
2.1 and 2.2. In the chapter 2.1, the construction of Φε is achieved in two steps.
First, in the subsection 2.1.1, we consider some intermediate application Φ1

ε

which is issued from a hyperbolic treatment of the singularities. Then, in the
subsection 2.1.2, we define the complete transformation Φε. The transition
to Φε allows to better incorporate the parabolic aspects of the system (36).
During this process, the system (36) is gradually modified into the new system
(53) which is named as in (38). This operation is achieved in a way that ensures
the property ii). In the chapter 2.2, the part i) of the Definition 16 is proved.
The key idea is that, at the level of (53), it becomes possible to pick up Sobolev
estimates (which are uniform with respect to ε ∈ ]0, 1].) �

2.1 Changes of dependent variables.

This subsection is devoted to the construction of the application Φ which is
involved by the line ii) of the Definition 16.
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2.1.1 Blow-up of the singularities.

Adopt the conventions G := Oα,(6,6)(R
2; R) and X := Oα,(5,5)(R

2; R2). Look
at G as a group equipped with the operation + and at X as a functional set.
Given u = (uε)ε ∈ Oα,(6,6)(R

2; R2) with uε = t(u1
ε, u

2
ε), we can define a group

action Au : G × X −→ X (modeled around u) according to ubε = Au
wc(uc)ε

where Au
wc is the one order differential operator

ubε =







ub1ε

ub2ε





 = Au
wc(uc)ε =







uc1ε − ∂2(u
2
ε w

c
ε)

uc2ε + ∂1(u
2
ε w

c
ε)





 , ucε =







uc1ε

uc2ε





 .

Lemma 18 The divergence operator div is preserved under the action of A :

divAu
wc(uc)ε = divucε , ∀ (wc, uc, u, ε) ∈ G×X ×G×]0, 1] . (39)

PROOF (of the Lemma 18). The information (39) is a direct consequence of
the Schwarz’s theorem. �

The transformation Φ1
ε is given by

Φ1
ε ≡















1 0 0 0

0 1 0 −ua2ε ∂2 − ∂2u
a2
ε

0 0 1 +ua2ε ∂1 + ∂1u
a2
ε















, rcε :=















qcε

ucε

wcε















∈ R
4. (40)

In other words, we take rbε = Φ1
ε(r

c
ε) with

qbε = qcε , ubε = Aua

wc(uc)ε . (41)

When replacing rbε at the level of (36) as indicated in (41), we get a new
system. In view of (39), the first equation of (36) is modified into

∂tq
c
ε + [ua1ε + εn uc1ε − εn ∂2(u

a2
ε wcε)] ∂1q

c
ε

+ [ua2ε + εn uc2ε + εn ∂1(u
a2
ε wcε)] ∂2q

c
ε

+c (qaε + εn qcε) divucε + (ucε · ∇)qaε + c divuaε q
c
ε

+A0
0ε w

c
ε + εµ A0

1ε ∂1w
c
ε + ετ A0

2ε ∂2w
c
ε + fa0ε = 0

(42)

with

A0
0ε := ει2 (∂1ŭ

a2
ε ∂2q

a
ε − ∂2ŭ

a2
ε ∂1q

a
ε ) ,

A0
1ε := ει2−µ ŭa2ε ∂2q

a
ε ,

A0
2ε := − ει2−τ ŭa2ε ∂1q

a
ε .
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The same approach on the second equation of (36) leads to

∂tu
c1
ε + [ua1ε + εn uc1ε − εn ∂2(u

a2
ε wcε)] ∂1u

c1
ε − P1

ε u
c
ε

+ [2ua2ε + εn uc2ε + εn ∂1(u
a2
ε wcε)] ∂2u

c1
ε + c (qaε + εn qcε) ∂1q

c
ε

+ (divuaε) u
c1
ε + ∂2u

a1
ε uc2ε + c ∂1q

a
ε q

c
ε − (ε2κ − ε2τ ) ua2ε ∂3

222w
c
ε

−
[

(ua2ε )2 + (ε2κ − 3 ε2τ ) ∂2u
a2
ε

]

∂2
22w

c
ε

+ (−ua1ε ua2ε + 2 ε2ν ∂1u
a2
ε ) ∂2

12w
c
ε

+A1
0ε w

c
ε + εµ A1

1ε ∂1w
c
ε + ετ A1

2ε ∂2w
c
ε + fa1ε

+ εn [∂2(u
a2
ε wcε) − uc1ε ] ∂2

12(u
a2
ε wcε)

− εn [∂1(u
a2
ε wcε) + uc2ε ] ∂2

22(u
a2
ε wcε)

− ∂2

{

ua2ε × (∂tw
c
ε + uc1ε − ε2κ ∂2

22w
c
ε − ε2ν ∂2

11w
c
ε)

}

= 0

(43)

with

A1
0ε :=

1

2
c ∂2

22(q
a
ε )

2 + ει2 (ε2τ − ε2κ − ε2µ) ∂3
222ŭ

a2
ε

− ε2µ+ι1 ∂3
122ŭ

a1
ε − εM ∂2g

a2
ε + ε2ι2 (∂2ŭ

a2
ε )2

+ 2 ει1+ι2 ∂2ŭ
a1
ε ∂1ŭ

a2
ε − ει1+ι2 ∂1ŭ

a1
ε ∂2ŭ

a2
ε .

A1
1ε := ει1+ι2−µ (ŭa2ε ∂2ŭ

a1
ε − ŭa1ε ∂2ŭ

a2
ε ) + 2 ε2ν+ι2−µ ∂2

12ŭ
a2
ε ,

A1
2ε :=

1

2
ε−τ c ∂2(q

a
ε )

2 − ει1+2µ−τ ∂2
12ŭ

a1
ε

+ ει2−τ (3 ε2τ − ε2µ − ε2κ) ∂2
22ŭ

a2
ε − εM ga2ε

− ει1+ι2−τ ŭa2ε ∂1ŭ
a1
ε − ε2ι2−τ ŭa2ε ∂2ŭ

a2
ε .

From the third equation of (36), we can extract

∂tu
c2
ε + [ua1ε + εn uc1ε − εn ∂2(u

a2
ε wcε)] ∂1u

c2
ε − P2

ε u
c
ε

+ [2ua2ε + εn uc2ε + εn ∂1(u
a2
ε wcε)] ∂2u

c2
ε + c (qaε + εn qcε) ∂2q

c
ε

−ua2ε divucε + ∂2u
a2
ε uc2ε + c ∂2q

a
ε q

c
ε + εκ−µ A2

0ε w
c
ε + fa2ε

+ (ua1ε ua2ε − 2 ε2ν ∂1u
a2
ε ) ∂2

11w
c
ε + εκ A2

1ε ∂1w
c
ε

+
[

(ua2ε )2 − 2 ε2κ ∂2u
a2
ε

]

∂2
12w

c
ε + εκ+τ−µ A2

2ε ∂2w
c
ε

+ εn [uc1ε − ∂2(u
a2
ε wcε)] ∂

2
11(u

a2
ε wcε)

+ εn [uc2ε + ∂1(u
a2
ε wcε)] ∂

2
12(u

a2
ε wcε)

+ ∂1

{

ua2ε × (∂tw
c
ε + uc1ε − ε2κ ∂2

22w
c
ε − ε2ν ∂2

11w
c
ε)

}

= 0

(44)
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with

A2
0ε := − 1

2
εµ−κ c ∂2

12(q
a
ε )

2 + ει1+3µ−κ ∂3
112ŭ

a1
ε + ει2+3µ−κ ∂3

122ŭ
a2
ε

− ει1+ι2+µ−κ ∂1ŭ
a1
ε ∂1ŭ

a2
ε − ε2ι2+µ−κ ∂1ŭ

a2
ε ∂2ŭ

a2
ε + εM ∂1g

a2
ε ,

A2
1ε := − 1

2
ε−κ c ∂2(q

a
ε )

2 + ει1+2µ−κ ∂2
12ŭ

a1
ε

+ ει2+2µ−κ ∂2
22ŭ

a2
ε + εM−κ ga2ε

− 2 ει2+2ν−κ ∂2
11ŭ

a2
ε + ει1+ι2−κ ŭa1ε ∂1ŭ

a2
ε + ε2ι2−κ ŭa2ε ∂2ŭ

a2
ε ,

A2
2ε := − 2 ει2+µ+κ−τ ∂2

12ŭ
a2
ε .

The explicit formulas (42), (43) and (44) indicate how the system (36) is
transformed under the action of Aua

wc . For the trivial choice wc ≡ 0, the last
line of (44) reduces to ∂1(u

a2
ε uc1ε ) ≃ ει2−ν uc1ε +ει2 ∂1u

c1
ε (knowing that ν ≫ ι2).

We recover here the singular semilinear term already met at the level of (29).
More generally, it is the expression placed in brackets at the level of (44)
which is likely to produce the largest contribution. However, the presence of
this contribution can be avoided if we decide to link wcε and uc1ε together
through the evolution equation

∂tw
c
ε + uc1ε − ε2κ ∂2

22w
c
ε − ε2ν ∂2

11w
c
ε = 0 . (45)

From this point of view, the introduction of wcε is used to control the most
singular part of (29). Now, in X, consider the equivalence relation

uc1 ∼ uc2 ⇐⇒ ∃wc ∈ G ; Aua

wc(uc1) = uc2 .

Note ūc ∈ X/G the equivalence class corresponding to uc. Thus, to define wc

as in (45) amounts to select a special class representative uc in ūb. We explain
now why it is better to work with uc instead of the original state variable ub.
The application t 7→ ub(t, ·) may very well have a chaotic appearance when
subjected to L2-perturbations. But we claim that these instabilities are due
to rapid variations inside the orbits of G. On the contrary, the projected flow
t 7→ ūb(t, ·) is less sensitive to perturbations.

To implement the preceding idea, we look at the application t 7→ uc(t, ·). In
the Section 3.2, we will see that it does not undergo large changes when the
source term faε is modified in L2. On the one hand, the stability of t 7→ ūb(t, ·) is
materialized by the one of t 7→ uc(t, ·). On the other hand, rapid L2-variations
of t 7→ ub(t, ·) can be recorded at the level of G through small modifications
in the L2-norm of wc(t, ·). This is possible because this L2-manner to measure
the variations in G has, when interpreted in X through the action of A (that
is at the level of ub), nothing to do with the usual L2-topology of X.
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As a matter of fact :

Lemma 19 Let va a compatible oscillation. There exists a constant C ∈ R+

such that, for all ε ∈ ]0, 1], we have

‖ Aua

wc(uc)ε ‖L2 ≤ C
(

‖ ucε ‖L2 + ει2−ν ‖ wcε ‖L2 + ει2 ‖ wcε ‖H1

)

. (46)

PROOF (of the Lemma 19). Just use the assumptions in the Definition 11.
The lost of powers of ε comes from the part ∂1u

a2
ε wcε. The lost of one derivative

is issued from the part ua2ε ∂1w
c
ε. �

Appealing to the transformation Φ1
ε is unavoidable to get round the difficulties

induced by the main singular term. But this step does not suffice. Indeed, the
introduction of a non trivial function wcε satisfying (45) allows to suppress
the contributions which in (43) and (44) are surrounded but on the other
hand it produces new terms (involving wcε and its derivatives) which may be
problematic. Energy estimates are difficult to implement at the level of the
system (42)-(43)-(44)-(45).

2.1.2 The new parabolic system.

Assuming that the influence of the viscosity is not taken into account, the
presence of second order derivatives and (even worse) the occurrence of third
order derivatives like ∂3

222w
c
ε in (43) indicate clearly that performing L2-energy

estimates (as in hyperbolic situations) cannot work at the level of the system
(42)- · · · -(45). Thus, to go further, it is essential to exploit the informations
coming from the parabolic perturbation. An elegant way to do that is to come
back to the study of (45). The equation (45) has two remarkable peculiarities.

(1) In contrast with (36), it does not contain oscillating coefficients.

(2) The coupling of (45) with (43) - and thereby with (42) and (44) - is done
through the term uc1ε which is of order zero.

These two properties seem incidental. Yet, they are crucial because they allow
to take derivatives of (45) with respect to both x1 and x2 up to the order two
without introducing further singularities (in the sense of negative powers of
ε ∈ ]0, 1]) and without implementing derivatives of order more than two. From
now on, we note c some small constant which will be adjusted later (at the
end of the subsection 2.2.3). The constraint (45) can simply be rewritten

∂tr
3
ε + uc1ε + V3

ε r3
ε = 0 , r3

ε(0, ·) ≡ 0 (47)

with r3
ε := wcε and V3

ε r3
ε := −(ε2κ ∂2

22 + ε2ν ∂2
11) r

3
ε.
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Now, consider the new unknown rε := t(r0
ε, · · · , r8

ε) ∈ R
9 with

r0
ε := qcε , r1

ε := uc1ε , r2
ε := εµ−κ uc2ε ,

r3
ε := wcε , r4

ε := εµ ∂1w
c
ε , r5

ε := ετ ∂2w
c
ε ,

r6
ε := εµ+ν c ∂2

11w
c
ε , r7

ε := εµ+κ c ∂2
12w

c
ε , r8

ε := ετ+κ c ∂2
22w

c
ε .

From (45) or (47), we can easily extract

∂tr
j
ε + Rj

ε rε + Vjε rε = 0 , rjε(0, ·) ≡ 0 , j ∈ {3, · · · , 8} (48)

with R3
ε rε := uc1ε and V3

ε rε ≡ V3
ε r3

ε and also :

R4
ε rε := εµ ∂1r

1
ε , V4

ε rε ≡ V4
ε r4

ε := − (ε2κ ∂2
22 + ε2ν ∂2

11) r
4
ε ,

R5
ε rε := ετ ∂2r

1
ε , V5

ε rε ≡ V5
ε r5

ε := − (ε2κ ∂2
22 + ε2ν ∂2

11) r
5
ε ,

R6
ε rε := εµ+ν c ∂2

11r
1
ε , V6

ε rε ≡ V6
ε r6

ε := − (ε2κ ∂2
22 + ε2ν ∂2

11) r
6
ε ,

R7
ε rε := εµ+κ c ∂2

12r
1
ε , V7

ε rε ≡ V7
ε r7

ε := − (ε2κ ∂2
22 + ε2ν ∂2

11) r
5
ε ,

R8
ε rε := ετ+κ c ∂2

22r
1
ε , V8

ε rε ≡ V8
ε r8

ε := − (ε2κ ∂2
22 + ε2ν ∂2

11) r
8
ε .

The introduction of rε together with the equations (48) is a trick which allows
to interpret the problematical contributions of (42)-(43)-(44)-(45) as being
semilinear rather than quasilinear. Now, the reader can wonder why in this
process different powers of ε have been placed in front of the derivatives of wcε
and even in front of the component uc2ε .

Concerning the derivatives of wcε, the reasons can easily be guessed. The com-
ponent uc1ε and the related equation (43) are not modified. The weights ε∗ in
front of the rjε with j ∈ {4, · · · , 8} are adjusted the most possible large but
still sufficiently small so that energy estimates can operate, that is so that
the various contributions 〈rjε,Rj

ε r
j
ε〉 (which involve derivatives of uc1ε ) can be

absorbed by the parabolic perturbation.

Concerning the component uc2ε , the discussion is more complicated. After the
preceding manipulations, the equation (44) still contains many contributions
which cannot be handled through the viscosity. For instance, the term "divucε "
in the equation (44) induces a loss of symmetry when looking at the full system
(42)-(43)-(44)-(45). Moreover, this lack of hyperbolicity can be too strong in
order to be directly compensated by the (small) parabolic perturbation.

To remedy this difficulty, the idea is to multiply the equation (44), that is the
component uc2ε , by a positive power of ε. Observe that this manipulation does
not change the (symmetric) quasilinear part of the system (42)- · · · -(45) which
is placed in front of the derivative ∂1. But of course, it alters the properties of
symmetry of the quasilinear part which is placed in front of ∂2.
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On the one hand, the positive power of ε under question must be large enough
to be sure that the contribution "divucε " and the extra terms in (44) can
be absorbed by the viscosity. On the other hand, it must be small enough
so that the positivity of the viscosity is not changed and so that the lack
of symmetry (of other type thus induced) can still be compensated by the
parabolic perturbation. It happens that such a delicate compromise is achieved
by the concrete choice of the power µ− κ (as above in the definition of r2

ε). It
is at this stage that an adequate calibration of the viscosity is needed.

In practice, what is said above is implemented through the introduction of
rε. The mission of the transformation Φε is to pass from rε to rbε. Taking into
account the preceding definitions, we find that Φε is the linear application
which is simply given by the following (ε-singular) matrix

Φε :=















1 0 0 0 0 0 0 0 0

0 1 0 − ∂2u
a2
ε 0 − ε−τ ua2ε 0 0 0

0 0 εκ−µ ∂1u
a2
ε ε−µ ua2ε 0 0 0 0















. (49)

With this choice, the functional inclusions indicated in the Definition 15 are
verified. More precisely, we can control Φε according to :

Lemma 20 Let va a compatible oscillation. There exists a constant C ∈ R+

such that, for all ε ∈ ]0, 1], we have

‖ Φε(rε) ‖L2 ≤ C ε−̟ ‖ rε ‖L2 , ̟ := max (µ− κ; ν − ι2) . (50)

In view of (H), the exponent ̟ is always nonnegative. It can be strictly
positive when κ < µ or when the family (vaε)ε is a strong oscillation (ι2 < ν).

PROOF (of the Lemma 20). By construction, we have qbε = r0
ε and

ub1ε = r1
ε − ει2−τ ŭa2ε r5

ε − ει2 ∂2ŭ
a2
ε r3

ε ,

ub2ε = εκ−µ r2
ε − ει2−µ ŭa2ε r4

ε − ει2−ν (εν ∂1ŭ
a2
ε ) r3

ε .

The inequality (50) is a direct consequence of the hypothesis (H) and of the
various assumptions imposed in the Definition 11. �

To estimate the action of Φε, it is necessary to lose (eventually) large negative
powers of ε. But, in contrast with (46), the bound (50) is without loss of
derivatives. This modification corresponds to a change of point of view on
the system (42)- · · · -(45). In the subsection 2.1.1, we have focused on the
hyperbolic features. Now, we want to insist on the parabolic aspects.
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To this end, we need to specify in terms of the components rjε with j ∈ {0, 1, 2}
the equations which are issued from (42), (43) and (44). Storing the various
contributions according to their future role from the point of view of energy
estimates, we note these equations in abbreviated form

∂tr
j
ε + Hj

ε rε + Rj
ε rε + Vjε rε + hajε = 0 , j ∈ {0, 1, 2} . (51)

In (51), we signal with the mark H∗
ε the terms which can be dealt through

hyperbolic arguments. As in (47) or (48), we use the symbol V∗
ε for the con-

tributions coming from the viscosity parts. We put the source terms ha∗ε apart
and we group all other contributions inside differential operators (of order less
than two) noted R∗

ε.

For instance, the equation (42) gives rise to (51) with j = 0. We find V0
ε ≡ 0,

ha0ε := fa0ε and

H0
ε rε := (ua1ε + εn r1

ε − εn ∂2u
a2
ε r3

ε − εn−τ ua2ε r5
ε) ∂1r

0
ε

+ (ua2ε + εn+κ−µ r2
ε + εn ∂1u

a2
ε r3

ε + εn−µ ua2ε r4
ε) ∂2r

0
ε

+c (qaε + εn r0
ε) ∂1r

1
ε .

In the description of R0
ε, R1

ε and R2
ε, we will point out by classical numbers like

(1) the lines which involve one or second order derivatives of the components
of rε. On the other hand, we put in roman numerals like (i) the lines which
contain only terms of order zero. We have

R0
ε rε := (1) c (εκ−µ qaε + εn+κ−µ r0

ε) ∂2 r2
ε

(i) +c divuaε r0
ε + ∂1q

a
ε r1

ε + εκ−µ ∂2q
a
ε r2

ε

(ii) +A0
0ε r3

ε + A0
1ε r4

ε + A0
2ε r5

ε .

Consider now the equations (43) and (44). First of all, apply the Lemma
32 on the family ŭa2 ∈ Oζ,σ−ζ

(ν,0),(6,6) with the choice of (j, k) being respectively
(j, k) = (0, 1), (j, k) = (1, 1) and (j, k) = (0, 2) in order to get

ŭa2ε = εζ g0,1
ε + εσ ∂1h

0,1
ε , (g0,1

ε )ε , (h0,1
ε )ε ∈ O(ν,0),(7,6) ,

∂2ŭ
a2
ε = εζ g1,1

ε + εσ ∂1h
1,1
ε , (g1,1

ε )ε , (h1,1
ε )ε ∈ O(ν,0),(7,5) ,

(ŭa2ε )2 = εζ g0,2
ε + εσ ∂1h

0,2
ε , (g0,2

ε )ε , (h0,2
ε )ε ∈ O(ν,0),(7,6) .

(52)

In other words, the O(1) quantities ŭa2ε , ∂2ŭ
a2
ε and (ŭa2ε )2 can be decomposed

into O(εζ) contributions εζ g∗⋆ and O(1) expressions having the form εσ ∂1h
∗
⋆.

The interest of these decompositions is that the εσ ∂1 derivatives thus intro-
duced can be absorbed by the viscosity when performing energy estimates.
This principle serves as a guide below when rewriting (43) and (44).
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Concerning (43), we obtain ha1ε := fa1ε and

H1
ε rε := (ua1ε + εn r1

ε − εn ∂2u
a2
ε r3

ε − εn−τ ua2ε r5
ε) ∂1r

1
ε

+ (2ua2ε + εn+κ−µ r2
ε + εn ∂1u

a2
ε r3

ε + εn−µ ua2ε r4
ε) ∂2r

1
ε

+c (qaε + εn r0
ε) ∂1r

0
ε .

The term P1
ε u

c
ε gives rise to

V1
ε rε := − (ε2µ + ε2ν) ∂2

11r
1
ε − ε2τ ∂2

22r
1
ε − εµ+κ ∂2

12r
2
ε .

The remaining part R1
ε rε is formulated in such a way that the pertinent terms

become immediately apparent when performing energy estimates. To this end,
convenient derivatives must be put at adequate places. This requires some
computations consisting mainly in using (52) and in permuting derivatives.
We can obtain

R1
ε rε := (2) ∂1(A

122
12ε ∂2r

8
ε) + ∂2(A

112
22ε ∂2r

7
ε)

(3) + ∂1(A
122
1ε r8

ε) + A122
2ε ∂2r

8
ε + A112

2ε ∂2r
7
ε

(iii) +Q1ε(rε) + A22
1ε r

8
ε + A12

1ε r
7
ε

(iv) +c ∂1q
a
ε r0

ε + divuaε r1
ε + ει1+κ−µ ∂2ŭ

a1
ε r2

ε

(v) +A1
0ε r3

ε + A1
1ε r4

ε + A1
2ε r5

ε .

The coefficients A∗
⋆ε are defined according to

A122
12ε := − (εκ−τ − ετ−κ) ει2+σ c−1 h0,1

ε ,

A112
22ε := (εκ − ε2τ−κ) ει2+σ−µ c−1 h0,1

ε ,

A122
1ε := − ε2 ι2+σ−τ−κ c−1 h0,2

ε − (εκ−τ − 3 ετ−κ) ει2+σ c−1 h1,1
ε ,

A122
2ε := − (εκ−τ − ετ−κ) ει2+ζ c−1 g0,1

ε ,

A112
2ε := ε2 ι2+σ−κ−µ c−1 h0,2

ε + ει2+σ−µ (εκ − 3 ε2τ−κ) c−1 h1,1
ε

− ει2+σ−µ (εκ − ε2τ−κ) c−1 ∂2h
0,1
ε ,

A22
1ε := − ε2 ι2+ζ−τ−κ c−1 g0,2

ε − (εκ−τ − 3 ετ−κ) ει2+ζ c−1 g1,1
ε ,

A12
1ε := − ει1+ι2−µ−κ c−1 ŭa1ε ŭa2ε + 2 ε2ν+ι2−µ−κ c−1 ∂1ŭ

a2
ε .

The quadratic form Q1ε is

Q1ε(rε) := εn (∂2u
a2
ε r3

ε + ε−τ ua2ε r5
ε − r1

ε) (∂2
12u

a2
ε r3

ε + ε−τ ∂1u
a2
ε r5

ε)

+ εn (∂2u
a2
ε r3

ε + ε−τ ua2ε r5
ε − r1

ε) (ε−µ ∂2u
a2
ε r4

ε + ε−µ−κ c−1 ua2ε r7
ε)

− εn (∂1u
a2
ε r3

ε + ε−µ ua2ε r4
ε + εκ−µ r2

ε) (∂2
22u

a2
ε r3

ε + ε−τ ∂2u
a2
ε r5

ε)

− εn (∂1u
a2
ε r3

ε + ε−µ ua2ε r4
ε + εκ−µ r2

ε) (ε−τ ∂2u
a2
ε r5

ε + ε−τ−κ c−1 ua2ε r8
ε) .

The same approach is adopted concerning (44). First, we can exhibit the source
term ha2ε := εµ−κ fa2ε .
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Then, we can identify

H2
ε rε := (ua1ε + εn r1

ε − εn ∂2u
a2
ε r3

ε − εn−τ ua2ε r5
ε) ∂1r

2
ε

+ (ua2ε + εn+κ−µ r2
ε + εn ∂1u

a2
ε r3

ε + εn−µ ua2ε r4
ε) ∂2r

2
ε ,

R2
ε rε := (4) c εµ−κ (qaε + εn r0

ε) ∂2r
0
ε − ει2+µ−κ ŭa2ε ∂1r

1
ε

(vi) + Q2ε(rε) + A11
2ε r

6
ε + A12

2ε r
7
ε

(vii) + c εµ−κ ∂2q
a
ε r0

ε + ει2 ∂2ŭ
a2
ε r2

ε

(viii) + A2
0ε r3

ε + A2
1ε r4

ε + A2
2ε r5

ε ,

V2
ε rε := − ε3µ−κ ∂2

12r
1
ε − (ε2µ + ε2κ) ∂2

22r
2
ε − ε2ν ∂2

11r
2
ε .

The coefficients A∗
⋆ and the quadratic form Q2ε are the following

A11
2ε := ει1+ι2−κ−ν c−1 ŭa1ε ŭa2ε − 2 εν+ι2−κ c−1 ∂1ŭ

a2
ε ,

A12
2ε := ε2 (ι2−κ) c−1 (ŭa2ε )2 − 2 ει2 c−1 ∂2ŭ

a2
ε ,

Q2ε(rε) := εn+µ−κ (r1
ε − ∂2u

a2
ε r3

ε − ε−τ ua2ε r5
ε) (∂2

11u
a2
ε r3

ε + ε−µ ∂1u
a2
ε r4

ε)

+ εn+µ−κ (r1
ε − ∂2u

a2
ε r3

ε − ε−τ ua2ε r5
ε) (ε−µ ∂1u

a2
ε r4

ε + ε−µ−ν c−1 ua2ε r6
ε)

+ εn+µ−κ (∂1u
a2
ε r3

ε + ε−µ ua2ε r4
ε + εκ−µ r2

ε) (∂2
12u

a2
ε r3

ε + ε−τ ∂1u
a2
ε r5

ε)

+ εn+µ−κ (∂1u
a2
ε r3

ε + ε−µ ua2ε r4
ε + εκ−µ r2

ε) (ε−µ ∂2u
a2
ε r4

ε + ε−µ−κ c−1 ua2ε r7
ε) .

Introduce

Hε := t(H0
ε,H1

ε,H2
ε, 0, · · · , 0) , Rε := t(R0

ε, · · · ,R8
ε) ,

haε := t(ha0ε , h
a1
ε , h

a2
ε , 0, · · · , 0) , Vε := t(V0

ε , · · · ,V8
ε ) .

The system made of the equations in (48) and (51) will be noted in abbreviated
form B(rε; ∂) rε = 0. It can be decomposed into

B(rε; ∂) rε = ∂trε + Hε rε + Rε rε + Vε rε + haε = 0 . (53)

It is completed by some initial data

rε(0, x) = rε(x) = t
(

r0
ε(x), · · · , r8

ε(x)
)

, x ∈ R
2 . (54)

Definition 21 We say that the function rε is well-prepared if the following
differential constraints are verified

r4
ε = εµ ∂1r

3
ε , r5

ε := ετ ∂2r
3
ε ,

r6
ε = εµ+ν c ∂2

11r
3
ε , r7

ε = εµ+κ c ∂2
12r

3
ε , r8

ε = ετ+κ c ∂2
22r

3
ε .

(55)
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The interest of this notion comes from the following fact.

Lemma 22 Suppose that rε is a (smooth) solution of (53) on [0, T ] × R
2

with T ∈ R
∗
+ and that the corresponding initial data rε(0, ·) is well-prepared.

Then, for all t ∈ [0, T ], the function rε(t, ·) is still well-prepared. Moreover,
the expression rbε := Φε(rε) is necessarily a solution on [0, T ] of (36).

PROOF of the Lemma 22. Consider the difference d4
ε := r4

ε−εµ ∂1r
3
ε. In view

of (47) and (48), this scalar quantity is subjected to

∂td
4
ε − (ε2κ ∂2

22 + ε2ν ∂2
11) d4

ε = 0 , d4
ε(0, ·) ≡ 0 .

The solution of this Cauchy problem is unique. It is simply d4
ε(t, ·) ≡ 0 for

all t ∈ [0, T ]. The same argument can be used with the other relations of
(55) giving rise to the first assertion in the Lemma 22. Then, we can forget all
about the equations inside (48) and replace everywhere in (51) the components
rkε with k ∈ {4, · · · , 8} according to what is proposed in (55). Following in
opposite direction (step after step) the construction of the current chapter
2.1, we find that rbε must be indeed a solution of (36). �

The function rε ≡ 0 is obviously well-prepared. We can apply the Lemma 22
with this special choice as initial data. The expression rbε corresponding to this
case is sure to be a solution on [0, T ] of (36). Moreover, we find

rbε(0, ·) = Φε(rε)(0, ·) ≡ Φε(0) ≡ 0 .

We see here that both (36) and (37) are verified. The solution rε of (38) leads
automatically to the condition ii) of the Definition 16.

Before examining the condition i) of the Definition 16 in the context of (38),
we start with a brief discussion about the structure of (53). The hyperbolic
part Hε involves non linear transport fields and a preserved symmetric form
in factor of ∂1rε. The actions Rε and Vε are made of differential operators
of order less than or equal to two. The expression haε is a well-known source
term. In brief, the system B(rε; ∂) rε = 0 is a non linear system of mixed type,
incorporating both hyperbolic and parabolic aspects.

2.2 Stability features.

In all this Section 2.2, we work with α := (ν, 0) and γ = (3, 3). The aim is
to finish the proof of the Proposition 17. In fact, it only remains to show the
part i) of the Definition 16.
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2.2.1 Sketch of the proof.

The approach relies on Sobolev estimates based on the space L2. In fact, the
functional framework is as in the subsection 1.2 except that L∞ is replaced by
L2. Given (ε, t) ∈ ]0, 1] × R

∗
+ and f : [0, t] × R

2 −→ R
9, consider the norm

||| f |||ε,tα,γ := sup
s∈[0,t]

∑

{β∈N2 ;β≤ γ}

εα·β ‖ ∂βxf(s, ·) ‖L2(R2;R9)

whose corresponding functional space is

Hε,t
α,γ(R

2; R9) :=
{

f : [0, t] × R
2 −→ R

9 ; ||| f |||ε,tα,γ < +∞
}

.

Classical arguments guarantee that the Cauchy problem (38) has locally in
time a (C3) solution rε. Note LSε ∈ R

∗
+ the life span of rε. Introduce

Tε := sup
{

t ∈ [0, LSε[ ; ||| rε |||ε,tα,γ ≤ 2
}

∈ R
∗
+ . (56)

By definition, for t ∈ [0, Tε], we are sure that

‖ r̃ε(t, ·) ‖H3(R2;R9) ≤ 2 ε− ν/2 , r̃ε(t, x) := rε(t, ε
ν x1, x2) .

Using Sobolev injections, we can deduce from this bound the existence of some
constant C ∈ R+ independent of ε ∈ ]0, 1] such that

‖ ε ν
2 rε(t, ·) ‖L∞ + ‖ ε 3ν

2 ∂1rε(t, ·) ‖L∞ + ‖ ε ν
2 ∂2rε(t, ·) ‖L∞ ≤ C . (57)

The Lipschitz control (57) will be a key tool when performing energy esti-
mates on the system (38). In practice, we will multiply the various equations
contained in (47), (48) and (51) by the components r∗ε with corresponding
numbers ∗. By this way, we will be able to get :

Proposition 23 Assume that the approximate solution (vaε)ε is compatible
with (4). Define T bε := min(1, T, Tε) ∈ R

∗
+ where we recall that T ∈ R

∗
+ is the

time involved in the Definition 11 whereas Tε ∈ R
∗
+ is given by (56). Then,

we can find ε0 ∈ ]0, 1] and two constants C1 ∈ [2,+∞[ and C2 ∈ [1,+∞[ such
that, for all ε ∈ ]0, ε0], the solution rε of (38) can be controlled according to

||| rε |||ε,t(ν,0),(3,3) ≤ C1 (eC2 t − 1) , ∀ t ∈ [0, T bε ] . (58)

PROOF (of the Proposition 23). This is the matter of the subsections 2.2.2
and 2.2.3. In fact, the discussion will be divided into two stages, first the
L2-estimates in 2.2.2 then the higher order estimates in 2.2.3. �

To simplify the presentation in what follows, we can introduce the following
terminologies and notations.
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Convention 1. Given two families (fε)ε ∈ (R+)]0,ε0] and (gε)ε ∈ (R+)]0,ε0], we
say that (fε)ε . (gε)ε if we can find a constant C ∈ R+ such that fε ≤ C gε
for all ε ∈ ]0, ε0]. Given c ∈ R+, we will identify the constant sequence (c)ε
with c. When there is no possible ambiguity, we simply note fε . gε to mean
that fε ≤ C gε with some C independent of ε ∈ ]0, 1]. For instance, we have

( fε . 1 ) ⇐⇒ (∃C ∈ R+ ; fε ≤ C , ∀ ε ∈ ]0, ε0] ) . ◦

Convention 2. The L2(R2; RN) scalar product is noted by

〈f, g〉 :=
∫

R

∫

R

f(x) · g(x) dx , |f |2 :=
√

〈f, f〉 . ◦

� End of the proof (of the Proposition 17). Since LSε > Tε, to obtain the
property i) of the Definition 16, it suffices to show that

∃ (ε̃, T ) ∈ ]0, 1]×]0, 1[ ; Tε ≥ T , ∀ ε ∈ ]0, ε̃] . (59)

In order to obtain (59), as usual in the hyperbolic context, we argue by con-
tradiction. We start from the opposite situation :

∀ (ε̃, T ) ∈ ]0, 1]×]0, 1[ , ∃ ε ∈ ]0, ε̃] ; Tε < T . (60)

We can test (60) with ε̃ := ε0 and

T := C−1
2

[

ln (C1 + 1) − lnC1

]

≤ ln 2 < 1 .

In view of (60), there exists ε ∈ ]0, ε0] such that Tε < T < 1 so that T bε = Tε.
Applying the Proposition 23, we can deduce from (58) that

||| rε |||ε,Tε

α,γ ≤ C1 (eC2 Tε − 1) ≤ C1 (eC2 T − 1) = 1 < 2 . (61)

First, the application [0, LSε[∋ t 7−→ ||| rε |||ε,tα,γ is continuous. Then, the solution
rε can be extended in time as long as the quantity ||| rε |||ε,tα,γ remains bounded.
It follows that we can find some t ∈ ]Tε, LSε[ such that ||| rε |||ε,tα,γ ≤ 2. This
is clearly not coherent with the definition of Tε giving rise to the expected
contradiction with (60). Thus, the assertion (59) is sure to be true.

�

2.2.2 L2-estimates.

The purpose of this subsection 2.2.2 is to show the inequality (58) with the
multi-indice (3, 3) replaced by (0, 0).
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To this end, we simply look at the scalar identity

〈

rε(t, ·), [B(rε; ∂) rε](t, ·)
〉

= 1
2

d
dt

[ |rε(t, ·)| 22 ]

+
〈

rε(t, ·), (Hε rε)(t, ·)
〉

+
〈

rε(t, ·), (Rε rε)(t, ·)
〉

+
〈

rε(t, ·), (Vε rε)(t, ·)
〉

+
〈

rε(t, ·),haε(t, ·)
〉

= 0 .

(62)

The different contributions to deal with are managed through a succession of
Lemmas and one Proposition. We start with :

Lemma 24 Control of H.
∣

∣

∣

〈

rε(t, ·), (Hε rε)(t, ·)
〉∣

∣

∣ . |rε(t, ·)| 22 , ∀ t ∈ [0, T bε ] . (63)

PROOF (of the Lemma 24). The action Hε is composed with self adjoint
one order differential operators. Thus, the matter is only to obtain suitable
controls on the coefficients. More precisely, we need to get

‖ ∂1(u
a1
ε + εn r1

ε − εn ∂2u
a2
ε r3

ε − εn−τ ua2ε r5
ε) ‖L∞ . 1 ,

‖ ∂2(ϑu
a2
ε + εn+κ−µ r2

ε + εn ∂1u
a2
ε r3

ε + εn−µ ua2ε r4
ε) ‖L∞ . 1 , ϑ ∈ {1, 2} ,

‖ c ∂1(q
a
ε + εn r0

ε) ‖L∞ . 1

where the L∞-norms are computed on the strip [0, T bε ]×R
2. In fact, it suffices

to check that the various quantities involved above can be separately bounded
in L∞ as indicated.

Since ι1 ≥ ν, the condition (22) gives rise to ‖ ∂1u
a1
ε ‖L∞. 1.

Because ι2 ≥ κ ≥ 0, the condition (24) guarantees that ‖ ∂2u
a2
ε ‖L∞. 1. On

the other hand, the hypothesis (H) and the paragraph i) of the Definition 11
imply that

‖ ∂1q
a
ε ‖L∞ = ε(ι0−µ)+(τ−κ) ‖ εκ+µ−τ ∂1q̆

a
ε ‖L∞ . 1 .

The restriction (24) imposes also that

‖ ua2ε ‖L∞ . ει2 , ‖ εν ∂1u
a2
ε ‖L∞. ει2 ,

‖ ∂2u
a2
ε ‖L∞ . ει2 , ‖ εν ∂2

12u
a2
ε ‖L∞. ει2 .

(64)

Since t ∈ [0, T bε ], we can take advantage of the a priori estimate (57) which
gives access to L∞-bounds on the components r∗ε with ∗ ∈ {0, · · · , 8} and the
associated derivatives (up to the order one). Then, the expected informations
can easily be obtained by combining (H), (64) and the restriction imposed on
n (recall that n = 4 ν). �
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We go further with :

Lemma 25 Control of V. Define the following nonnegative quantity

Q̃
(

∇rε(t, ·)
)

:= |ετ ∂2r
1
ε(t, ·)| 22 + 1

4
|εµ ∂1r

1
ε(t, ·)| 22 + 1

4
|εκ ∂2r

2
ε(t, ·)| 22

+ |εν ∂1r
2
ε(t, ·)| 22 +

∑8
j=3

(

|εκ ∂2r
j
ε(t, ·)| 22 + |εν ∂1r

j
ε(t, ·)| 22

)

.

There exists ε0 ∈ ]0, 1] such that
〈

rε(t, ·), (Vε rε)(t, ·)
〉

≥ Q̃
(

∇rε(t, ·)
)

. (65)

PROOF (of the Lemma 25). By construction, we have

〈

rε(t, ·), (Vε rε)(t, ·)
〉

=
8

∑

j=0

〈

rjε(t, ·), (Vjε rjε)(t, ·)
〉

.

For j ∈ {3, · · · , 8}, the operators Vjε are defined as indicated at the level of
(48). For such indices j, simple integration by parts give rise to

〈

rjε(t, ·), (Vjε rjε)(t, ·)
〉

= |εκ ∂2r
j
ε(t, ·)| 22 + |εν ∂1r

j
ε(t, ·)| 22 .

We turn now our attention to the contributions issued from the equations
contained in (51). This time, we find

2
∑

j=0

〈

rjε(t, ·), (Vjε rε)(t, ·)
〉

= |ετ ∂2r
1
ε(t, ·)| 22 + |εν ∂1r

2
ε(t, ·)| 22 + ∐ε

with

∐ε := (ε2µ + ε2 ν) |(∂1r
1
ε)(t, ·)| 22 + (ε2µ + ε2κ) |(∂2r

2
ε)(t, ·)| 22

+ (1 + ε2 (µ−κ))
〈

(εµ ∂1r
1
ε)(t, ·), (εκ ∂2r

2
ε)(t, ·)

〉

.

The Cauchy-Schwarz inequality gives access to

∐ε ≥
1

2
|εµ ∂1r

1
ε(t, ·)| 22 +

1

2
|εκ ∂2r

2
ε(t, ·)| 22 + |εµ ∂2r

2
ε(t, ·)| 22

+ ε2 (µ−κ)
〈

(εµ ∂1r
1
ε)(t, ·), (εκ ∂2r

2
ε)(t, ·)

〉

. (66)

When µ = κ, using again the Cauchy-Schwarz inequality, we can get

∐ε ≥ 1

4
|εµ ∂1r

1
ε(t, ·)| 22 +

1

4
|εκ ∂2r

2
ε(t, ·)| 22 .

When µ > κ, this lower bound remains true if we take ε small enough. More
precisely, it suffices to take ε ∈ ]0, ε0] with ε0 := 21/2(κ−µ). Combining all the
preceding informations, we recover (65). �
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The idea now is to compensate the contribution 〈rε,Rε rε〉 by what has been
won at the level of 〈rε,Vε rε〉. This is the tricky part of the analysis during
which the adjustment of the various parameters κ, µ, τ , ν, ζ, ι0, ι1 and ι2 play
an essential role.

Proposition 26 Control of R. There exists a number ε0 ∈ ]0, 1], a (small)
constant c̃ ∈ R

∗
+ and a (large) constant C̃ ∈ R

∗
+ such that for all ε ∈ ]0, ε0]

and for all t ∈ [0, T bε ], we have

c̃ Q̃
(

∇rε(t, ·)
)

≤
〈

rε(t, ·), [Rε rε + Vε rε](t, ·)
〉

+ C̃ |rε(t, ·)| 22 . (67)

PROOF (of the Proposition 26). Recall that

〈

rε(t, ·), (Rε rε)(t, ·)
〉

=
8

∑

j=0

〈

rjε(t, ·), (Rj
ε rε)(t, ·)

〉

. (68)

As already explained, in order to obtain (63), the building pieces are the quan-
tities placed in the right hand side of (65). In this analysis, various ingredients
must be taken into account. In particular, the conditions involving the ampli-
tudes of qaε , u

a1
ε and ua2ε play a crucial part. For the sake of clarity, we first

explain below why the parameters ι0, ι1 and ι2 are adjusted as indicated in
the paragraphs i), ii) and iii) of the Definition 11.

The sum (68) involves in particular the scalar product 〈r0
ε(t, ·), (R0

ε rε)(t, ·)〉.
In the definition of R0

ε, more precisely at the level of the first position in the
line (1), we can identify the term c ε−µ qaε (εκ ∂2r

2
ε). Taking into account (65),

this contribution can be compensated only if ει0−µ q̆aε is bounded in L∞. If for
instance q̆aε ≡ q̆ with q̆ ∈ R

∗
+, this clearly requires ι0 ≥ µ.

Then, look at 〈r2
ε(t, ·), (R2

ε rε)(t, ·)〉. In particular, we have to deal with the
part 〈r2

ε(t, ·), A2
1ε r

4
ε(t, ·)〉. To this end, the coefficient A2

1ε must be uniformly
controlled in L∞. The definition of A2

1ε is given just after the equation (44).
Now, consider the fifth and sixth terms composing A2

1ε. Since the component
ŭa2ε is supposed to be a strong oscillation issued from an oscillation of minimal
frequency (ν, 0), we have

ει2+2 ν−κ ∂2
11ŭ

a2
ε ≃ ει2−κ , ει1+ι2−κ ŭa1ε ∂1ŭ

a2
ε ≃ ε(ι1−ν)+(ι2−κ) .

The first order of size leads to the condition ι2 ≥ κ. Then, the second order
of size gives rise to ι1 ≥ ν. Thus, we have just recovered all the restrictions
displayed at the level of (20), (22) and (24). To go further, we need to get
more informations on the coefficients A∗

⋆ε.

Lemma 27 Coefficients involved in zero oder differential operators.

|A∗
⋆ε| . 1 , ∀ (∗, ⋆) ∈ {0, 1, 2, 11, 12, 22} × {0, 1, 2} . (69)
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PROOF (of the Lemma 27). Under the only Assumption (H), the restrictions
(21), (23) and (25) cannot be deduced from respectively (20), (22) and (24).
They really bring complementary informations. In fact, they are adjusted in
an optimal way in order to have (69). In the tabular below, we recall on the
left the different conditions involved at the level of (21), (23) and (25). On the
right, we indicate precisely the terms in the coefficients A∗

⋆ε which, in order to
be controlled in L∞, require these conditions.

εκ+µ−τ ∂1q̆
a
ε in (21) comes from the coefficient A0

2ε

εκ+µ−ν ∂2q̆
a
ε in (21) comes from ει0+ι2 ∂1ŭ

a2
ε ∂2q̆

a
ε in A0

0ε

εµ ∂1ŭ
a1
ε in (23) comes from ει1+ι2+µ−κ ∂1ŭ

a1
ε ∂1ŭ

a2
ε in A2

0ε

ε2κ+µ−τ−ν ∂2ŭ
a2
ε in (25) comes from the coefficient A2

2ε

The proof of (69) exploits the Assumption (H), the restrictions imposed on M
(≥ 4 ν) and n (= 4 ν), Sobolev embedding theorems like in (57) to control the
terms coming from gaε , as well as all the conditions displayed in the Definition
11. We will not go into the details of the discussion but instead, for each coef-
ficient A∗

⋆ε, we will indicate at the top of the table below by the symbol • the
precise properties (·) which must be implemented. Through these indications,
the verification of (69) one case after another is easy to follow and to check.

(H) (19)-iv) (20) (21) (22) (23) (24) (25)

A0
0ε • •

A0
1ε • •

A0
2ε • •

A1
0ε • • • •

A1
1ε • • •

A1
2ε • • • • • • •

A2
0ε • • • • • • •

A2
1ε • • • • •

A2
2ε •

A12
1ε • • •

A11
2ε • •

A12
2ε •

Moreover, taking into account (52), the restriction ζ ≥ τ − κ in the line iii)
of the Definition 11 allows to get the remaining bound |A22

1ε| . 1. �
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Lemma 28 Coefficients involved in first oder differential operators.

|ε−µA122
1ε | . 1 , |ε−κA122

2ε | . 1 , |ε−κA112
2ε | . 1 . (70)

PROOF (of the Lemma 28). These controls are due to (H), the condition
ζ ≥ τ − κ, the restriction σ ≥ τ + µ+ 1− ι2 and the various properties of the
functions g⋆,∗ε and h⋆,∗ε which are collected at the level of (52).

Lemma 29 Coefficients involved in second oder differential operators.

|ε−µ−κ−1A122
12ε| . 1 , |ε−τ−κ−1A112

22ε| . 1 . (71)

PROOF (of the Lemma 29). This is a direct consequence of σ ≥ τ+µ+1−ι2.

From now on, we use the notation (big) "C " in order to designate some
(eventually changing) constant which is independent of ε ∈ ]0, ε0] and which
can be chosen large. On the other hand, the notation (small) "c " is still
reserved for the constant (also independent of ε ∈ ]0, ε0]) which is involved at
the level of the definition of rε.

Now, we can come back to the study of (68). We proceed line after line, that
is from j = 0 to j = 8. We will indicate precisely the terms which must be
involved to control the various contributions. Doing this, we will use implicitly
all the preceding informations, that is (H), (19), (20), · · · , (25), (57), the
Lemmas 27, 28 and 29, · · ·

⋄ The case j = 0.

∣

∣

∣

〈

r0
ε(t, ·), (1)

〉∣

∣

∣ ≤
[

c ‖ q̆aε ‖L∞ +εn−µ−
ν
2 ‖ ε ν

2 r0
ε ‖L∞

]

|〈r0
ε, ε

κ ∂2r
2
ε〉|

≤ C |r0
ε(t, ·)| 22 + c |εκ ∂2r

2
ε(t, ·)| 22 ,

∣

∣

∣

〈

r0
ε(t, ·), (i)

〉∣

∣

∣ ≤ C
(

|r0
ε(t, ·)| 22 + |r1

ε(t, ·)| 22 + |r2
ε(t, ·)| 22

)

,
∣

∣

∣

〈

r0
ε(t, ·), (ii)

〉∣

∣

∣ ≤ C
(

|r0
ε(t, ·)| 22 + |r3

ε(t, ·)| 22 + |r4
ε(t, ·)| 22 + |r5

ε(t, ·)| 22
)

.

⋄ The case j = 1. We can exploit the line (71) of the Lemma 29 in the form

∃ ε0 ∈ ]0, 1] ; ∀ ε ∈ ]0, ε0] , |A122
12ε| ≤ c εµ+κ , |A112

22ε| ≤ c ετ+κ .

To deal with (2), we perform integration by parts. For all ε ∈ ]0, ε0], we have

∣

∣

∣

〈

r1
ε(t, ·), (2)

〉∣

∣

∣ ≤ c
(

|εµ ∂1r
1
ε(t, ·)| 22 + |ετ ∂2r

1
ε(t, ·)| 22

)

+ c
(

|εκ ∂2r
7
ε(t, ·)| 22 + |εκ ∂2r

8
ε(t, ·)| 22

)

.
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What is given in Lemma 28 gives rise to

∣

∣

∣

〈

r1
ε(t, ·), (3)

〉∣

∣

∣ ≤ c
(

|εµ ∂1r
1
ε(t, ·)| 22 + |εκ ∂2r

7
ε(t, ·)| 22 + |εκ ∂2r

8
ε(t, ·)| 22

)

+C
(

|r1
ε(t, ·)| 22 + |r8

ε(t, ·)| 22
)

.

Consider Q1ε in (iii). The quadratic form Q1ε(rε) is made of coefficients having
all a form like εn−♭ ∂∗⋆u

ak
ε ∂ ∗̃⋆̃u

al
ε with ♭ ≤ ν and where the derivatives ∂∗⋆ and

∂ ∗̃⋆̃ involve (simultaneously) at most one time the direction x1. Thus, these
coefficients are bounded in L∞ by εn−2ν = ε2ν . On the other hand, using (57),
we can control in L∞ the terms rkε by ε−

ν
2 in order to get

∣

∣

∣

〈

r1
ε(t, ·), Q1ε

(

rε(t, ·)
)〉∣

∣

∣ ≤ C εn−
5

2
ν |rε(t, ·)| 22 ≤ C |rε(t, ·)| 22 .

Combining this with the Lemma 27, we can recover
∣

∣

∣

〈

r1
ε(t, ·), (iii)

〉∣

∣

∣ ≤ C |rε(t, ·)| 22 .

From (21), (22), (23) and (24), we can also deduce

∣

∣

∣

〈

r1
ε(t, ·), (iv)

〉∣

∣

∣ ≤ C
(

|r0
ε(t, ·)| 22 + |r1

ε(t, ·)| 22 + |r2
ε(t, ·)| 22

)

.

As a direct application of the Lemma 27, we have
∣

∣

∣

〈

r1
ε(t, ·), (v)

〉∣

∣

∣ ≤ C
(

|r1
ε(t, ·)| 22 + |r3

ε(t, ·)| 22 + |r4
ε(t, ·)| 22 + |r5

ε(t, ·)| 22
)

.

⋄ The case j = 2. The line (4) involves the derivative ∂2r
0
ε which is not com-

pensated by the right hand side of (65). To get round this difficulty, integration
by parts are needed. The discussion is based on the identity

〈

r2
ε(t, ·), (4)

〉

= −c εµ−2κ
〈

εκ ∂2r
2
ε,

(

ει0 q̆aε + εn−ν/2 (εν/2 r0
ε)

)

r0
ε

〉

−c εµ−κ
〈

r2
ε,

(

ει0 ∂2q̆
a
ε + εn−ν/2 (εν/2 ∂2r

0
ε)

)

r0
ε

〉

− ει2−κ
〈

r2
ε, ŭ

a2
ε (εµ ∂1r

1
ε)

〉

.

Then, it suffices to use (H), (20), (24) and (57) to recover

∣

∣

∣

〈

r2
ε(t, ·), (4)

〉∣

∣

∣ ≤ c
(

|εκ ∂2r
2
ε(t, ·)| 22 + |εµ ∂1r

1
ε(t, ·)| 22

)

+C
(

|r0
ε(t, ·)| 22 + |r2

ε(t, ·)| 22
)

.

The discussion for Q2
ε is similar to the one for Q1

ε. The quadratic form Q2ε(rε)
is made of coefficients having all a form like εn−♭ ∂∗⋆u

ak
ε ∂ ∗̃⋆̃u

al
ε . Concerning the

products involving (simultaneously) at most one time the direction x1, we
have ♭ ≤ 2 ν. For the other terms, like ∂2u

a2
ε ∂2

11u
a2
ε , ∂1u

a2
ε ∂2

12u
a2
ε or (∂1u

a2
ε )2

(involving this time two derivatives in the direction x1), we have ♭ ≤ ν.

37



We lose ε−ν (resp. ε−2 ν) when one (resp. two) derivative ∂1 is implemented.
In all cases, the coefficient εn−♭ ∂∗⋆u

ak
ε ∂ ∗̃⋆̃u

al
ε is bounded by εn−3 ν = εν . Again,

the components rjε can be absorbed in L∞ by something of the size ε−
ν
2 . This

is sufficient in order to get

∣

∣

∣

〈

r2
ε(t, ·), Q2ε

(

rε(t, ·)
)〉∣

∣

∣ ≤ C ε
ν
2 |rε(t, ·)| 22 ≤ C |rε(t, ·)| 22 .

Briefly, using (20), (24) and the Lemma 27, we can obtain

∣

∣

∣

〈

r2
ε(t, ·), (vi)

〉∣

∣

∣ ≤ C |rε(t, ·)| 22 ,
∣

∣

∣

〈

r2
ε(t, ·), (vii)

〉∣

∣

∣ ≤ C
(

|r0
ε(t, ·)| 22 + |r2

ε(t, ·)| 22
)

,
∣

∣

∣

〈

r2
ε(t, ·), (viii)

〉∣

∣

∣ ≤ C
(

|r2
ε(t, ·)| 22 + |r3

ε(t, ·)| 22 + |r4
ε(t, ·)| 22 + |r5

ε(t, ·)| 22
)

.

The other contributions can obviously be handled through

∣

∣

∣

〈

r3
ε(t, ·), (R3

ε r
ε)(t, ·)

〉∣

∣

∣ ≤ C
(

|r1
ε(t, ·)| 22 + |r3

ε(t, ·)| 22
)

,
∣

∣

∣

〈

r4
ε(t, ·), (R4

ε r
ε)(t, ·)

〉∣

∣

∣ ≤ C |r4
ε(t, ·)| 22 + c |εµ ∂1r

1
ε(t, ·)| 22 ,

∣

∣

∣

〈

r5
ε(t, ·), (R5

ε r
ε)(t, ·)

〉∣

∣

∣ ≤ C |r5
ε(t, ·)| 22 + c |ετ ∂2r

1
ε(t, ·)| 22 ,

∣

∣

∣

〈

r6
ε(t, ·), (R6

ε r
ε)(t, ·)

〉∣

∣

∣ ≤ c |εµ ∂1r
1
ε(t, ·)| 22 + c |εν ∂1r

6
ε(t, ·)| 22 ,

∣

∣

∣

〈

r7
ε(t, ·), (R7

ε r
ε)(t, ·)

〉∣

∣

∣ ≤ c |εµ ∂1r
1
ε(t, ·)| 22 + c |εκ ∂2r

7
ε(t, ·)| 22 ,

∣

∣

∣

〈

r8
ε(t, ·), (R8

ε r
ε)(t, ·)

〉∣

∣

∣ ≤ c |εκ ∂2r
8
ε(t, ·)| 22 + c |ετ ∂2r

1
ε(t, ·)| 22 .

We collect all the previous informations to evaluate the sum (68). We find

−C |rε(t, ·)| 22 − 16 c Q̃
(

∇rε(t, ·)
)

≤
〈

rε(t, ·), (Rε rε)(t, ·)
〉

.

Add 〈rε(t, ·), (Vε rε)(t, ·)〉 to this inequality. Then, choose c = 1/32 and exploit
the Lemma 25 in order to obtain (67) with c̃ = 1/2. �

Lemma 30 Control of haε . We have

|haε(t, ·)|2 . 1 , ∀ t ∈ [0, T bε ] . (72)

PROOF (of the Lemma 30). Recall that

haε = Υε(f
a
ε ) := t(fa0ε , f

a1
ε , ε

µ−κ fa2ε , 0, · · · , 0) , faε = εM−n gaε . (73)

To deduce (72), we can use (19) the condition M ≥ 4 ν and the fact that

|haε(t, ·)|2 ≤ |faε (t, ·)|2 ≤ εM−4 ν |||gaε |||ε,Tα,γ , ∀ t ∈ [0, T bε ] . �
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Multiply (38) or (53) by the vector trε(t, ·). Integrate with respect to s ∈ [0, t]
and x ∈ R

2. Since rε(0, ·) ≡ 0, using the Lemma 24 and the Proposition 26,
we can exhibit C ∈ R

∗
+ such that, for all ε ∈ ]0, ε0] and t ∈ [0, T bε ], we have

|rε(t, ·)| 22 + 1
2

∫ t
0 Q̃

(

∇rε(s, ·)
)

ds

≤ C
∫ t
0 |rε(s, ·)|2

[

|haε(s, ·)|2 + |rε(s, ·)|2
]

ds .
(74)

For the moment, put the contribution related to Q̃ aside. Then, just apply the
Grönwall’s lemma to recover that, for all ε ∈ ]0, ε0] and t ∈ [0, T bε ], we have

||| rε |||ε,t(ν,0),(0,0) ≡ sups∈[0,t] |rε(s, ·)|2
≤ C

∫ t
0 e

C (t−s) |haε(s, ·)|2 ds .
(75)

Using the Lemma 30, we can extract from (75) the existence of C1 ∈ [2,+∞[
and C2 ∈ [1,+∞[ such that, for all ε ∈ ]0, ε0], we have

||| rε |||ε,t(ν,0),(0,0) ≤ C1 (eC2 t − 1) , ∀ t ∈ [0, T bε ] . (76)

We recognize in (76) the inequality (58) except that the multi-indice (3, 3) is
replaced by γ = (0, 0). Thus, (75) is the zero order version of (58). By the
way, observe that, coming back to (74) with (76) in mind, the above approach
furnishes also a bound of the parabolic type, namely

∫ T b
ε

0
Q̃

(

∇rε(s, ·)
)

ds . 1 . (77)

The control (77) reflects the existence of a priori bounds on suitable weighted
derivatives of the components rjε of rε. At this stage, it is interesting to observe
that the interpretation of (77) in terms of the original variables is not so easy
to achieve. For instance, if we want to control the quantity ∂2u

b2
ε , we can only

pass through the following formula

εµ ∂2u
b2
ε = εκ ∂2r

2
ε + εµ ∂2

12u
a2
ε r3

ε + εµ−τ ∂1u
a2
ε r5

ε

+ ∂2u
a2
ε r4

ε + c−1 ε−κ ua2ε r7
ε

(78)

Since the assumption (H) allows to have µ 6= κ and since, to take an example,
we have εµ−τ∂1u

a2
ε ≃ εµ+ι2−τ−ν , the exploitation of (78) does not exactly

produce a bound on |εκ ∂2u
b2
ε |2 as it is expected in (13). This means implicitly

that going through the procedure of the Section 2.1 modifies completely the
way of performing the parabolic estimates. The usual manner (12) is attractive
but it seems to be not effective.

Remark also that the bounds inside (77) are only partial because they do not
concern the component r0

ε = qbε. Therefore, to obtain higher order estimates
like in (58) it is still necessary to argue as in the hyperbolic context.
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2.2.3 Further estimates.

The purpose of this subsection is to finish the proof of the Proposition 23. It
remains to show (58). To this end, the approach is somewhat classical. It is
inspired from what is done usually in the hyperbolic situations.

� End of the proof (of the Proposition 23). Given a multi-indice β ≤ (3, 3),
apply the derivative εα·β ∂βx with α = (ν, 0) to the system (53). Since the
operator Vε has constant coefficients, it commutes with the action of εα·β ∂βx .
Therefore, this operation yields

B(rε; ∂) (εα·β ∂βxrε) − haε + εα·β ∂βxh
a
ε =

[

Hε; ε
α·β ∂βx

]

rε +
[

Rε; ε
α·β ∂βx

]

rε .

Perform energy estimates on this equation that is multiply it by the vector
εα·β t∂βxrε. The left hand side can be managed exactly as in the preceding
subsection 3.2.2. Then, consider the two commutators. The only thing to check
is that the coefficients (of less order and thus of semilinear type) introduced
when computing the brackets [ ; ] involve coefficients that are conveniently
bounded (with respect to ε ∈ ]0, 1]).

The equation (53) is built with the approximate solution vaε . Examining the
constraint (53) more precisely, we note that its coefficients are obtained by
taking at most three derivatives of vaε (see for instance A1

0ε). They all have the

form εα·β̃ ∂β̃xv
aj
ε with β̃ ≤ (3, 3). Applying again εα·β ∂βx with β ≤ (3, 3) yields

coefficients of the type εα·(β+β̃) ∂β+β̃
x vajε with β + β̃ ≤ (6, 6). The gap of three

between the choice of (6, 6) in the Definition 11 and the selection of (3, 3) in
the Proposition 23 comes from this specificity. Looking at (20), (22) and (24),
for j ∈ {0, 1, 2}, we can deduce the following continuous inclusions

(

εα·(β+β̃) ∂β+β̃
x v̆ajε

)

ε
∈ O(ν,0),(6,6)−β−β̃ →֒ L∞ , β + β̃ ≤ (6, 6) . (79)

Moreover, considering the components q̆aε , ŭ
a1
ε and ŭa2ε which are extracted

from vaε , we can also apply the derivative εα·β̆ ∂β̆x with β̆ ≤ (5, 5) to (21), (23)
and (25) in order to obtain controls which are complementary to (79). The
informations thus obtained are the basic tool in order to get the adequate
L∞-bounds on the coefficients.

In fact, the discussion in the subsection 2.2.2 exploited in a very rough way
the informations contained in (20), · · · , (25). In particular, the Lemmas 27, 28
and 29 are far to be optimal. It is possible to derive the same type of estimates
with εα·β ∂βxA

∗
⋆ and β ≤ (3, 3) in place of A∗

⋆.

Of course, the above arguments are only indications of proof. They point out
the main reasons why it works and their implementation leads directly to
(58). We will be satisfied with them and, for the sake of brevity, we will not
go further into the details needed to verify (58). �
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At this stage, we have obtained 1 . T bε and the Theorem 13 is established. It
assures for all ε ∈ ]0, ε0] the existence on [0, T ] × R

2 with T ∈ R
∗
+ satisfying

T ≤ T bε of an exact solution vε associated with the initial data vaε(0, ·). It must
be completed by a result measuring how far vε(t, ·) is from the approximate
solution vaε(t, ·). This is precisely the aim of the Theorem 14.

PROOF (of the Theorem 14). The difference between the exact solution
vε(t, ·) and the approximate solution vaε(t, ·) is given by εn rbε(t, ·). Thus, the
matter is to evaluate the L2-norm of εn rbε(t, ·). To this end, it is necessary to
come back to the procedure of the Section 2. Introduce the solution operators
Sbε and Sε which to the source terms faε and haε associate the solutions rbε and rε
of respectively (36) and (38). Our approach is based on the following diagram

(80)

haε
Sε // rε

Φε

��
faε

Υε

OO

Sb
ε

// rbε

⇐⇒ rbε = Sbε(faε ) = Φε ◦ Sε ◦ Υε(f
a
ε ) .

The main idea is to encode all singularities inside the application Φε while the
flow corresponding to the action of Sε is stable in the space Hε,t

α,γ. Taking into
account (50), (75) and the inequality just below (73), we can obtain that, for
all t ∈ [0, T ], we have

|rbε(t, ·)|2 .(50) C ε−̟ |Sε ◦ Υε(f
a
ε )(t, ·)|2

.(75) C ε−̟
∫ t

0
|Υε(f

a
ε )(s, ·)|2 ds (81)

.(73) C ε−̟
∫ t

0
|faε (s, ·)|2 ds .

Now, it suffices to multiply (81) by εn to recover (33). �

Of course, the lost ε−̟ in (81) is due to the method which we have followed. It
is not sure to be effective. However, in the current context, the optimal control
comparing the left and right hand side of (81) requires in all likelihood a lost
of negative powers of ε.

Another aspect which can be developed is the study of the dependence of the
solution vε on variations of the initial data. To this end, select a family (ϕbε)ε
satisfying the following L∞ and L2 bounds

ϕb ∈ O(ν,0),(6,6)(R
2; R3) , sup

{

|||ϕbε |||ε,0(ν,0),(6,6) ; ε ∈ ]0, 1]
}

< ∞ . (82)

Then, consider the new expression

ṽaε(t, x) := vaε(t, x) + εm ϕbε(x) , ϕbε = t(ϕb0ε , ϕ
b1
ε , ϕ

b2
ε ) , m ≥ 4 ν .
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Obviously, for m ≫ 4 ν large enough, the oscillation (ṽaε)ε is still compatible
with (4). Applying the Theorem 13, the oscillating Cauchy problem

N (ṽε; ∂) ṽε = 0 , ṽε(0, ·) ≡ ṽaε(0, ·) (83)

is well-posed on [0, T̃ ] with T̃ ∈ R
∗
+. Both expressions vε and ṽε are defined

on [0, T̆ ] with T̆ := min(T, T̃ ) ∈ R
∗
+. Given t ∈ ]0, T̆ ], it is interesting to

find estimates (as precise as possible) measuring the size in L2(R2; R3) of the
difference (ṽε − vε)(t, ·) in function of (ṽε − vε)(0, ·) ≡ εm ϕbε(·). To this end,
a natural method is to pass through the diagram (80). Introduce

ϕε = (ϕ0
ε, · · · , ϕ8

ε) := (ϕb0ε , ϕ
b1
ε , ε

µ−κ ϕb2ε , 0, · · · , 0) , ε ∈ ]0, 1] .

This function ϕε is well-prepared (in the sense of the Definition 21). Apply
the Lemma 22 to see that the solution r̃ε of the Cauchy problem

B(r̃ε; ∂) r̃ε = 0 , r̃ε(0, ·) = εm−4 ν ϕε

is such that Φε(r̃ε) is subjected on [0, T̆ ] to (36). Define v̆ε := vaε + ε4 ν Φε(r̃ε).
With this convention, in view of (49), we have

v̆ε(0, ·) = vaε(0, ·) + ε4 ν Φε(ε
m−4 ν ϕε) = vaε(0, ·) + εm ϕbε(·) = ṽaε(0, ·) .

Moreover, by construction, the function v̆ε(t, ·) satisfies (4). Therefore, the
expression v̆ε(t, ·) coincides with the solution ṽε of (83). On the other hand,
since Φε is a linear application, we find

|(ṽε − vε)(t, ·)|2 = ε4 ν |[Φε(r̃ε) − Φε(rε)](t, ·)|2 = ε4 ν |Φε(r̃ε − rε)(t, ·)|2
.(50) ε

4 ν−̟ |(r̃ε − rε)(t, ·)|2 .

We have seen that the solution of (53) depends in L2 on the source term
according to the usual sense. The same can be said about the L2- dependence
on the initial data. The solution operator Sε is (uniformly) well-posed in L2.
To verify this assertion, it suffices to incorporate the initial data at the level
of the inequality (74). It follows that

|(ṽε − vε)(t, ·)|2 . ε4 ν−̟ |(r̃ε − rε)(0, ·)|2 . εm−̟ |ϕε|2
. εm−̟ |ϕbε|2 = ε−̟ |(ṽε − vε)(0, ·)|2 .

We recover here some L2-control similar to (33). To get higher order Sobolev
estimates, it suffices to replace the L2-framework by the Hε,t

(ν,0),(3,3)-one which
is compatible with all the preceding operations. We can assert that

|||ṽε − vε|||ε,t(ν,0),(6,6) . |||ṽε − vε|||ε,0(ν,0),(6,6) , ∀ t ∈ [0, T̆ ] .
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3 Appendix.

The purpose of the next subsection 3.1 is to extend one’s knowledge of the
functional algebra Oζ,υ

α,γ and also to produce the Lemma 32 which has played
a crucial role in the chapter 2.1.2, at the level of (52). On the other hand, in
the subsection 3.2, the aim is to explain the interest of the Theorems 13 and
14. These statements are essential from the perspective of deriving justified
models for the evolution of turbulent flows.

3.1 Oscillations with a ζ-vanishing υ-rescaled L1
loc-density.

Let α ∈ N
2. Define the change of scales (Sεαfε)(ε, x) := fε(ε

α1 x1, ε
α2 x2). The

condition f ∈ Oα,γ(R
2; RN) which is introduced in the Definition 1 can also

be characterized by the restriction

sup
{

‖ Sεαfε ‖W γ,∞(R2;RN ) ; ε ∈ ]0, 1]
}

≡‖ f ‖α,γ < ∞ (84)

where W γ,∞ is the usual Sobolev space

W γ,∞(R2; RN) :=
{

f ; ∂βxf ∈ L∞(R2; RN) for all β ∈ N
2 with β ≤ γ

}

equipped with the usual norm. Obviously, we have

f ∈ Oα,γ ⇐⇒ (εα·γ̃ ∂γ̃xfε)ε ∈ Oα,γ−γ̃ , ∀ γ̃ ∈ N
2 with γ̃ ≤ γ . (85)

Retain also the following characterization

Oα,(γ1+1,γ2) ≡ Oα,(0,γ2) ∩
{

f ; (εα1 ∂1fε)ε ∈ Oα,γ

}

. (86)

The space Oα,γ is a subalgebra of L∞(]0, 1]×R
2; RN) with continuous injection

‖ f ‖L∞(]0,1]×R2;RN ) ≤‖ f ‖α,γ , ∀ f ∈ Oα,γ . (87)

It is stable under composition by smooth functions

f ∈ Oα,γ ⇐⇒ F ◦ f ∈ Oα,γ , ∀F ∈ C∞(RN ; R) . (88)

Now, we can come back on the notion which is introduced in the Definition 3,
that is the notion of oscillations having a ζ-vanishing υ-rescaled L1

loc-density .

3.1.1 General features of the space Oζ,υ
α,γ.

We clearly have O0,υ
α,γ ≡ Oα,γ for all υ ∈ R+. Thus, the restriction f ∈ Oζ,υ

α,γ is
pertinent only if ζ ∈ R

∗
+. Given f ∈ Oα,γ, the existence of some ζ ∈ R

∗
+ such

that f ∈ Oζ,υ
α,γ is not at all guaranteed.
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Example 31 For instance, if the family (fε)ε ∈ Oα,γ is really an oscillation
of large amplitude in the sense that

∃ c ∈ R
∗
+ ; ∀ ε ∈ ]0, 1] , ∃xε ∈ R

2 ; |fε(xε)| > c (89)

we can assert that

∀ υ ∈ [α1,+∞[ ; 6 ∃ ζ ∈ R
∗
+ ; f ∈ Oζ,υ

α,γ . (90)

In the case (89), the constraint f ∈ Oζ,υ
α,γ can be expected with ζ > 0 only if

υ < α1. Then, whatever υ ∈ [0, α1[ is, we always have ζ ≤ α1 − υ.

Given f ∈ Oα,γ, the number γ1 plays no part in the condition f ∈ Oζ,υ
α,γ which

does not provide new informations on the local regularity of f but instead
measures the local repartition of the singularities of f . The set Oζ,υ

α,γ is adapted
to take into account the superposition or the overlapping of oscillations. It is
advantageous to select ζ and υ as large as possible. Indeed, we have

Oζ′,υ′

α,γ ⊂ Oζ,υ
α,γ , ∀ (ζ ′, υ′) ∈ (R+)2 with ζ ′ ≥ ζ and υ′ ≥ υ . (91)

Retain that

f ∈ Oζ,υ
α,γ =⇒ (εα2 j ∂j2fε)ε ∈ Oζ,υ

α,(γ1,γ2−j)
, ∀ j ∈ {0, · · · , γ2} . (92)

Using Leibniz formula, we can check that the subset Oζ,υ
α,γ ⊂ Oα,γ is an ideal

of functions with

∃C ∈ R
∗
+ ; ‖ f g ‖ζ,υα,γ ≤ C min

(

‖ f ‖α,γ ‖ g ‖ζ,υα,γ ; ‖ g ‖α,γ ‖ f ‖ζ,υα,γ
)

.

Applying the Faà di Bruno’s formula, we can further see that Oζ,υ
α,γ is stable

under composition by smooth functions

f ∈ Oζ,υ
α,γ =⇒ F ◦ f ∈ Oζ,υ

α,γ , ∀F ∈ C∞(RN ; R) . (93)

3.1.2 Comments on the condition (24).

The Theorem 13 is a result of existence of solutions vε to (27) on a time
interval [0, T ] with T ∈ R

∗
+. The real information is contained in the fact that

T does not depend on ε ∈ ]0, 1]. Once T ∈ R
∗
+ (and therefore the size of x)

is fixed, to seek the maximal frequencies of the oscillations contained in the
family (vaε)ε, that is to adjust the multi-indice α in an optimal way as in (6),
inherits a special meaning.

From now on, when verifying (24), we take ι2 = κ (to adjust the size of ŭa2ε )
as it is done in the Example 11. The same remark as above can be formulated
concerning the restriction (ŭa2ε )ε ∈ Oζ,σ−ζ

(ν,0),(6,6). Once T ∈ R
∗
+ is fixed, to measure

the density of the oscillations contained in (ŭa2ε )ε makes sense.
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Now, consider the requirements in the paragraph iii) of the Definition 11.
In view of the property (91), the condition (24) is the least restrictive when
ζ = τ − κ and σ = τ − κ+ µ+ 1 (recall that ι2 = κ). We must verify that

∃ ζ ∈ [τ − κ, τ − κ+ µ+ 1] ; (ŭa2ε )ε ∈ Oζ,τ−κ+µ+1−ζ
(ν,0),(6,6) . (94)

Since there is no obvious hierarchy between the sets Oζ,σ−ζ
(ν,0),(6,6) and Oζ′,σ−ζ′

(ν,0),(6,6)

when ζ < ζ ′, the constraint (94) can no more be reduced. The best is to first
try to check the extreme cases ζ = τ −κ and ζ = τ −κ+µ+1. Then, if these
two choices do not work, the only possibility is to test (94) for all other values
of the parameter ζ ∈ [τ − κ, τ − κ+ µ+ 1].

In any case, once (94) is verified for some ζ ≥ τ − κ, we have better select
such a ζ ∈ [τ − κ, ν] as large as possible. Indeed, the number ζ does control
(through the condition τ ≤ ζ+κ) the smallness of the part ε2 τ ∂2

22u
1 inside P1

ε .
Therefore, the result 13 is all the more strong that ζ is large. This prediction
is coherent with the intuition. Recall that ζ measures somehow the scarcity of
the oscillations. When ζ is large, there is little oscillations, the perturbations
are less disordered and the range of the Theorem 13 is logically improved.

Of course, whatever the number ζ is, when ι2 < ν, the regime is strong (or
supercritical) according to the Definition 8. Thus, differentiating between the
values of ζ is a refinement in the analysis that allows to distinguish among
many different supercritical (approximate) solutions which, in some way, are
not similarly qualified when considering the problem of stability.

From this point of view, even if the context in [5] (that is the terminologies,
the equations and the tools) is different, it is interesting to draw here a parallel
with this probabilistic approach. Indeed, the article [5] claims that, selecting at
random a supercritical initial data, the corresponding life span can be better
than what is predicted in general for such data. In the current oscillating
framework, the number ζ appears as a suitable quantitative criterion making
distinctions between such situations (which turn out to be quite various).

3.1.3 A key lemma.

In this paragraph 3.1.3, we work with γ = (6, 6). The assumption f ∈ Oζ,σ−ζ
(ν,0),γ

can be exploited to interpret the family (fε)ε otherwise, as described in the
statement 32 below. It is by this way that it occurs in the subsection 2.1.2.

Lemma 32 Let (α, ζ, σ) ∈ N
2 × R

2
+ with ζ ≤ σ ≤ α1. Select some function

f ∈ Oζ,σ−ζ
α,γ (R2; R). Then, for all (j, k) ∈ {0, · · · , γ2} ×N, it is possible to find

two functions gj,k ∈ Oα,(γ1+1,γ2−j) and hj,k ∈ Oα,(γ1+1,γ2−j) such that

(εα2 j ∂j2fε)(x)
k = εζ gj,kε (x) + εσ (∂1h

j,k
ε )(x) , ∀ (ε, x) ∈ ]0, 1] × R

2 . (95)
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PROOF (of the Lemma 32). Let f ∈ Oζ,σ−ζ
α,γ (R2; R) with (α, ζ, σ) as in the

Lemma 32. For (j, k) ∈ {0, · · · , γ2} × N, introduce the function

gj,kε (x) := ε− ζ
∫ εζ−σ x1+1

εζ−σ x1

(εα2 j ∂j2fε)(ε
σ−ζ y, x2)

k dy . (96)

Let l ∈ {0, · · · , γ2 − j}. Using first (92), then (93) with F (z) = zk and again
(92) with this time j = l, we can obtain

(f j,k,lε )ε ∈ Oζ,σ−ζ
α,(γ1,γ2−j−l)

, f j,k,lε := εα2 l ∂l2
[

(εα2 j ∂j2fε)
k
]

. (97)

By construction, we have

εα2 l ∂l2g
j,k
ε (x) := ε− ζ

∫ εζ−σ x1+1

εζ−σ x1

f j,k,lε (εσ−ζ y, x2) dy

Combining this identity with (97), we can see that

‖ εα2 l ∂l2g
j,k
ε ‖L∞ ≤‖ f j,k,l ‖ζ,σ−ζα,(γ1,γ2−j−l)

< ∞ , ∀ l ∈ {0, · · · , γ2 − j} .

In other words, we have gj,k ∈ Oα,(0,γ2−j). On the other hand, computing the
derivative of (96) with respect to x1, we can get

εα1 ∂1g
j,k
ε (x) = εα1−σ (εα2 j ∂j2fε)(x1 + εσ−ζ , x2)

k − εα1−σ (εα2 j ∂j2fε)(x)
k .

Exploiting again the informations (92) and (93) at the level of this identity,
we can easily deduce that (εα1 ∂1g

j,k
ε )ε ∈ Oα,(γ1,γ2−j). Recalling (86), the two

preceding regularity properties imply that gj,k ∈ Oα,(γ1+1,γ2−j), as expected.
Now, to complete the proof, it remains to get the identity (95) with a function
hj,kε having the adequate regularity. The choice of gj,kε has already been done.
We decide to seek hj,kε in the form

hj,kε (x) = Hj,k
ε (εζ−σ x1, x2) , Hj,k

ε (z, x2) ∈ C1(R2; R) .

With this convention, we have

∂zH
j,k
ε (z, x2) = εσ−ζ ∂1h

j,k
ε (εσ−ζ z, x2) .

Thus, in order to guarantee the relation (95), it suffices to take

Hj,k
ε (z, x2) := ε−ζ

∫ z

0
(εα2 j∂j2fε)(ε

σ−ζ y, x2)
k dy −

∫ z

0
gj,kε (εσ−ζ y, x2) dy .

At this stage, the identity (95) is established. It is equivalent to

εα1 ∂1h
j,k
ε (x) = εα1−σ (εα2 j ∂j2fε)(x)

k − εζ+α1−σ gj,kε (x) . (98)

The preceding discussion and the implications (85) and (88) give rise to

(εα2 j ∂j2fε)
k ∈ Oα,(γ1,γ2−j) , (gj,kε )ε ∈ Oα,(γ1+1,γ2−j) ⊂ Oα,(γ1,γ2−j) .
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Since σ ≤ α1, in view of (98), we are now sure that

(εα1 ∂1h
j,k
ε )ε ∈ Oα,(γ1,γ2−j) . (99)

Let l ∈ {0, · · · , γ2 − j}. We clearly have

‖ εα2 l ∂l2h
j,k
ε ‖L∞(R2;R) = ‖ εα2 l ∂l2H

j,k
ε ‖L∞(R2;R) .

To estimate this quantity, we deal with the right hand side. We have

εα2 l ∂l2H
j,k
ε (z, x2) = ε−ζ

∫ z

0
f j,k,lε (εσ−ζ y, x2) dy −

∫ z

0
gj,k,lε (εσ−ζ y, x2) dy

with

gj,k,lε (x) := ε−ζ
∫ εζ−σ x1+1

εζ−σ x1

f j,k,lε (εσ−ζ y, x2) dy .

To go further, we need some formula. Given k ∈ L∞(R; R), recall that

∫ z

0
k(y) dy −

∫ z

0

(∫ y+1

y
k(s) ds

)

dy

=
∫ 1

0
(1 − y) k(y) dy −

∫ z+1

z
(z + 1 − y) k(y) dy .

Apply this with k(y) = f j,k,lε (εσ−ζ y, x2) to find

εα2 l ∂l2H
j,k
ε (z, x2) = ε−ζ

∫ 1

0
(1 − y) f j,k,lε (εσ−ζ y, x2) dy

− ε−ζ
∫ z+1

z
(z + 1 − y) f j,k,lε (εσ−ζ y, x2) dy .

Since we have
(f j,k,lε )ε ∈ Oζ,σ−ζ

α,(γ1,γ2−j−l)
⊂ Oζ,σ−ζ

α,(0,0) ,

it follows that

‖ εα2 l ∂l2h
j,k
ε ‖L∞(R2;R) ≤ 2 ‖ f j,k,l ‖ζ,σ−ζα,(0,0)< ∞ , ∀ l ∈ {0, · · · , γ2 − j} .

In other words (hj,kε )ε ∈ Oα,(0,γ2−j). Finally, combining this with (99) and (86),
we recover the last condition (hj,kε )ε ∈ Oα,(γ1+1,γ2−j). �

3.1.4 On the converse of the Lemma 32.

At this stage, the reader can wonder if elements f ∈ Oζ,σ−ζ
α,γ can be obtained

just by selecting families g0,1(x) and h0,1(x) in the space Oα,(γ1+1,γ2−j) and then
by extracting the function fε(x) according to the formula (95). In fact, some
hypothesis of the type f ∈ Oζ,υ

α,γ is indeed issued from decompositions like in
(95) except that, only for reasons of regularity and positivity, it is necessary
to replace the L1-framework by the L2-one. For the sake of completeness, we
give now a precise sense to this assertion.
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Lemma 33 Let (α, ζ, σ) ∈ N
2 × R

2
+ with 2 ζ ≤ σ ≤ α1. Select a function

f ∈ Oα,γ(R
2; R). Then, the two following statements are equivalent :

(i) For all j ∈ {0, · · · , γ2}, there exists two functions gj ∈ Oα,(γ1+1,γ2−j) and
hj ∈ Oα,(γ1+1,γ2−j) such that

(εα2 j ∂j2fε)(x)
2 = ε2 ζ gjε(x) + εσ (∂1h

j
ε)(x) , ∀ (ε, x) ∈ ]0, 1] × R

2 .

(ii) The application f satisfies

sup
(ε,x,j)∈ ]0,1]×R2×{0,··· ,γ2}

ε−ζ
(∫ x1+1

x1

(εα2 j ∂j2fε)(ε
σ−2 ζ y, x2)

2 dy
)1/2

< ∞ .

PROOF (of the Lemma 33).

• Suppose the property (i). Compute

ε−2 ζ
∫ x1+1

x1

(εα2 j ∂j2fε)(ε
σ−2 ζ y, x2)

2 dy =
∫ x1+1

x1

gjε(ε
σ−2 ζ y, x2) dy

+hjε(ε
σ−2 ζ x1 + εσ−2 ζ , x2) − hjε(ε

σ−2 ζ x1, x2) .

≤ ‖ gj ‖α,(γ1+1,γ2−j) + 2 ‖ hj ‖α,(γ1+1,γ2−j)< ∞ .

The right hand side of this inequality does not depend on ε ∈ ]0, 1]. Taking
the square root, we get (ii).

• Suppose this time the property (ii). Using the Leibniz rule in order to
compute the quantity (εα2 l ∂l2)[(ε

α2 j ∂j2fε)
2], the Cauchy-Schwarz inequality

and the assumption (ii), we can deduce that

(

(εα2 j ∂j2fε)
2
)

ε
∈ O2 ζ,σ−2 ζ

α,(γ1,γ2−j)
.

Then, it suffices to apply the Lemma 32 in the case (k, j) = (0, 0) with 2 ζ
and (εα2 j ∂j2fε)

2 in place of respectively ζ and fε in order to recover (i). �

3.2 About supercritical WKB analysis.

In the introduction (subsection 1.2.3) the notion of a compatible oscillation is
illustrated by the study of (veψε )ε : see the Example 12. The structure of the
oscillation (veψε )ε is directly inspired from the one of the simple wave (veε)ε. It
contains nothing more. In particular, it does not reveal new phenomena about
wave interactions. Now, the reader can wonder if more elaborate constructions
(showing this time turbulent features) are possible. From this point of view,
two main complementary research fields can be explored.
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3.2.1 About monophase situations.

The first direction of investigation consists in replacing (vaψε )ε by a complete
expansion which involves only one phase (which may be non linear). This
approach amounts to seek vaε in the form

vaε(t, x) =
∞
∑

j=0

εj Vj
(

t, x,
ϕε(t, x)

εν

)

. (100)

In the formula (100), the phase may as well depend on ε and the custom is to
take, for all (j, ε) ∈ N× ]0, 1], the following regularities

Vj ∈ C∞
0 ([0, T ] × R

2 × T; R3) , ϕε ∈ C∞
0 ([0, T ] × R

2; R) .

This subject is developed in the recent articles [7]. The aim [7b] is to exhibit
the relations linking the phase ϕε together with the profiles Vj. It is also [7f]
to classify (according to their geometrical properties) all the possible choices
for ϕε and the Vj. It yields interesting applications [7d].

3.2.2 About multiphase situations.

Another possibility is to try to extend the formula (100) into a more general
expansion like

vaε(t, x) =
∞
∑

j=0

εj Vj
(

t, x,
x1

εν
,
x2

εβ

)

, β ∈ ]0, 1] (101)

which is plugged in (4). However, in addition to the usual difficulties induced in
non linear geometric optics by such a multiphase context [13b], this approach
raises (in the supercritical case) at least two more specific difficulties (which
are already present in the monophase framework [7b]).

First, the associated formal computations encounter rapidly non solved closure
problems. Secondly, a hierarchy of profiles such as in (101) is not at all sure to
make sense. Taking into account these two objections, it seems better for the
moment to drop (101) in order to investigate a less demanding task. Indeed,
as a preliminary attempt, we should first establish a multi-scale analysis in
the proximity of veε. It is this question that is tackled below.

The second research field consider multiphase situations which are deduced
from (veε)ε through a perturbative method. The purpose is to touch what occurs
when the simple wave veε is modified by the addition of waves oscillating at
various frequencies in different directions. Typically, at the time t = 0, we can
modify veε according to

vaε(0, ·) = veε(0, ·) + εm rbε(·) , rbε = t(rb0ε , r
b1
ε , r

b2
ε ) . (102)
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The assertion (13) intends to point out the oscillations which are likely to
propagate. Thus, to be coherent with the quantities appearing in (13), we can
for instance decide to impose

rb0ε (x) = 0 , rb1ε (x) = R1
(

x,
x2

ετ

)

, rb2ε (x) = R2
(

x,
x2

εκ

)

(103)

with Rk ∈ C∞(R2×T; R) for k ∈ {1, 2}. When m≫ 4 ν and when the function
rbε is subjected to (82), the Theorem 13 guarantees the existence on [0, T ] of
a solution (vε)ε to the oscillating Cauchy problem (27) with the functions
vε(0, ·) adjusted as in (102) and (103). However, this result does not provide
precise informations on the asymptotic behavior of (vε)ε when ε goes to 0.

Even if this problem is (form≫ 4 ν) mainly of a linear nature, it is not obvious
to infer the structure of the oscillations which are issued from initial data such
as above. At all events, this requires to combine theO(1) monophase oscillation
veε with the effects induced by the propagation of the small multiphase O(εm)
oscillations contained in the perturbation εm rbε.

Small modifications as those made in (102) are able to induce complex phe-
nomena. Now, the strategy followed in the chapter 2 proves helpful in observing
them. Indeed, since we are here satisfied with staying in the proximity of veε,
we can transfer all the WKB analysis at the level of the system (53) (which
is associated with veε). As soon as the discussion concerning (53) is related
to well-prepared data, it is always possible to come back to the system (4)
through the explicit transformation Φε (which is related to veε).

The advantage gained through this manipulation can be understood easily. By
applying the blow-up Φε, a part of the singularities is removed. It remains the
equation (53) which is known to be stable (as it was established in the chap-
ter 3.2) and therefore more suitable to study asymptotics. According to this
principle, all questions about supercritical nonlinear geometric optics should
be settled at the level of (53) rather than (4).

The multiphase WKB analysis of the equation (53) is not standard if only
because the system (53) involves forcing oscillating terms like ve2ε . It is a new
and delicate matter especially when the purpose is to adjust m and the various
oscillations in an optimal way to capture as much as possible effects. It needs
a specific treatment in order to incorporate interesting examples of compatible
oscillations (vaε)ε. The discussion should be illustrated by the selection of a
significant set of strong oscillations chosen in the algebra Oζ,υ

α,γ and involving
the interaction of many scales. Such a program is substantial enough to furnish
a full-fledged article. It does not fall under the scope of the present contribution
which is rather focussed on stability issues. However, to motivate the somewhat
academic approach of this paper, we think it is necessary to do a brief incursion
in the discussion.
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We are satisfied here with alluding only to a few linear mechanisms underlying
the study of (53). The equations in (48) are kept unchanged because they
are linear. The simplifications we have in mind concern only (51). All the
contributions listed in the chapter 2 do not play a role (at principal order)
when performing the WKB calculus. Two kinds of reductions can be made
immediately. First, since the function veε does not depend on x2, many terms
disappear in comparison with what is expected in the subsection 2.1. Secondly,
since we only want to focus on linear aspects, we can choose very large numbers
m and ι0 (so that many coefficients can be neglected). Taking into account all
these aspects, the basic equations to consider are























































∂tr
0
ε+ve2ε ∂2r

0
ε = 0 ,

∂tr
1
ε+ 2 ve2ε ∂2r

1
ε + A22

1ε r8
ε + V1

ε r1
ε = 0 ,

∂tr
2
ε+ve2ε ∂2r

2
ε − εµ−κ ve2ε ∂1r

1
ε

− ε2 ν−κ (∂2
11v

e2
ε ) r4

ε + V2
ε r2

ε = 0 ,

∂tr
j
ε+Rj

ε rε + Vjε rε = 0 , j ∈ {3, · · · , 8}

(104)

where ve2ε (·) is given by (16) (say with ι2 = κ). In view of the definition (11)
and the equation (15), for small times t ∈ R+, we have

ve2ε (t, x) ≃ εκ f ζνε(x1) + o(t) = εκ
∑

l∈ϑε

k
(

x1,
x1

εν
,
l

εζ

)

+ o(t) . (105)

Of course, the system (104) is an extremely simplified version of (53) since
all the non linear aspects and most couplings have been erased. It is put
forward here just to draw the attention on the second equation which we
decide to complete with the initial data rb1ε introduced in (103). With (105)
in mind, look at the second line of (104). Taking into account (103) and only
the transport part of the second equation in (104), we should have

rb1ε (t, x) ≃ R1
(

x1, x2 − 2 t εκ f ζνε(x1),
x2

ετ
− 2 t

ετ−κ
f ζνε(x1)

)

.

By the way, note the presence of the (non usual) factor 2. In contrast with
|∂1r

b1
ε (0, ·)| ≃ O(1), the preceding approximation predicts that

|∂1r
b1
ε (t, ·)| ≃ O(ε−ν+κ−τ ) ≫ O(ε−ν) . (106)

Therefore, when κ < τ , this draft of calculus indicates that small scales (even
smaller than εν !) can appear in the direction x1 (concerning the component
rb1ε ). Of course, the picture given in (106) is excessive because the damping
effects (in x1) of the viscosity V1

ε interferes before the creation of scales as
small as what is provided above. But still, the process described above does
occur until the cutoff frequency ε−µ.
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In fact, the multi-scale analysis of (53) relies on a subtle balance between two
main effects. On the one hand, the creation of new (or intermediate) scales
related to the input of energy (which is forced here by the oscillating coefficient
ve2ε of the transport part). On the other hand, the damping influence of the
partial anisotropic viscosity. To understand through a WKB analysis how
these effects can combine at the level of (53), that is at the level of a system
obtained from the Navier-Stokes type equations (4) via a blow-up procedure,
could be the basis of a deterministic theory describing turbulent aspects.
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