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Abstract

To study the problem of the assigned Gauss curvature with conical singularities on
Riemanian manifolds, we consider the Liouville equation with a single Dirac measure
on the two-dimensional sphere. By a stereographic projection, we reduce the problem
to a Liouville equation on the euclidean plane. We prove new multiplicity results
for bounded radial solutions, which improve on earlier results of C.-S. Lin and his
collaborators. Based on numerical computations, we also present various conjectures
on the number of unbounded solutions. Using symmetries, some multiplicity results
for non radial solutions are also stated.
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1 Introduction

In recent years much attention has been devoted to the study of mean field
equations of Liouville type on Riemann surfaces and in the presence of singular
sources. Such an interest has originated from various areas of mathematics
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and physics, starting with the assigned Gauss curvature problem which can
be reduced to analyze the solution set of

∆u+K(x) e2u = 0 in R
2 (1)

for a given function K defined in R2. If u is a solution to (1), then the metric
g = e2u |dx|2 is conformal to the flat metric |dx|2 and such that K is the Gaus-
sian curvature of the new metric g. Equation (1) also appears in the analysis
of gravitating systems, in the statistical mechanics description of the vorticity
in fluid mechanics (see [2,3,4,20,21]) and has been studied more recently in
the context of self-dual gauge field vortices (see [16,35,32]).

The solution set of equation (1) depends very much on the properties of K.
When K is negative, uniqueness results are always available, while for total
positive curvature K, either uniqueness or multiplicity of solutions holds, de-
pending on K. See [24] for various examples. In this paper we will focus on
particular cases of positive functions K.

We are also interested in the problem of the assigned Gauss curvature with
conical singularities (see [34,33,27,14,10]). For a given Riemann surface (M, g),
we aim at determining the range of the parameters λ, ρ ∈ R such that

∆gu+ λ

(

e2u
∫

M e2u dσg
−

1

|M |

)

− 2πρ

(

δP −
1

|M |

)

= f , (2)

is solvable onM , where ∆g is the Laplace-Beltrami operator, dσg is the volume
element corresponding to the metric g, f ∈ C(M) with

∫

M f dσg = 0 and δP
is the Dirac measure with singularity at P ∈ M . In case M has a non-empty
boundary, both Dirichlet or Neumann boundary conditions on ∂M are of
interest for the applications. One could also consider sums of Dirac measures
located at several source points.

In the applications, the simplest situations correspond to the 2-sphere M = S2

and the flat 2-torus M = C/(ξ1Z + ξ2Z), with periodic cell domain generated
by ξ1 and ξ2. Recall that the 2-sphere, with the standard metric induced by
Lebesgue’s measure in R3, has already played a special role in the assigned
curvature problem (see [17,19,18]), while the torus is important since many
vortex-like configurations naturally develop into periodic lattices.

For the sphere, ρ = 0 corresponds to a particular case of the so-called Onsager
vortex problem (see [24,25]). In fact, for closed surfaces and when there is
no singularity (i.e. ∂M = ∅ and ρ = 0), the solvability of (2) is quite well
understood in terms of the topological properties of M . Starting with the
work of Y. Y. Li in [23], subsequently completed by C.-C. Chen and C.-S.
Lin in [5,6], we know that, when ρ = 0, the solutions of (2) are uniformly
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bounded for any fixed λ ∈ R \ 4πN, and the Leray-Schauder degree dλ of
the corresponding Fredholm operator can be explicitly computed: for λ ∈
(4π(m− 1), 4πm), m ∈ N∗,

dλ = 1 if m = 1 , dλ =
(−χ(M) + 1) · · · (−χ(M) +m− 1)

(m− 1)!
if m ≥ 2 ,

where χ(M) is the Euler characteristics of M (see [6,28]). Actually, for the flat
2-torus we have that dλ = 1 also when λ ∈ 4πN, and so (2) has a solution for
every λ ∈ R, if ρ = 0 (see [6]). For the standard 2-sphere, we have that dλ = 0
for all λ > 8π. But, by a more precise topological argument (see [13]), it can
be shown that in this case equation (2) admits a solution for any λ ∈ R\4πN,
if ρ = 0, and also some multiplicity results can be proved.

The situation is much more complex in presence of a Dirac measure. In fact,
an expression for the Leray-Schauder degree, given by dλ = −χ(M) + 2, is
available only when ρ ≥ 1 and λ ∈ (4π, 8π) (see [7]). Hence, for S2, such a
degree formula yields no information about the solvability of (2), and indeed
this issue turns out to be very delicate (see [34,33]). A similarly delicate situ-
ation occurs for the flat 2-torus when λ = 4π and ρ = 2. Consider for instance
the equation

∆gu+ 4π

(

e2u
∫

M e2u dσg
− δP

)

= 0 in M = C/(ξ1Z + ξ2Z) ,

with P = 0. Then, C.-S. Lin and C. L. Wang have shown in [26] that there is
no solution in the case of a rectangular lattice (i.e. ξ1 = a, ξ2 = i b, a, b > 0),
while there is a solution for a rhombus lattice (i.e. ξ1 = a, ξ2 = a eiπ/3, a > 0).

As usual, the cause for such surprising existence or nonexistence situations,
there is a lack of compactness for the solution set. It can explained by looking
at the singular Liouville equation

∆u+ e2u = 2πρ δz0 in R
2 . (3)

The solutions of (3) are described using complex notations (with R2 ≃ C), by
means of the Liouville formula:

u(z) =
1

2
log

(

4 |f ′(z)|2

(1 + |f(z)|2)2

)

,

where f is a meromorphic function. To account for the singularity at z0, we
must require that it corresponds to a pole of f , or a zero of f ′, or a branch
point of f , with the appropriate order. In particular, for all solutions u of (3)
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that satisfy e2u ∈ L1(R2), there holds:
∫

R2

e2u dx = 4π (1 + ρ) ,

(see [8,9,29]). This explains the role of 4π for the regular problem, ρ = 0.

One of the motivations of this paper is to connect the solvability of (2) to some
weighted Liouville-type equations in R2 which generalize (3). To see how this
class of equations could arise, let us first focus on problem (2) over the square
2-torus. In this case we know that a solution exists if we replace the Dirac
measure by a smooth function (see [6]). Let Ω = (−1, 1)2 ⊂ R2 and suppose
that the source point P coincides with the origin 0 ∈ Ω. For given λ > 0 and
ρ > −1, denote by uε the solution of















∆uε + λ

(

e2uε

∫

Ω e
2uε dx

−
1

|Ω|

)

= 2πρ

(

ε2

π (ε2 + |x|2)2
−

cε
|Ω|

)

in Ω ,

uε doubly periodic on ∂Ω ,

(4)

where cε :=
∫

Ω
ε2

π (ε2+|x|2)2
dx converges to 1 as ε → 0. By doubly periodic on

∂Ω, we mean u(x + 2e) = u(x) for any x ∈ ∂Ω, with e = (1, 0) or e = (0, 1).
To prove the existence of a solution of (2), it is natural to investigate under
which conditions on λ and ρ we can pass to the limit in (4), along with a
subsequence of ε → 0. In other words, whenever possible, we need to establish
a priori estimates for uε in suitable norms. To this end, denote by uε,0 the
unique solution to the problem















∆u = 2πρ

(

ε2

π (ε2 + |x|2)2
−

cε
|Ω|

)

in Ω ,

u doubly periodic on ∂Ω ,
∫

Ω u dx = 0 ,

which takes the form uε,0(x) = ρ
2

log(ε2 + |x|2) + ψε(x), for some suitable
function ψε, which is uniformly bounded in C2,α-norm, with respect to ε > 0.
Then uε = vε + uε,0 is a solution of (4) if and only if vε satisfies:















∆vε + λ

(

e2(uε,0+vε)

∫

Ω e
2(uε,0+vε) dx

−
1

|Ω|

)

= 0 in Ω ,

vε doubly periodic on ∂Ω .

The function euε,0 is bounded from above and from below away from zero in
C0

loc(Ω \ {0}), uniformly in ε ∈ (0, 1). Therefore, by well known estimates
based on blow-up analysis (see, e.g., [23,5,6,1,31]), we know that for λ 6∈ 4πN,
then uε is bounded uniformly in C2,α

loc(Ω \ {0}) with respect to ε > 0.
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Next, we have to investigate what may happen in a neighborhood of the origin
0 ∈ Ω. To this purpose, define wε := vε + 1

2
log λ − 1

2
log (

∫

Ω e
2uε dx) and

Wε := e2ψε in Br(0) ⊂ Ω, for r > 0 small enough. There holds:



























−∆wε = (ε2 + |x|2)ρWε(x) e
2wε − λ

|Ω|
in Br(0) ,

∫

Br(0)

(ε2 + |x|2)ρWε(x) e
2wε dx = λ

∫

Br(0) e
2uε dx

∫

Ω e
2uε dx

≤ λ .

If wε was not uniformly bounded in Br(0), then we could find a sequence
(εn)n∈N with limn→∞ εn = 0, and a sequence (xn)n∈N of points in Br(0) with
limn→∞ xn = 0 such that

wεn
(xn) = max

B̄r(0)
wεn

−→ +∞ as n→ ∞ . (5)

For any n ∈ N, define sn := max {εn, |xn|, exp(−wεn (xn)
2(1+ρ)

)} and observe that

lim
n→∞

sn = 0. Let Rn := Wεn
(xn + sn x), Bn := Br/sn

(0). For n large, Un(x) :=

wεn
(xn + sn x) + 2 (1 + ρ) log sn satisfies











































−∆Un =
(

∣

∣

∣

εn

sn

∣

∣

∣

2
+
∣

∣

∣

xn

sn
+ x

∣

∣

∣

2
)ρ

Rn e
2Un + o(1) in Bn ,

Un(0) = wεn
(xn) + 2 (1 + ρ) log sn ,

∫

Bn

(

∣

∣

∣

∣

εn
sn

∣

∣

∣

∣

2

+
∣

∣

∣

∣

xn
sn

+ x
∣

∣

∣

∣

2
)ρ

Rn e
2Un dx ≤ λ .

By definition of sn, we know that lim supn→∞ sn exp(wεn(xn)
2(1+ρ)

) ≥ 1. We do not
know whether this limit is finite or not. If

lim sup
n→∞

sn exp

(

wεn
(xn)

2(1 + ρ)

)

<∞ , (6)

using Harnack’s estimates, we can determine a subsequence along which

Un → U∞ in C2,α

loc(R
2) ,

εn
sn

→ ε∞ ∈ [0, 1] ,
xn
sn

→ x∞ ∈ B(0, 1) ⊂ R
2
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and Wεn
(xn + sn x) pointwise converges to a positive constant W∞ > 0. In

addition, U∞ satisfies:











































−∆U∞ = (ε2
∞ + |x∞ + x|2)ρW∞ e2U∞ in R2 ,

U∞(0) = max
R2

U∞ ≥ 0 ,

∫

R2

(ε2
∞ + |x∞ + x|2)ρW∞ e2U∞ dx ≤ λ .

If ε∞ = 0, then by well known classification results (see [9,29]), we know that

W∞

∫

R2

|x∞ + x|2ρ e2U∞ dx = 4π (1 + ρ) .

So, we could rule out the occurrence of (5) in this case by restricting the
problem to λ < 4π (1 + ρ).

Hence, assume that ε∞ > 0. Then by adding a constant to U , scaling and
translating we arrive at the limiting problem:























−∆U = (1 + |x|2)ρ e2U in R
2 , (a)

∫

R2

(1 + |x|2)ρ e2U dx ≤ λ . (b)
(7)

Now, with ε∞ > 0, it is much harder to identify the range of values as-
sumed by

∫

R2(1 + |x|2)ρ e2Udx for all solutions of (7a). It is no longer a single-
ton, but a whole interval contained in (2π (1 + ρ), 4π (1 + ρ)) and containing
(4π max(1, ρ), 4π (1 + ρ)), whose explicit range is still under investigation,
even when we restrict the problem to radially symmetric solutions of (7a), see
[11,24,25]. In this paper, we are going to identify necessary conditions on λ
that allow us to rule out the occurrence of (5) under Condition (6). In other
words, if, for some λ0, there is no solution of (7) for any λ ≤ λ0, then (2) with
M = Ω would have a solution, provided Condition (6) holds.

On the other hand, consider on R2 the solutions of























−∆u = (1 + |x|2)N e2u in R2 ,
∫

R2

(1 + |x|2)N e2u dx = λ .
(8)
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This problem is equivalent to (2). Let Σ : S2 → R2 be the stereographic
projection with respect to the north pole, N := (0, 0, 1). To any solution u
of (8), we can associate

v(y) := u(x) −
1

2
log

(

λ

(1 + |x|2)N+2

)

− log 2 , (9)

for x = Σ(y) and any y ∈ S
2. The function v solves

∆gv + λ
e2v

∫

S2 e2v dσg
=

2π (N + 2)

|S2|
on S

2 \ {N} . (10)

Moreover, if u is a locally bounded solution of (8), according to [11], u(x) ∼
− λ

2π
log |x| as |x| → ∞, which shows that

lim
y∈S2, y→N

v(y)

log |y − N|
=

λ

2π
− (N + 2) ,

Here, by |y−N|, we denote the euclidean distance from y to N in R
3 ⊃ S

2. As
a consequence,

∆gv =
(

λ− 2π (N + 2)
)

δN +O(1)

as y → N. Hence v is a solution of (2) in S2 with ρ = λ
2π

− (N + 2) and f = 0.
Here the parameter ρ is not the same as in (7). Notice that v given by (9) is
such that

∫

S2 e2v dσg = 1. As a special case, if λ = 2π (N +2), we find that v is
a bounded solution of (2) with ρ = 0. Viceversa, if v is a solution of (2) with
f = 0, then

u = v ◦ Σ−1 −
1

2
log





∫

S2

e2v dσg



+ log 2 +
1

2
log

(

λ

(1 + |x|2)N+2

)

is a solution of (8). So, existence and multiplicity of solutions to (8) provide
us with existence and multiplicity of solutions to (2) on the 2-sphere.

From now on, we shall focus on the study of (8), for all positive values of N .
Our main result establishes the existence of many bounded, radial solutions.

Theorem 1 For all k ≥ 2 and N > k(k+1)−2, there are at least 2(k−2)+2
distinct radial solutions of (8) with λ = 2π (N + 2), one of them being the

function u∗N(r) := 1
2

log
(

2(N+2)
(1+r2)N+2

)

with r = |x|.
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To conclude this introduction let us mention that in many papers devoted
to other applications than assigned Gauss curvature problems, the conven-
tion is to consider equation (2) with eu instead of e2u. Necessary adaptations
are straightforward (replace u by 1

2
(u − log 2)) and therefore are left to the

interested reader.

2 Known results

In this section, we collect known existence results and some of the properties
of the bounded solutions to

∆u+ (1 + |x|2)Ne2u = 0 , x ∈ R
2 , and

∫

R2

(1 + |x|2)Ne2u dx <∞ , (11)

where N > 0 is a real parameter which in the applications usually enters as
an integer value. Several papers, mostly by C.-S. Lin et al. [11,24,25], have
dealt with this class of equations. Almost all results are concerned with the
set of radially symmetric solutions of (11), which can be parametrized by a
parameter a ∈ R as follows:























u′′a + u′a
r

+ (1 + r2)Ne2ua = 0 in (0,+∞) ,

ua(0) = a , u′a(0) = 0 ,

∞
∫

0

(1 + r2)Ne2ua r dr < +∞ .
(12)

It is proven in [11,24,25] that, for every a ∈ R, there exists a unique solution ua
of (12), which moreover satisfies

lim
r→∞

(ua(r) + α(a) log r) = β(a) , (13)

where a 7→ α(a) and a 7→ β(a) are two C1(R,R) functions defined by:

α(a) =

∞
∫

0

(1 + r2)Ne2ua r dr and β(a) =

∞
∫

0

(1 + r2)Ne2ua r log r dr .

Moreover it was proved in [11] (also see [25]) that, for any N > 0,

lim
a→−∞

α(a) = 2(N + 1) and lim
a→+∞

α(a) = 2 min{1, N} . (14)
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Pohozaev’s identity applied to (11) shows that α(a) ∈ (2, 2(N + 1)). For
integrability reasons, we also know that α(a) > N + 1, and so

max{2 , N + 1} < α(a) < 2(N + 1) ∀ a ∈ R .

Our problem is to find the solutions of (12) corresponding to a given α, that is























u′′ + u′

r
+ (1 + r2)Ne2u = 0 in (0,+∞) ,

u′(0) = 0 ,

∞
∫

0

(1 + r2)Ne2u r dr = α .
(15)

In [24,25], C.-S. Lin investigates the uniqueness issue for problem (15) by
identifying the values of α for which there is a unique a such that α(a) = α.
He proves in [25] that uniqueness holds for α ∈ (2N, 2(N + 1)) if N > 1 and
for all α ∈ (2, 2(N + 1)) if N ≤ 1. On the other hand, it is easy to verify that
for all N , the function

u∗N(r) :=
1

2
log

(

2(N + 2)

(1 + r2)N+2

)

(16)

is a solution to (12) for a = a∗N := 1
2
log (2(N + 2)), and satisfies α(a∗N) =

N + 2. Since N + 2 < 2N < 2(N + 1) for all N > 2, by continuity of
a 7→ α(a), it appears that there exists at least two different values of a such
that α(a) = α, for any α ∈ (mina∈R α(a), 2N). In other words, for those values
of α there exists at least two radially symmetric solutions of (11) satisfying:

∫

R2

(1 + |x|2)Ne2u dx = 2π α .

Moreover for N = 2, α(a∗2) = 4 = 2N and α′(a∗2) < 0, so the above multiplicity
results also holds true for N = 2. Summarizing, we can state the following
result.

Theorem 2 [11,24,25] Let N be any positive real number.

(i) If N ≤ 1, then the curve a 7→ α(a) is monotone decreasing. Moreover,
there exists a radially symmetric solution u of (15) if and only if α ∈
(2, 2(N + 1)), and such a solution is unique.

(ii) If N > 1, then for all α ∈ (2N, 2(N + 1)), there exists a unique a ∈ R

such that α(a) = α. In other words, for such α, problem (15) is satisfied
by a unique radial solution.
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(iii) If N ≥ 2, then mina∈R α(a) < 2N , and for all α ∈ (mina∈R α(a), 2N),
there exists at least two radial solutions of (15).

Remark. Concerning part (iii) of Theorem 2, by a closer inspection of the
results of [24], actually we know that for N ≥ 2, problem (15) is satisfied by
a unique radial solution also when α = 2N .

An important tool in the proof of the above uniqueness results is the study of
the linearized problem















ϕ′′
a + ϕ′

a

r
+ 2 (1 + r2)Ne2ua ϕa = 0 , r ∈ (0,+∞) ,

ϕa(0) = 1 , ϕ′
a(0) = 0 ,

(17)

and in particular the number of zeroes of the function ϕa when α is in the range
(2N, 2(N + 1)). The number of critical points of a 7→ α(a) is also connected
with the number of zeroes of ϕa in the range (mina∈R α(a), 2N). It is indeed
easy to prove that as r goes to +∞,

ϕa(r) ∼ −α′(a) log r + b′(a) + o(1) , (18)

and hence, that ϕa is a bounded function if and only if a ∈ R is a critical
point of the function α. As a special case, for all N , if mina∈R α(a) is achieved
for some finite a, then ϕa is bounded.

2.1 Non radially symmetric solutions

By (9), to any solution ua of (12), we can associate a function va on S
2, such

that
∫

S2 e2v dσg = 1, which solves (10) for λ = 2π α(a). At level α = N + 2, va
is a bounded solution of (2) (with f = 0, ρ = 0), which is axially symmetric
with respect to the unit vector (0, 0, 1) pointing towards the north pole N

of S2. Since v∗N = va∗
N

is the unique constant solution of (2), if we know the
existence of more than one solution at level α = N+2, then there is an axially
symmetric solution of (10) which is not constant, and that can be thus rotated
in order to be axially symmetric with respect to any vector e ∈ S2 \ {N, S}.
Let us denote by ve such a solution. Applying (9) to ve, we find a solution ue

of (11) which is not radially symmetric. If at level λ = 2π(N + 2) we find k
solutions of (11) different from u∗N , then we get k punctured spheres of non
radially symmetric solutions of (11). Details can be found in [25].
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3 Multiplicity results for radially symmetric solutions

For given N , critical levels of the curve a 7→ α(a) determine the multiplicity
of the radial solutions at a given level. The number of zeros of the solutions
of the linearized problem can change only at critical points of α, see below
Section 3.2. In the special case α = N +2, a bifurcation argument provides us
with a very precise multiplicity result, which is our main result, see Section 3.3.

3.1 A preliminary result

Let (cNk )n−1
k=1 be the ordered sequence of all critical values, counted with mul-

tiplicity, of the curve a 7→ α(a), cN0 := infa∈R α(a) and cNn = 2(N + 1). Denote
by (aNk )n−1

k=1 a sequence of critical points corresponding to (cNk )n−1
k=1 and, for any

k = 1, 2, . . . n− 1, let ǫNk := +2 if aNk is a local minimum, ǫNk := −2 if aNk is a
local maximum, and ǫNk := 0 otherwise. Also let ǫN0 := 2 if infa∈R α(a) is not
achieved, and 0 otherwise. Let χN (α) := 1 if α > 2N and 0 otherwise. The
next proposition links these values with the number of solutions of (15).

Proposition 3 Let N be any positive real number. With the above notations,
for any α > 0, Equation (15) has exactly

∑k
j=0 ǫ

N
j − χ(α) solutions such that

α(a) = α if α ∈ (cNk , c
N
k+1) ∩ (R \ {2N}), for any k = 0, 1,. . .n− 1.

The proof is straightforward and left to the reader. We shall now focus on
the study of the critical points of the curve a 7→ α(a). Our main tool is the
linearization of (12).

3.2 Study of the linearized problem

In order to study the multiplicity of radial solutions for (8), it is convenient
to perform the Emden-Fowler transformation in the linearized equation (17):

t = log r , wa(t) := ϕa(r) .

The equation in (17) is then transformed into

w′′
a(t) + 2 e2t(1 + e2t)Ne2ua(et)wa(t) = 0 , t ∈ (−∞,+∞) . (19)

When a = a∗N , the equation for w∗
N := wa∗

N
reads

w∗
N

′′(t) +
(N + 2)

2 (cosh t)2
w∗
N(t) = 0 , t ∈ (−∞,+∞) . (20)
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With one more change of variables, w(t) = ψ(s), s = tanh t, we find Legendre’s
equation:

d

ds

(

(1 − s2)
dψ

ds

)

+
N + 2

2
ψ = 0

which defines the Legendre polynomial of order k ∈ N∗ if N + 2 = k(k + 1).
Notice that the composition of the two above changes of variables amounts to
write s = r2−1

r2+1
. A very precise spectral analysis made in [22] shows that the

above equation has bounded solutions if and only if there is a positive integer

k such that 1 + 2k =
√

1 + 4(N + 2), that is, if and only if

N(N) :=
−1 +

√

1 + 4(N + 2)

2

is a positive integer. This is solved by N = Nk := k(k + 1) − 2, k ∈ N∗.
Actually, we are interested only in k ≥ 2 since we only deal with N > 0. As
a consequence, a∗N is a critical point of α if and only if N(N) is a positive
integer: N = 4, 10, 18, . . .

For N = Nk > 0, we know explicitly the solutions to (20). They are the
Legendre polynomials, namely, with s = tanh t,

w∗
Nk

(t) ≡ Pk(s) for all integer k ≥ 2 . (21)

Lemma 4 [22] Take N ≥ 1. Then, there exist bounded solutions of (20) if
and only if N(N) is a positive integer. In such a case, ϕa∗

N
has exactly N(N)

zeroes in the interval (−∞,+∞).

For all a ∈ R, ϕa has at least two zeroes in the interval (0,+∞). This ob-
servation is a key step in the uniqueness proofs of [24,25]. Zeroes of ϕa will
also play an important role in multiplicity results. The next observation is a
standard result for linear ordinary differential equations.

Lemma 5 For any N > 0, a0 > 0 and R > 0, if ϕa0 has k zeroes in (0, R)
and ϕa0(R) 6= 0, then there exists an ε > 0 such that ϕa also has exactly k
zeroes in (0, R) for any a ∈ (a0 − ε, a0 + ε).

Proof. If the result were wrong, then we could find some r ∈ (0, R) such that
ϕa0(r) = ϕ′

a0
(r) = 0 and so we would get ϕa0 ≡ 0. �

Corollary 6 For any N ∈ [Nk, Nk+1), k ∈ N, k ≥ 1, solutions to (20) have
exactly k + 1 zeroes in the interval (−∞,+∞).
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Proof. If we normalize all functions w∗
N so that limt→−∞(w∗

N(t), w∗
N
′(t)) =

(1, 0), then by continuity in N the number of zeros changes if and only if w∗
N

is bounded, i.e. if N(N) is a positive integer, by Lemma 4. At N1 = 0, we
have: w∗

0(t) = tanh(t). A careful analysis shows that, as a function of N , the
number of zeroes is continuous from the right and increasing. �

Lemma 7 Take N ≥ 1 and consider a1, a2 ∈ R such that α′(a1) = α′(a1) = 0
and α′(a) 6= 0 if a ∈ (a1, a2). Then, for all a ∈ (a1, a2), the functions ϕa have
the same number of zeroes.

Proof. The proof is based on the same arguments as the proof of Corollary 6.
One has just to replace the continuity in N by the continuity in a. �

Lemma 5 means that when a varies, zeroes may appear or disappear only at
infinity. For a given a, the sign of the function

JN(a) :=

+∞
∫

0

(1 + r2)Ne2uaϕ3
a r dr (22)

governs the dynamics of the zeroes of ϕa at infinity as follows. Denote by
r(a) := max{r > 0 : ϕa(r) = 0} the largest zero of ϕa.

Lemma 8 Let ā > 0 be such that, for ζ = ±1, lima→ā, ζ(a−ā)>0 r(a) = ∞.
Then there exists ε > 0 such that, on (ā − ε, ā) if ζ = −1, on (ā, ā + ε) if
ζ = +1,

dr

da
(a) = −

4

r(a) |ϕ′
a(r(a))|

2

r(a)
∫

0

(1 + r2)N e2ua ϕ3
a r dr

and dr
da
JN(a) < 0 if JN (ā) 6= 0.

Proof. First, we choose ε > 0 small enough so that
∫ r(a)
0 (1+r2)Ne2uaϕ3

a r dr and
JN(a) have the same sign, if JN(ā) 6= 0. Next, we take b > 0, small. Multiplying
the equation satisfied by ϕa and ϕa+b by r ϕa+b and r ϕa respectively, and
integrating by parts in the interval (0, r(a)), we get

2

r(a)
∫

0

(1 + r2)N (e2ua − e2ua+b)ϕa ϕa+b r dr = −r(a)ϕ′
a(r(a))ϕa+b(r(a)) .

By definition of ϕa and using the uniform continuity properties of the functions
ua and ϕa on (0, r(a)), we obtain: ‖ua+b− ua− b ϕa‖L∞(0,r(a)) = o(b) as b → 0,
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(1− e2bϕa) ∼ −2 b ϕa. Since ϕa+b(r(a)) = ϕ′
a(r(a))(r(a+ b))− r(a)) + o(b), we

get, as b → 0,

−4

r(a)
∫

0

(1 + r2)N e2ua ϕ3
a r dr = r(a) |ϕ′

a(r(a))|
2 r(a+ b)) − r(a)

b
+ o(b) .

�

Notice that, with the notations of Lemma 8, ϕā is a bounded function. As a
consequence, we have the following result.

Corollary 9 Let ã be a critical point of α. There exists ε > 0, small enough,
such that the following properties hold.

(i) If JN(ã) > 0 and if, for any a ∈ (ã−ε, ã), all functions ϕa are unbounded
and have k zeroes in (0,+∞), then ϕã is bounded and has k zeroes, and
for any a ∈ (ã, ã + ε), ϕa is unbounded and has either k or k + 1 zeroes
in (0,+∞).

(ii) If JN(ã) < 0 and if, for any a ∈ (ã−ε, ã), all functions ϕa are unbounded
and have k zeroes in (0,+∞), then ϕã is bounded and has either k or k−1
zeroes, and for any a ∈ (ã, ã+ε), ϕa has the same number of zeroes as ϕã.

As already seen in Proposition 3, if ã is a local extremum of α, the number
of zeroes changes when a goes through ã, since the sign of ϕa at infinity also
changes, by (18). Otherwise, if ã is an inflection point, the number of zeroes is
constant when a passes through ã. This explains the ambiguity in the previous
result.

Actually for the particular case a = a∗N , N = Nk we can exactly compute the
value of JN as follows:

Proposition 10 Let us define j(k) := JN(a∗Nk
) for any integer k ≥ 2. Then,

j(k) = 0 if k is odd, and j(k) > 0 if k even.

Proof. By using (21), we can easily compute

j(k) =
1

2
k(k + 1)

1
∫

−1

Pk(s)
3 ds . (23)

Now, when k is odd, Pk is also odd and so, j(k) = 0. On the contrary, Gaunt’s
formula, see [15, Identity (14), page 195] shows that j(k) > 0 if k is even. �
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Remark. If N = Nk, k even, a∗N is a local minimum for the fonction α.
Indeed, this follows from the fact that we know that JN(a∗N) > 0 and the
number of zeroes of Pk. From this we infer that the function w∗

N is positive at
infinity for N close to Nk with N < Nk, and negative at infinity for N close
to Nk with N > Nk. Hence, α is decreasing to the left of a∗N and increasing
afterwards.

3.3 A multiplicity result at level α = N + 2

This section is devoted to the proof of Theorem 1, that is a multiplicity result
for the solutions of problem (15) at level α = N + 2, which also helps to illus-
trate Theorem 1.10 in [11]. As seen in the introduction this amounts to study
the number of bounded solutions to (2) with ρ = 0 (without singularities). We
show that when λ = 2π α and α = N + 2 becomes large, there are more and
more bounded solutions to (2).

Let u be a radial solution of (8) with α = N + 2. We may reformulate this
problem in terms of f := u− u∗N ∈ D1,2(R2) as a solution to:

∆f +
µ

(1 + |x|2)2
(e2f − 1) = 0 in R

2 ,
∫

R2

e2f

(1 + |x|2)2
dx = π , (24)

with µ = 2(N + 2). Solutions of (24) are bounded by (13). Moreover, (24) is
trivially invariant under the Kelvin transformation:

Lemma 11 If f is a solution of (24), then the function x 7→ f
(

x
|x|2

)

is also

a solution of (24).

This lemma allows us to characterize many branches of solutions of (24).

Theorem 12 The function f ≡ 0 is a trivial solution of (24) for any µ > 0.
For any k ≥ 2, there are two continuous half-branches, C+

k and C−
k , of solutions

(µ, f) of (24) bifurcating from the branch of trivial solutions at, and only at,
(µk = 2k(k + 1), 0). Solutions in C±

k are such that ±f(0) > 0.

Away from the trivial solutions, all branches are disjoint, unbounded and char-
acterized by the number of zeroes. In C±

k , the solutions of (24) have exactly k
zeroes. If k is odd, the branch C∓

k is the image of C±
k by the Kelvin transform.

If k is even, the half-branches C±
k are invariant under the Kelvin transform.

Finally, C±
k for k ≥ 3 and C−

2 are locally bounded in µ.

We divide the proof in three steps.
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Step 1: Existence of unbounded branches of solutions.

We use a bifurcation method to study the set of radial solutions of (24) with
the bifurcation parameter µ. Since branches may be multi-valued in terms
of N , we will reparametrize them with a parameter s. Classical results apply
for instance in R+ × (D1,2 ∩ C2), see [12,30].

By Lemma 4, there is local bifurcation from the trivial line {(µ, 0)} at the
points (µk := 2(Nk + 2), 0), and there is no other bifurcation point in this
trivial branch. By the properties of the Legendre polynomials Pk, if we denote
by C±

k the two continuous half-branches of non-trivial solutions that meet at
(µk, 0), one easily proves that for any (µ, f) ∈ C±

k in a neighborhood of (µk, 0),
f(r) has exactly k zeroes in the interval (0,+∞).

Actually, on C±
k , the number of zeroes of the solutions is constant, namely

equal to k. For instance, let us prove it for C+
k by smoothly parametrizing the

branch as follows:

µ(s) with µ(0) = 2(Nk + 2) , and f = fs with f0 ≡ 0 , s ∈ R . (25)

Let Λk := {s ∈ (0,∞) : fs admits exactly k zeroes}. Clearly Λk is not empty.
Since a solution f 6≡ 0 of (24) cannot vanish at a point together with its
derivative, the smoothness of the map s 7→ fs ensures that Λk is open. We
check that Λk is also closed. Indeed, for (sn)n∈N ∈ ΛN

k with limn→∞ sn = s∞ ∈
(0,∞), we see that the zeroes of fn = fsn

cannot collide at a point r0 ∈ R+

since there, limn→∞ fn = fs∞ 6≡ 0 would vanish together with its derivatives.
So, for a zero to appear or disappear, this would require the existence of a
sequence (rn)n∈N with fn(rn) = 0 and limn→∞ rn = ∞. But then, f̃(r) =
fs∞(1/r), which is still a solution of (24) by Lemma 11, would vanish at
r = 0 together with its derivatives, and this is again impossible. In conclusion,
Λk = (0,+∞).

Consequently, non-trivial branches with different k cannot intersect or join
two different points of bifurcation in the trivial branch. For any k ≥ 2, the
half-branches C±

k are therefore unbounded and we can distinguish them as
follows: if (µ, f) ∈ C+

k , resp. (µ, f) ∈ C−
k , then f(0) > 0, resp. f(0) < 0.

Step 2: Symmetry under Kelvin transform

Branches of solutions of (24) have an interesting symmetry property. If k is
odd, the solutions in the branches C±

k have an odd number of zeroes in (0,+∞)
and so, they cannot be invariant under the Kelvin transform, because they take
values of different sign at 0 and near +∞. Since µk = 2(Nk + 2) is a simple
bifurcation point, the only possibility is that the branches C±

k transform into
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each other through the Kelvin transform. Otherwise, there would be at least
four half-branches bifurcating from (µk, 0), which is impossible.

If k is even, the solutions of C±
k have an even number of zeroes. So, they take

values of the same sign at 0 and near +∞. If they were not invariant under
the Kelvin transform, we would find two new branches, C̃±

k , bifurcating from
(µk, 0), which is again impossible.

Step 3: Asymptotic behaviour of the branches

Non trivial branches of radial solutions are contained in the region {µ > 8},
that is N > 2 (see Theorem 2 and the remark immediately afterwards for
N = 2). Furthermore, with the notations of Theorem 2, by (14), there exists
a unique a(N) ∈ R such that α(a) > 2N for all a < a(N). For N > 2,
since N + 2 < 2N < 2(N + 1), if α(a) = N + 2, then a > a(N). Hence
f(0) = u(0) − u∗N(0) > a(N) − u∗N(0) with u = ua given by (15).

As a consequence, the branches C−
k are locally bounded for µ ∈ [8,+∞) for

any k ≥ 2. By Step 2, C+
3 is also locally bounded for µ ∈ [8,+∞). Since

non trivial branches do not intersect, C±
k , k ≥ 3, are all locally bounded for

µ ∈ [8,+∞). �

As a simple consequence of Theorem 12, we have the following corollary, which
is the counterpart of Theorem 1 written for (24).

Corollary 1 For all k ≥ 2, for all µ > µk = 2k(k+1), there at least 2(k−2)+2
distinct radial solutions of (24), one of them being the zero solution.

The bifurcation diagram obtained for equation (24) (see Fig. 1, left) is eas-
ily transformed into a bifurcation diagram for the solutions of (8) with λ =
2π(N + 2) (see Fig. 1, right) through the transformation u = f + u∗N . In
the case of equation (8), branches bifurcate from the set of trivial solutions
C := {(N, 1

2
log(2(N + 2))), in the representation (N, a = u(0)).

Based on numerical evidence (see Fig. 1), it is reasonable to conjecture that,
in contrast, the branch C+

k=2 admits a vertical asymptote in the sense that
as s → +∞, then N converges to 2, which is the only admissible value by
(14). So for (µ(s), fs) ∈ C+

2 , fs should develop a concentration phenomenon
at the origin, and as s → +∞, we should have: a → +∞, N → 2+ and
µ(s)

(1+|x|2)2
e2fs ⇀ 8π δz=0, weakly in the sense of measures.

17



5 10 15 20 25 30

-1.5

-1

-0.5

0.5

1

1.5

2

5 10 15 20 25 30

1

2

3

4

5

Fig. 1. Bifurcation diagram in the representation (N, f(0)) for equation (24) (left)
and (N, a) for equation (8) with λ = 2π(N+2) (right). Non trivial branches bifurcate
from Nk = 4, 10, 18, 28,. . .

3.4 Non radially symmetric solutions

As already described in Section 2.1, to any solution u 6= u∗N of (11) such that
∫

R2(1+ |x|2)N e2u dx = 2π (N +2), we can associate a punctured sphere of non
radially symmetric solutions of (11), ue with e ∈ S2 \ {N, S}, satisfying also
∫

R2(1+ |x|2)N e2ue dx = 2π (N +2) for all e ∈ S
2 \ {N, S}. And so, for N > Nk,

there are at least 2(k − 2) + 1 punctured spheres of non radially symmetric
solutions to (11) at level λ = 2π(N + 2).

4 Further results, numerical observations and conjectures

In the study of (15), multiplicity results for general values of α are difficult
to deduce from Proposition 3 since they require a detailed analysis of the
nature of each critical point: maximum, minimum, and even more in the case
of an inflection point, as well as precise estimates of the corresponding critical
value. Numerically, Proposition 3 gives straightforward results, which can be
observed directly from the plots of the curve a 7→ α(a) for various values of
N , see Figs. 2, 3.

Let us give some details. We consider the solution ua of (12) parametrized
by a = ua(0). Recall that for a given N > 1, the curve a 7→ α(a) =

∫∞
0 (1 +

r2)Ne2ua r dr is such that lima→−∞ α(a) = 2(N + 1), lima→∞ α(a) = 2N , and
for N large enough, its range is an interval [αN , 2(N +1)) if αN is achieved, or
(2N, 2(N + 1)) otherwise. If N > 2, αN := mina∈R α(a) ≤ α(a∗N) = N + 2 <
2N , where a∗N := 1

2
log(2 (N+2)), which provides a multiplicity result for (15)

in the range α ∈ (αN , 2N) ⊃ (N + 2, 2N).

As a function of N > 0, we observe that αN = infa∈R α(a) < 2N if and only if
N > N0, where N0 is numerically found of the order of 1.27 ± 0.02, although
its exact value is not easy to determine, see Fig. 4, left. In the range (N0, 20),
we observe that αN is achieved by the first critical point, see Fig. 4, right.
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Fig. 2. Curves a 7→ α(a) for various values of N : N = 25 (left) and N = 1, 2,
3,. . . 12 (right). The point (a∗N , N + 2) corresponding to the explicit solution (16) is
represented by a gray dot.
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Fig. 3. Curves a 7→ α(a) for N = Nk, k = 2, 3, 4, 5 (left) and a 7→ α(a) − 2N for
N = 1, 3, 5,. . . 19. The function N 7→ αN − 2N is monotone decreasing.
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Fig. 4. Critical points (left) and critical values (divided by 4N , right) of α, as a
function of N .

For any N > N0, we observe that there are at least two radial solutions of (15)
for any α ∈ (αN , 2N). By the observations of Section 3.4, it follows that there
should be at least a radial solution and a whole punctured sphere of non
radially symmetric solutions at level α = N + 2. This supports a conjecture
by C.-S. Lin in [25]. Actually, we can state the following result, which slightly
improves on Theorem 2, (iii), and rigorously defines N0.

Proposition 13 There exists N0 ∈ (1, 2) such that, for all N ∈ (N0,∞),
αN = mina∈R α(a) < 2N , and for all α ∈ (αN , 2N), there exists at least two
solutions of (15).

Proof. The proof relies on the continuity of the curve a 7→ α(a) with respect
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to N and the fact that α′(a∗2) < 0, thus proving that αN < 2N also for N < 2,
close enough to 2. �

It seems that as N → N0, N > N0, αN is achieved by a unique ãN → ∞, so
we may conjecture that (15) has multiple solutions for α ∈ (αN , 2N) if and
only if N ∈ (N0,∞), for some N0 ∈ (1, 2); for N ∈ (0, N0), the solution is
unique, whenever it exists. A possible way to tackle such a conjecture could
be to show that for N > 1, the function N 7→ αN − 2N is monotonically
nonincreasing in N , as it appears to be the case in our numerical study, see
Fig. 4, right, and to exploit the fact that ãN → ∞ as N → N0, N > N0, see
Fig. 4, left.

On the basis of our numerical results, we may also conjecture that for N0 <
N < 10 and α ∈ (αN , 2N), there exist exactly two radially symmetric solutions
of (8). This conjecture is supported by the bifurcation analysis of Section 3.3
concerning the specific value α = N + 2 ∈ (αN , 2N) for N > 2 and N 6= 4.
Note that for N = 4, αN = N + 2 should hold. As N increases, the curves
a 7→ α(a) appear to have more and more critical points. Thus, for suitable
values of α, the number of solutions increases as N increases. We have already
checked this fact in Theorem 1 for λ = 2π α, α = N + 2, but apparently it
also holds for other values of α.

The last observations are concerned with the function a 7→ JN(a) defined by
(22). It seems that such a function always takes positive values on (−∞, c(N))
and negative values on (c(N),∞), for some c(N) > 0. See Fig. 5, left. We may
formulate this as the following conjecture: There exists a function N 7→ c(N)
on (0,+∞) such that JN(a) = 0 if and only if a = c(N) and JN(a) > 0 if and
only if a < c(N). See Fig. 5, right.
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Fig. 5. The function a 7→ JN (a) for N = 1, 3, 5,. . . 11 (left) and the curve
N 7→ c(N), where, at N fixed, c(N) is the first positive zero of a 7→ JN (a); the
dotted line corresponds to N 7→ 1

2 log(2(N + 2)). These two curves are tangent at
N = 10 = N3 and N = 28 = N5 (right).

Quite interesting is the comparison of a∗N with c(N). By Proposition 10, we
know that j(k) := JN(a∗Nk

) = 0 if k is odd and j(k) > 0 if k is even. Recall that
α′(a∗N) = 0 if and only if N = Nk. We observe numerically, and conjecture,
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that: For any N > 2, a∗N ≤ c(N), with equality if and only if N = N2l+1 for
some l ≥ 1. This is observed numerically with a very high accuracy for k = 3,
5, 7, 9, 11, see Figs. 5, right, and also 6, left.

Summarizing the results of Section 3.2, we have shown that, in the interval
(c(N),∞) ∋ a, the number of nodes of ϕa given by (17) increases as N grows
each time a new critical point of α appears. This needs to be interpreted in
terms of Morse index, which is still an open question.

To investigate whether a critical point of α is a local minimum, we may look
at the functional

KN(a) :=

+∞
∫

0

(1 + r2)Ne2ua(ψa + 2ϕ2
a) r dr

where ψa solves the ordinary differential equation















ψ′′
a + ψ′

a

r
+ 2 (1 + r2)Ne2ua (ψa + 2ϕ2

a) = 0 , r ∈ (0,+∞) ,

ψa(0) = 0 , ψ′
a(0) = 0 .

We have indeed α′′(a) = 2KN(a). No simple criterion for the positivity of
KN(a) is known, but our numerical results at level α = N + 2, see Fig. 6,
right, combine very well with the results of Theorem 1 and the bifurcation
diagrams shown in Fig. 1.
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Fig. 6. Left: the curve N 7→ JN (a∗N ) is nonnegative and achieves its minimum
value, 0, (resp. local maxima) for N = N2l+1, l ≥ 1 (resp. N = N2l). Right: the
curve N 7→ KN (a∗N ) changes sign, but is always nonnegative when α′(N) = 0. When
N = N2l, l ≥ 1, KN (a∗N ) is positive.
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