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In so-called structured populations, individuals differ according to variables that influence their survival and reproduction abilities. These variables are morphological, physiological or behaviorial traits that can be inherited from parents to offspring and may vary due to genetic mutation. Other types of variables include ages, which are increasing functions of time, sex, or spatial location. This paper considers the dynamics of populations with trait and age structures. Age variables sum up individuals past histories and it may be biologically relevant to take several ages into account to model the present dynamics. Examples include the physical age (the time since birth), the biological age (the intrinsic physiological stage that can grow nonlinearly in time), the age or stage of an illness, and the time since maturation. Taking age structure into account is required to study the evolution of individuals' life histories. For example, the salmon Oncorhynchus gorbuscha breeds when about 2 year-old, after returning to native freshwater streams, and most individuals die after this unique reproduction episode. This striking life history remains incompletely understood from an evolutionary point of viex, due in part to the lack of appropriate modelling tools. Moreover, age and trait structures interact as they change through time. This is because the age of expression of a trait and the life history shaped by the trait will influence the population dynamics, and hence the selection pressure on the trait, and its long term adaptive evolution.

We start with a brief review of the literature on stochastic and deterministic models of populations with age structure in Section 1. In Section 2, the links between stochastic and deterministic approaches are established: from a stochastic individual-based model (IBM), we recover the PDEs of demography via a large population limit. Section 2.4 proposes some illustrations of how deterministic and stochastic approaches complement each other. The PDEs help study the measure-valued stochastic differential equations (SDEs) that arise from stochastic IBM. The SDEs in turn provide results that may not hold in large populations. An application to the study of extinction time is presented. Using these results, a second application to the so-called adaptive dynamics theory of biological evolution is developed in Section 2.5. This application highlights the importance of probabilistic modelling of point events. We address some interesting biological applications through simulations in Section 3.

1 Populations with continuous age (and trait) structure: a brief review

In this brief review of the literature, we focus on population models with continuous age and time. For discrete-time models with age or stage classes, we refer the interested reader to [START_REF] Caswell | Matrix Population Models, Construction, Analysis, and Interpretation[END_REF][START_REF] Charlesworth | Evolution in Age-structured Population[END_REF][START_REF] Thieme | Princeton Series in Theoretical and Computational Biology[END_REF].

Deterministic models

Population models with continuous age and time that generalize the equations of Malthus [START_REF] Malthus | An Essay on the Principle of Population[END_REF] and Verhulst's well-known logistic equation [START_REF] Verhulst | Notice sur la loi que la population suit dans son accroissement[END_REF] have often been written as PDEs (e.g. [START_REF] Charlesworth | Evolution in Age-structured Population[END_REF][START_REF] Hoppensteadt | Mathematical Theories of Populations: Demographics, Genetics and Epidemics[END_REF][START_REF] Perthame | Transport equations in Biology[END_REF][START_REF] Thieme | Princeton Series in Theoretical and Computational Biology[END_REF][START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF]).

PDE models for populations structured by a scalar age have been introduced by Sharpe and Lotka [START_REF] Sharpe | A problem in age distribution[END_REF], Lotka [START_REF] Lotka | The stability of the normal age distribution[END_REF], McKendrick [START_REF] Mckendrick | Applications of mathematics to medical problems[END_REF] and Von Foerster [START_REF] Foerster | Some remarks on changing populations[END_REF]: ∀t ≥ 0, ∀a ≥ 0, 

where d, b and n 0 are nonnegative continuous functions (death and birth rates, initial age distribution) with b bounded and n 0 integrable. Equation ( 1) is known as McKendrick-Von Foerster PDE. It is a transport PDE that describes the aging phenomenon, with death terms and births on the boundary a = 0. A shortcoming of these models is that they do not take into account regulations of the population size by interference interactions or environmental limitations. The first nonlinear models for populations with age structure have been introduced by Gurtin and MacCamy [START_REF] Gurtin | Nonlinear age-dependent population dynamics[END_REF]. The rates b(a) and d(a) of (1) become functions b(a, N t ) and d(a, N t ) of the scalar age a ∈ R + and population size N t = +∞ 0 n(a, t)da ∈ R + at time t. Thus, the nonlinearity introduces a feed-back term that controls the population size. A particular case involves d(a, N t ) = d(a) + ηN t [START_REF] Athreya | Branching Processes[END_REF] where d(a) is the natural death rate at age a and ηN t is the logistic competition term. The stationary solutions, their global stabilities and estimates of the rates of decay were studied by Marcati [START_REF] Marcati | On the global stability of the logistic age dependent population growth[END_REF]. Stability conditions for a more general class of birth and death rates have been obtained by Farkas [START_REF] Farkas | On the stability of stationary age distributions[END_REF] and Farkas [START_REF] Farkas | Stability conditions for the non-linear McKendrick equation[END_REF]. In [START_REF] Farkas | On the stability of stationary age distributions[END_REF], functions b(a, N t ) and d(a, N t ) are taken in C 0,1 b (R 2 + , R + ) with the assumption: ∃ d > 0, ∀(a, N ) ∈ R 2 + , d > d, and the characteristic equation whose roots determine the stability of the stationary solution is derived. In [START_REF] Farkas | Stability conditions for the non-linear McKendrick equation[END_REF], sufficient conditions for the stability of the stationary solutions are obtained for the cases where b(a, N t ) = b 1 (a)b 2 (N t ), in which the age-dependent fertility is weighted by the interactions with other individuals.

The logistic competition term assumes that each competitor experiences the same interactions. Busenberg and Iannelli [START_REF] Busenberg | Separable models in age-dependent population dynamics[END_REF] considered death rates that take the form d(a)

+ F (t, N t , S 1 (t), . . . S m (t)) where ∀i ∈ [[1, m] ] , S i (t) = +∞ 0
γ i (a)n(a, t)da, F is continuous in t and Lipschitz continuous with respect to the other variables, and the γ i are positive continuous bounded functions that describe the competitive pressure exerted by an individual depending on its age. However the interaction term remains non-local (and thus finite-dimensional). Local interactions mean that the competition terms depend on integrals of the form +∞ 0 U (a, α)n(α, t)dα where U (a, α) is the interaction exerted by an individual of age α on an individual of age a. This case is covered by the work of Webb [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF], who proposes PDEs with coefficients of the form b(a, n(., t)) and d(a, n(., t)), where n(., t) belongs to the Banach space L 1 (R + , R + ) of integrable functions w.r.t. a ∈ R + .

More recently, entropy methods have extended the notion of relative entropy to equations that are not conservation laws. This approach (Michel et al. [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF], Mischler et al. [START_REF] Mischler | Stability in a nonlinear population maturation model[END_REF], Perthame [START_REF] Perthame | Transport equations in Biology[END_REF], Perthame and Ryzhik [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF]) provided new proofs of existence of solutions, and new insights into long time behavior for instance.

There are many examples in the literature where additional structures other than age-based have been taken into account. The population can be divided into a finite number of classes: see Webb [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF] for a survey on multi-type models, including prey-predator and epidemiological models (e.g. [START_REF] Busenberg | Global behavior of an age-structured epidemic model[END_REF][START_REF] Iannelli | Analytical and numerical results for the age-structured SIS epidemic model with mixed inter-intracohort transmission[END_REF][START_REF] Lafaye | Threshold methods for threshold models in age dependent population dynamics and epidemiology[END_REF]). In epidemics models, considering the classes of susceptible, infectious and/or removed individuals with different interactions between these groups, leads to different propagation dynamics of the infection. Agestructure is important as infection or detection rate may depend for instance on the time since the first infection.

To our knowledge, populations with age structure and spatial diffusions (where motion is described with a second order differential operator) were first studied by Langlais [START_REF] Langlais | On a linear age-dependent population diffusion model[END_REF][START_REF] Langlais | A nonlinear problem in age-dependent population diffusion[END_REF][START_REF] Langlais | Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion[END_REF] and Busenberg and Iannelli [START_REF] Busenberg | A class of nonlinear diffusion problems in age-dependent population dynamics[END_REF]. Structure variables with values in a non-finite state-space other than position have been considered by Rotenberg [START_REF] Rotenberg | Transport theory for growing cell populations[END_REF] for instance (for multitype populations, see e.g. [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF]). In [START_REF] Rotenberg | Transport theory for growing cell populations[END_REF], the maturation velocity x ∈ X =]0, 1] is defined as a trait that can change at birth and during the life of an individual. For an individual born at time c ∈ R and with traits

x i ∈]0, 1] on [t i , t i+1 [ (i ∈ N, t 0 = c and (t i ) i∈N are times of trait change in [c, +∞[), the biological age at t > c is a = i∈N x i (t i+1 ∧ t -t i ∧ t).
Here, the biological age a differs from the physical age t -c as soon as ∃i ∈ N, t i < t and x i = 1. A nonlinear version of this model has been studied by Mischler et al. [START_REF] Mischler | Stability in a nonlinear population maturation model[END_REF].

Stochastic models

Age structured branching processes that generalize the Galton-Watson process [START_REF] Galton | On the probability of the extinction of families[END_REF] have been studied by Bellman and Harris [START_REF] Bellman | On age-dependent binary branching processes[END_REF][START_REF] Harris | The Theory of Branching Processes[END_REF], and then Athreya and Ney ( [START_REF] Athreya | Branching Processes[END_REF] Chapter IV). In these non Markovian models, the lifespan of an individual does not follow an exponential law. Upon death, a particle is replaced by a random number of daughter particles, with a reproduction law that does not depend on the age of the mother, nor on the state of the population.

The assumptions of births at the parent's death and of independence between the reproduction law and the age of the parent are biologically restrictive. Kendall [START_REF] Kendall | Stochastic processes and population growth[END_REF], Crump and Mode [START_REF] Crump | A general age-dependent branching process i[END_REF][START_REF] Crump | A general age-dependent branching process ii[END_REF], Jagers [START_REF] Jagers | A general stochastic model for population development[END_REF][START_REF] Jagers | Branching Processes with Biological Applications[END_REF], Doney [START_REF] Doney | Age-dependent birth and death processes[END_REF], study birth and death processes in which an individual can give birth at several random times during its life, with rates that may depend on its age. These processes are called agestructured birth and death processes. More recently Lambert [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF] used contour processes to study the properties of splitting trees which are formed by individuals with independent and identically distributed (i.i.d.) lifespans and who give birth at the same constant rate during their lives. Lambert's results provide a new interpretation of the link between branching processes and Lévy processes [START_REF] Gall | Branching processes in Lévy processes: the exploration process[END_REF][START_REF] Popovic | Asymptotic genealogy of a critical branching process[END_REF].

In the two types of models introduced above, individuals alive at the same time are independent, which is also a biologically restrictive assumption. Wang [START_REF] Wang | A central limit theorem for age-and density-dependent population processes[END_REF], Solomon [START_REF] Solomon | Representation and approximation of large population age distributions using Poisson random measures[END_REF] have considered birth and death processes in which the lifespans of individuals are independent, but in which the birth rate and reproduction law of each individual depend on the state of the population. Oelschläger [START_REF] Oelschläger | Limit theorem for age-structured populations[END_REF], Jagers [START_REF] Jagers | A general stochastic model for population development[END_REF], Jagers and Klebaner [START_REF] Jagers | Population-size-dependent and age-dependent branching processes[END_REF] generalize these models by including interactions in both the birth and death rates, but these rates remain bounded. In the models mentioned in this paragraph, the population at time t is discrete and represented by a point measure of the form Z t (dα) = Nt i=1 δ ai(t) (dα). Each individual is described by a Dirac mass charging its age a i (t), and N t is the size of the population. The birth and death rates considered by [START_REF] Jagers | A general stochastic model for population development[END_REF][START_REF] Jagers | Population-size-dependent and age-dependent branching processes[END_REF][START_REF] Oelschläger | Limit theorem for age-structured populations[END_REF] have the form b(a, Z t , U (a, .) ) and d(a, Z t , V (a, .) ), where U and V are bounded interaction kernels, b and d are bounded functions, and we use the notation Z, f = +∞ 0 f (α)Z t (dα). In [START_REF] Jagers | Population-size-dependent and age-dependent branching processes[END_REF][START_REF] Jagers | A general stochastic model for population development[END_REF] for instance, the interactions vanish in the limit: lim Z,1 →+∞ b(a, +∞ 0 U (a, α)Z(dα)) = b(a) and the same is true for the death term, so that the authors recover population behaviors that are independent of population size in the limit of large populations. These models thus exclude logistic interactions. Such interactions are included in the models considered in [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF].

Interactions between individuals imply that the key branching property ceased to hold, and classical approaches based on generating or Laplace functions (e.g. [START_REF] Athreya | Branching Processes[END_REF]) do not apply anymore. However, in a large population limit, a law of large numbers can be established [START_REF] Wang | A central limit theorem for age-and density-dependent population processes[END_REF][START_REF] Solomon | Representation and approximation of large population age distributions using Poisson random measures[END_REF][START_REF] Oelschläger | Limit theorem for age-structured populations[END_REF][START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF] whereby a limiting deterministic process identified as a weak solution of a generalization of the McKendrick-Von Foerster PDE (1) is obtained. We present a synthesis of these results in Section 2. Once the link between PDEs and stochastic processes is established, results for PDEs prove to have interesting implications for the stochastic process, even if the behaviors of the stochastic model and of its corresponding deterministic limit differ (see Sections 2.4 and 2.5).

Let us mention that there are other large-population scalings that have been the focus of abundant research. Superprocess limits of age-structured branching processes (where the mother gives birth at her death) are obtained by rescaling the lifespan and mass of the particles, by increasing their number and by modifications of the birth rate or reproduction law (e.g. Dynkin [START_REF] Dynkin | Branching particle systems and superprocesses[END_REF], Kaj et Sagitov [START_REF] Kaj | Limit processes for age-dependent branching particle systems[END_REF]). For age-structured birth and death processes (where the mother gives birth at random times during her life), similar approaches were taken by Dawson et al. [START_REF] Dawson | Nonlocal branching superprocesses and some related models[END_REF] and Bose and Kaj [START_REF] Bose | Diffusion approximation for an age-structured population[END_REF][START_REF] Bose | A scaling limit process for the age-reproduction structure in a Markov population[END_REF].

Multitype populations with age structure have been considered by many authors (e.g. Athreya and Ney [START_REF] Athreya | Branching Processes[END_REF], Chap.V.10). A stochastic model of epidemics with age structure has been considered for instance in Clémençon et al. [START_REF] Clémençon | A stochastic SIR model with contact-tracing: large population limits and statistical inference[END_REF]. Stochastic models of populations with age and trait structures have been addressed by Jagers [START_REF] Jagers | General branching processes as Markov fields[END_REF][START_REF] Jagers | Coupling and population dependence in branching processes[END_REF] and Méléard and Tran [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF] for instance. In [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF], the mutation rate that is responsible for generating variation in the trait is decreased so that the mutations become more and more rare. As a consequence, the timescales of mutations and demography (births and deaths) become separate, which is a typical assumption of the evolutionary theory of adaptive dynamics (see Section 2.5).

2 From stochastic individual-based models of age-structured populations to deterministic PDEs

A microscopic model

We study a microscopic stochastic model, for which the dynamics is specified at the level of individuals.

The model takes into account trait and age dependence of birth and death rates, together with interactions between individuals. This process generalizes the approach of Fournier and Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF], Champagnat et al. [START_REF] Champagnat | Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation[END_REF][START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]. When the population is large, we establish a macroscopic approximation of the process, which describes the evolution at the scale of the population (individual paths are lost). These results are taken from [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF] and allow to link the probabilistic point of view to the deterministic approach reviewed in Section 1.

The IBM represents the discrete population at time t ≥ 0 by a point measure

Z t = Nt i=1 δ (xi(t),ai(t)) , (3) 
where each individual is described by a Dirac mass (x, a) ∈ X := X × R + , X ⊂ R d being the trait space and R + the age space. We denote by N t the number of individuals alive at time t. The space of point measures on X is denoted by M P ( X ) and embedded with the topology of weak convergence. For a function f , we denote by Z t , f the integral

e X f (x, a)Z t (dx, da) = Nt i=1 f (x i (t), a i (t)
). An individual of trait x and age a in a population Z ∈ M P ( X ) reproduces asexually, ages and dies. When reproduction occurs, the trait is transmitted to offspring unless a mutation occurs. The mechanism is modelled as follows:

• Birth rate is b(x, a) ∈ R + . With probability p ∈ [0, 1], the new individual is a mutant with trait x+h
where h is chosen in the probability distribution k(x, a, h) dh (dependent upon the characteristics of the parent) where dh is the Lebesgue measure,

• Death rate is d(x, a, ZU (x, a)) ∈ R + . It depends on the trait and age of the individual but also on the measure Z describing the whole population. The function U : X 2 → R m is an interaction kernel: each of the m component of U ((x, a), (y, α)) describes a different interaction of (y, α) on (x, a), and ZU (x, a) = e X U ((x, a), (y, α))Z(dy, dα). • Here, aging velocity is 1.

Assumption (H1)

The birth rate b(x, a) is assumed to be continuous and bounded by a positive constant b. The function k(x, a, h) is assumed to be bounded by a positive constant k. The death rate is assumed to be continuous in (x, a), Lipschitz continuous in the interaction term, lower bounded by a strictly positive constant and upper bounded by d(1 + Z, 1 ) with d > 0.

Remark 1. 1. More general models are considered in [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF][START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF], where vectorial ages with nonlinear aging velocities are allowed.

2. For appropriate choices of b and d, some of the models described in Section 1.2 can be recovered. If b(x, a) = b(a) and d(x, a) = d(a), we recover the age-dependent birth and death processes of [START_REF] Crump | A general age-dependent branching process i[END_REF][START_REF] Crump | A general age-dependent branching process ii[END_REF][START_REF] Doney | Age-dependent birth and death processes[END_REF][START_REF] Jagers | A general stochastic model for population development[END_REF][START_REF] Kendall | Stochastic processes and population growth[END_REF]. The choice b(x, a) = b(a) and d(x, a, ZU (x, a)) = d(a) + η Z, 1 gives the rates used by [START_REF] Gurtin | Nonlinear age-dependent population dynamics[END_REF]. Considering bounded functions d and vectorial functions U leads to models similar to those considered in [START_REF] Jagers | Population-size-dependent and age-dependent branching processes[END_REF][START_REF] Oelschläger | Limit theorem for age-structured populations[END_REF].

Following [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF][START_REF] Champagnat | Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation[END_REF][START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF][START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF], we describe the evolution of (Z t ) t∈R+ by a SDE driven by a Poisson point process. The mathematical difficulty lies in the fact that the birth and death rates depend on time through age.

Let Z 0 ∈ M P ( X ) be a random variable (r.v.) such that E ( Z 0 , 1 ) < +∞, and let Q(ds, di, dθ, dh) be a Poisson point measure (P.P.M.) on R + × E := R + × N * × R + × X with intensity q(ds, di, dθ, dh) := ds⊗ n(di)⊗ dθ ⊗ dh and independent of Z 0 (for the general theory of P.P.Ms, see for instance [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF] Chapter I).

Let us denote by X i (t) and A i (t) the trait and age of the i th individual at time t, the individuals being ranked in the lexicographical order on R d × R + (see [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF][START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF] for a rigorous notation).

Z t = N0 i=1 δ (Xi(0),Ai(0)+t) + t 0 E 1 {i≤Ns -} δ (Xi(s-),t-s) 1 {0≤θ<m1(s,Zs -,i,h)} +δ (Xi(s-)+h,t-s) 1 {m1(s,Zs -,i,h)≤θ<m2(s,Zs -,i,h)} -δ (Xi(s-),Ai(s-)+t-s) 1 {m2(s,Zs -,i,h)≤θ<m3(s,Zs -,i,h)} Q(ds, di, dθ, dh), (4) 
where:

m 1 (s, Z s-, i, h) = (1 -p)b(X i (s -), A i (s -))k(X i (s -), A i (s -), h) m 2 (s, Z s-, i, h) = m 1 (s, Z s-, i, h) + p b(X i (s -), A i (s -))k(X i (s -), A i (s -), h) m 3 (s, Z s-, i, h) = m 2 (s, Z s-, i, h) + d(X i (s -), A i (s -), Z s-U (X i (s -), A i (s -)))k(X i (s -), A i (s -), h).
The interpretation is as follows. To describe the population at any given time t, we start with the individuals present at t = 0. Then we add all the ones that were born between 0 and t and finally we delete the Dirac masses corresponding to individuals who died between 0 and t. The individuals of the initial condition have at time t an age increased by t (first term of ( 4)). When a birth takes place at time s, in the measure describing the population at time t we add a Dirac mass at age t -s (the age expected for this newborn individual, second and third term of ( 4)). When an individual of age a dies at time s, in the measure describing the population at time t we suppress a Dirac mass at age a + t -s (the age this individual would have had if it had survived). As the rates vary with time, we use a P.P.M. with an intensity that upper-bounds the age-dependent rates and use an acceptance-rejection procedure (the indicators in θ) to recover the rates that we need. We emphasize that exact simulation of this SDE can be done easily (see Section 3). The algorithm formally accounts for the computer programs that many biologists use to run simulations of individualbased population models (e.g. [START_REF] Deangelis | Individual-Based Models and Approaches in Ecology[END_REF]).

Proposition 1. Under (H1), for every given Poisson point measure Q on R + ×E with intensity measure q, and every initial condition Z 0 such that E ( Z 0 , 1 ) < +∞, there exists a unique strong solution to SDE (4) in D(R + , M P ( X )). The solution is a Markov process with infinitesimal generator given for all

F f (Z) = F ( Z, f ) with f ∈ C 0,1 ( X , R), F ∈ C 1 (R, R), and Z ∈ M P ( X ) by LF f (Z) = e X ∂ a f (x, a)F ′ ( Z, f ) + F f Z + δ (x,0) -F f (Z) b(x, a)(1 -p) + R d F f Z + δ (x+h,0) -F f (Z) b(x, a)p k(x, a, h)dh + F f Z -δ (x,a) -F f (Z) d(x, a, ZU (x, a)) Z(dx, da). (5) 
For the proof, see Propositions 2.2.5, 2.2.6 and Theorem 2.2.8 in [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF]. The result is based on moment estimates and uses the algorithmic construction of (4) that will be detailed in Section 3. The behaviour of the solution is far more difficult to study. For this reason, and also in order to link the SDE (4) with the PDEs that are classically introduced in demography (see Section 1.1), we consider a large population limit. Thus we let the size of the initial population grow to infinity proportionally to an integer parameter n while individuals and interaction intensities are assigned a weight 1/n. Under proper assumptions on the initial condition, the sequence of rescaled processes (Z n ) n∈N converges, when n → +∞, to the solution of a deterministic equation identified as the weak form of a PDE ; this PDE generalizes the deterministic models described in Section 1.1.

Large population limit

The large population renormalization that we consider is inspired by the work of Fournier and Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF]. Full details and proofs can be found in [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF][START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF]. We let the size of the initial population tend to infinity proportionally to the parameter n ∈ N * and renormalize the weights of the individuals and their interaction by 1/n. Following on Metz et al. [START_REF] Metz | Adaptative dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF], n was named "system size" by Champagnat et al. [START_REF] Champagnat | Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation[END_REF]. More precisely, we consider a sequence (Z n t , t ∈ R + ) n∈N * such that nZ n satisfies SDE (4) with U n = U/n so that the interaction term ZU (x, a)

= Nt i=1 U ((x, a), (x i , a i )) is replaced with 1 n N n t i=1 U ((x, a), (x i , a i )) = Z n U (x, a)
and such that:

Assumption (H2): The sequence (Z n 0 ) n∈N * = 1 n N n t i=1 δ (Xi(0),Ai(0)
) converges in probability to the measure ξ 0 belonging to the space M F ( X ) of finite measures embedded with the weak convergence topology.

This large population rescaling can be understood as reflecting resource limitation as the size of the population increases: we have to assume that the biomass of individuals decreases if the system is to remain viable. As the individuals become smaller, their interactions decrease proportionally to their mass.

Proposition 2. Under (H1) and (H2),

(i) If sup n∈N * E Z n 0 , 1 2 < +∞, then for every f ∈ C 1,1,0 (R + × X , R) the process M n,f t = Z n t , f (., ., t) -Z n 0 , f (., ., 0) - t 0 e X [∂ a f (x, a, s) + ∂ s f (x, a, s) + f (x, 0, s)b(x, a)(1 -p) + R d f (x + h, 0, s)b(x, a)p k(x, a, h)dh -f (x, a, s)d(x, a, Z n s U (x, a)) Z n s (dx, da) ds, (6) 
is a square integrable martingale with the following quadratic variation process:

M n,f t = 1 n t 0 e X f 2 (x, 0, s)b(x, a)(1 -p) + R d f 2 (x + h, 0, s)b(x, a)p k(x, a, h)dh + f 2 (x, a, s)d(x, a, Z n s U (x, a)) Z n s (dx, da) ds. ( 7 
) (ii) If ∃η > 0, sup n∈N * E Z n 0 , 1 2+η < +∞, then the sequence (Z n ) n∈N * converges in distribution in D(R + , M F ( X )) to the unique solution ξ ∈ C(R + , M F ( X )) of the following equation: ∀f : (s, x, a) → f s (x, a) ∈ C 1,0,1 (R + × X , R), ξ t , f (., ., t) = ξ 0 , f (., ., 0) + t 0 e X [∂ a f (x, a, s) + ∂ s f (x, a, s) + f (x, 0, s)b(x, a)(1 -p) + R d f (x + h, 0, s)b(x, a)p k(x, a, h)dh -f (x, a, s)d(x, a, ξ s U (x, a)) ξ s (dx, da) ds, (8) 
This result is proved by a tightness-uniqueness argument (see [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF][START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF]). Point (i) is obtained by stochastic calculus for jump processes. Heuristically, since the quadratic variation is of the order of 1/n, it vanishes as n → +∞. Moreover, when births or deaths occur, we add or delete individuals of weight 1/n. This explains why in the limit we obtain a continuous deterministic process.

The link between [START_REF] Bosq | Théorie de l'estimation fonctionnelle[END_REF] and PDEs is specified in the next proposition (for proofs see Prop.3.6 and 3.7 in [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF]).

Assumption (H3): ξ 0 admits a density n 0 (x, a) with respect to dx ⊗ da on X . Proposition 3. Under (H1), (H2) and (H3), the measures ξ t ∈ M F ( X ), for t ∈ R + , admit densities n(x, a, t) with respect to dx ⊗ da on X . The family of these densities (n(., ., t)) t∈R+ is a weak solution of:

∂ t n(x, a, t) = -∂ a n(x, a, t) -d x, a, e X U ((x, a), (y, α))n(y, α, t)dy dα n(x, a, t) (9) n(x, 0, t) = R+ n(x, a, t)b(x, a)(1 -p)da + R d ×R+ b(x -h, a)p k(x -h, a, h)n(x -h, a, t)dh da n(x, a, 0) = n 0 (x, a).
These equations generalize the McKendrick-Von Foerster's PDEs. They describe ecological dynamics at the scale of the population (individual trajectories are lost). The densities n(x, a, t), when they exist, correspond to the number density in the sense of Desvillettes et al. [START_REF] Desvillettes | Infinite dimensional reaction-diffusion for population dynamics[END_REF], Champagnat et al. [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF], which describes the trait and age distributions of a "continuum" of individuals. Here, existence and uniqueness of a weak solution of ( 9) are obtained by probabilistic proofs. An interesting property of equation ( 8) is that function solutions do not always exist (see [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF]).

Central limit theorem

In large populations, the microscopic process Z n can be approximated by the solution of PDE ( 9) that generalizes classical PDEs of demography for populations in continuous time and structured by a scalar age. In order to construct confidence intervals or to assess the quality of the approximation, it is useful to study the fluctuation process,

∀t ∈ [0, T ], ∀n ∈ N * , η n t (dx, da) = √ n (Z n t (dx, da) -ξ t (dx, da)) . (10) 
For n ∈ N * , η n is a process of D([0, T ], M S ( X )). Since the space M S ( X ) of signed measures on X cannot be meterized when embedded with the topology of weak convergence, we follow the works of Métivier [START_REF] Métivier | Convergence faible et principe d'invariance pour des martingales à valeurs dans des espaces de Sobolev[END_REF] and Méléard [START_REF] Méléard | Convergence of the fluctuations for interacting diffusions with jumps associated with boltzmann equations[END_REF], and consider η n as a distribution-valued process.

Let us denote by C ∞ K the space of smooth functions with compact support. For a multi-index k ∈ N d+1 , we denote by 

D k f the derivative ∂ |k| f /∂x k1 1 • • • ∂x k d d ∂a k d+1 .
C 3D+1,0 ֒→ W 3D+1,D 0 ֒→ H.S. W 2D+1,2D 0 ֒→ C D+1,2D ֒→ C D,2D ֒→ W D,3D 0 ֒→ C 0,3D+1 (11) 
the second embedding being Hilbert-Schmidt (e.g. [START_REF] Adams | Sobolev Spaces[END_REF] p.173).

The tightness is proved in the space W -3D+1,D 0 using a tightness criterion for Hilbert-valued processes that is stated in [START_REF] Méléard | Convergence of the fluctuations for interacting diffusions with jumps associated with boltzmann equations[END_REF] 

Assumption (H4):

We assume that Assumptions (H1), (H2) and (H3) are satisfied and that:

• The sequence (η n 0 ) n∈N * converges in W -D,3D 0 to η 0 and sup n∈N * E η n 0 2 W -D,3D 0 < +∞. • sup n∈N * E e X |a| 6D Z n 0 (dx, da) 2 < +∞.
• The functions (x, a) → b(x, a), (x, a) → k(x, a, x ′ ), (x, a) → U ((x ′ , α), (x, a)) and (x, a) → U ((x, a), (x ′ , α)) belong to C 3D+1,0 for almost every (x ′ , α) ∈ X .

• The death rate (x, a, u) → d(x, a, u) is such that for all u, it belongs to C 3D+2,0 with a norm bounded by a polynomial in u. We assume that its derivative with respect to u is Lipschitz continuous.

Proposition 4. Let T > 0. Under Assumptions (H4), the sequence

(η n ) n∈N * converges in distribution in D([0, T ], W -3D+1,D 0 ) to the unique continuous solution of: ∀t ∈ [0, T ], ∀f ∈ W 3D+1,D 0 , η t , f = η 0 , f + W t (f ) + t 0 e X ∂ a f (x, a) + b(x, a) (1 -p)f (x, 0) + p X f (x + h, 0)k(x, a, h)dh -d(x, a, ξ s U (x, a))f (x, a) - e X
f (y, α)d u (y, α, ξ s U (y, α))U ((y, α), (x, a))ξ s (dy, dα) η s (dx, da) ds [START_REF] Busenberg | Global behavior of an age-structured epidemic model[END_REF] where (W t (f )) t∈R+ is a continuous centered square-integrable Gaussian process with quadratic variation:

W (f ) t = t 0 e X b(x, a) (1 -p)f 2 (x, a) + p X f 2 (x + h, 0)k(x, a, h)dh + f 2 (x, a)d(x, a, ξ s U (x, a)) ξ s (dx, da) ds. ( 13 
)
Notice that a benefit from IBMs is that the stochastic approach with point measures suits the formalism of statistical methods which involve sets of individual data (e.g. [START_REF] Clémençon | A stochastic SIR model with contact-tracing: large population limits and statistical inference[END_REF][START_REF] Blum | HIV with contact-tracing: a case study in Approximate Bayesian Computation[END_REF]). This makes it possible to use the battery of statistical methods which deal with problems that may not always be treated with deterministic methods (such as missing or noisy data). The convergence and fluctuations of Propositions 2 and 4 would then provide consistence and asymptotic normality for the estimators. Calibrating the parameters of a PDE thanks to its underlying microscopic interpretation provides an alternative to deterministic approaches (e.g. [START_REF] Banks | Parameter estimation and identification for systems with delays[END_REF][START_REF] Burns | Sensitivity analysis and parameter estimation for a model of Chlamydia Trachomatis infection[END_REF]).

Extinction in logistic age structured populations with constant trait

Extinction is one of the recurrent and important issue when studying the ecology of a population. Here, the conclusions given by the deterministic and the stochastic models differ, but we will see that they still provide complementary information.

For the sake of simplicity, we consider here a logistic age-structured population without trait variation. We will write for instance n 0 (a) instead of n 0 (x, a) of Assumption (H2). An individual of age a in a population of size N gives birth with rate b(a) and dies with the rate d(a)+ηN as in [START_REF] Athreya | Branching Processes[END_REF]. From Proposition 2, under the large population renormalization of Section 2.2, the sequence (Z n ) n∈N * converges to the unique weak solution of the Gurtin McCamy PDE with the death rate (2). Let us recall some known facts about this PDE. We denote by Π(a 1 , a 2 ) = exp a2 a1 d(α)dα the probability of survival from age a 1 to age a 2 in absence of competition.

Proposition 5. Under (H1) and (H3), there exists a unique classical solution of class C 1 to the Gurtin-McCamy equation with death rate [START_REF] Athreya | Branching Processes[END_REF]. It is given by: ∀a

∈ R + , ∀t ∈ R + n(a, t) = N 0 v(a, t) 1 + N 0 t 0 +∞ 0 v(α, s)dα ds with v(a, t) = n 0 (a -t)Π(a -t, a)/N 0 if a ≥ t B(t -a)Π(a, 0) if a < t ( 14 
)
where n 0 is the density of the initial condition, N 0 its L 1 -norm and:

B(t) = B 0 * +∞ n=0 g * n (t) with g(a) = b(a)Π(0, a)1l a≥0 and B 0 (t) = 1l t≥0 +∞ 0 b(a + t) n 0 (a) N 0 Π(a, a + t)da.
The quantity B(t) which appears in the computations can be interpreted heuristically as the number of births at time t. For a proof, see Webb [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF] (Section 5.4).

Since the family (n(a, t)da) t∈R+ defines a weak solution of the Gurtin-McCamy PDE in this case, we obtain the following corollary of the uniqueness property stated in Proposition 2 and of Proposition 5: Corollary 1. In the case of logistic age-structured population, the limiting process ξ of the sequence (Z n ) n∈N * satisfies: ∀t ∈ R + , ξ t (da) = n(a, t)da where n(a, t) is explicitly given in [START_REF] Carrillo | Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model[END_REF].

We have used here the results known for the PDE to obtain an explicit expression and regularities of the density of ξ obtained by probabilistic proofs (Propositions 2 and 3).

As explained in Section 1, the long time behavior of the Gurtin-McCamy PDE is well known. In particular: Proposition 6. (see [START_REF] Marcati | On the global stability of the logistic age dependent population growth[END_REF][START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF]) Under the assumption R 0 := +∞ 0 b(a)Π(0, a)da > 1, which expresses the renewal of generations in absence of competition, there exists a unique nontrivial asymptotically exponentially stable steady state given by: Even if simulations (shown in Figure 1) may lead us to the false impression that the long time behavior of the stochastic processes is the same as for their deterministic limit, the situation is much more complicated. We show that the stochastic process goes extinct almost surely, but after having spent an exponentially long time in the neighborhood of the stationary solution ξ(da) = n(a)da (15) of its deterministic approximation. Here, deterministic and stochastic models yield different conclusions, but the results for the limiting PDE make it possible to understand the behavior of the stochastic processes. With small system size the population size demonstrates wild fluctuations, and extinction is likely to occur quickly. As system size increases, fluctuations in population size are reduced, extinction takes more time, and the mean size of non-extinct populations converges toward the equilibrium solution of the deterministic model approximation.

First of all, on compact time intervals, the stochastic process belongs with large probability to a tube centered on the deterministic limit. This implies by Proposition 2 that:

∀ε > 0, ∃t ε > 0, ∀t > t ε , lim n→+∞ P ρ(Z n t , ξ) > ε = 0, ( 16 
)
where ρ is for instance the Dudley metric which meterizes the topology of weak convergence on M F ( X ) (e.g. [START_REF] Rachev | Probability Metrics and the Stability of Stochastic Models[END_REF] p79). Heuristically, stochastic and deterministic processes have the same behavior on compact time intervals. In particular, since the deterministic process enters a given ε-neighborhood of its nontrivial stationary solution ξ after a sufficiently large time that does not depend on n, the stochastic process enters an 2ε-neighborhood of ξ with a probability that tends to 1 when n → +∞. However, when T → +∞, the long time behavior differ.

Proposition 7. For fixed n, one has almost sure extinction:

P (∃t ∈ R + , Z n t , 1 = 0) = 1. ( 17 
)
Because of logistic competition, the population stays finite with a size that is controlled and cannot grow to infinity (see Proposition 5.6 [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF]). The stochastic process finally leaves the neighborhood of ξ to drive the population to extinction. We can thus ask how long the stochastic process stays in the neighborhood of ξ.

Let 0 < γ < ξ, 1 and assume that we start our microscopic process in the neighborhood of the equilibrium ξ: ρ(Z n 0 , ξ) < γ a.s. An estimate of the time T n = inf{t ∈ R + , ρ(Z n t , ξ) ≥ γ} that the stochastic process spends in the neighborhood of ξ can be established by large deviation results à la Freidlin and Ventzell [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF][START_REF] Dembo | Large Deviation Techniques and Applications[END_REF] and generalized to our measure-valued setting (see Section 5.2 [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF]). The proof (see [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF]) is based on the fine properties of the convergence of Z n to its deterministic limit.

Proposition 8. ∃ V > 0, V > 0, ∀δ > 0, lim n→+∞ P(e n(V -δ) < T n < e n( V +δ) ) = 1 (18) 
When n → +∞, T n tends to infinity in probability and extinction eventually disappears in the limit: unlike the microscopic process that gets extinct almost surely, its deterministic limit admits a nontrivial equilibrium. As a corollary, for every sequence (t n ) n∈N * such that lim n→+∞ t n e -n(V -δ) = 0 and lim n→+∞ t n = +∞, lim

n→+∞ P ρ(Z n tn , ξ) > ε = 0. ( 19 
)
Equation ( 18) is interesting in itself to understand the persistence time of a stochastic finite population ; it is useful also to separate timescales in models of adaptive dynamics, as we shall see in the next sub-section.

Application to the adaptive dynamics theory of phenotype evolution

In the theory of phenotype evolution, mutations are responsible for generating trait diversity in the population while natural selection acting through interaction and competition determines the traits that become fixed. Important questions in evolutionary biology require to include age structure in population models, as Charlesworth [START_REF] Charlesworth | Evolution in Age-structured Population[END_REF], Medawar [START_REF] Medawar | Old age and natural death[END_REF] and Stearns [START_REF] Stearns | The Evolution of Life Histories[END_REF] emphasized. The selective pressure and fixation probability of a trait may be functions of the age at which the trait is expressed, as well as of the age structure of the population. Reciprocally, the traits that are fixed can modify the age structure of the population. The so-called "adaptive dynamics" framework considers large population limits and rare mutations. Adaptive dynamics theory describes the evolution of traits in the population when it is possible to separate the timescales of ecology (birth and death events) and evolution (generation of new traits). For populations with only trait structure, adaptive dynamics theory has been introduced and developed by Hofbauer and Sigmund [START_REF] Hofbauer | Adaptive dynamics and evolutionary stability[END_REF], Marrow et al. [START_REF] Marrow | The coevolution of predator-prey interactions: ESSs and red queen dynamics[END_REF], Dieckmann and Law [START_REF] Dieckmann | The dynamical theory of coevolution: a derivation from stochastic ecological processes[END_REF], Metz et al. [START_REF] Metz | Adaptative dynamics, a geometrical study of the consequences of nearly faithful reproduction[END_REF][START_REF] Durinx | Adaptive dynamics for physiologically structured models[END_REF] and Champagnat et al. [START_REF] Champagnat | A microscopic interpretation for adaptative dynamics trait substitution sequence models[END_REF][START_REF] Champagnat | Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation[END_REF][START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF].

These studies have been generalized to populations with age and trait structures by Méléard and Tran [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF]. Therein, equations of adaptive dynamics are derived from microscopic models by following Champagnat [START_REF] Champagnat | A microscopic interpretation for adaptative dynamics trait substitution sequence models[END_REF] and several examples are studied and illustrated with numerical simulations. When mutations are sufficiently rare, natural selection wipes out the weakest competitors so that the resident population at the next mutation is monomorphic and in a stationary state. The estimates of extinction time provided in Section 2.4 tell us that mutations should not be too rare if we wish to neglect the events of extinctions before the occurrence of a new mutant. By neglecting the transition periods, it is possible to describe evolution as a jump process by considering only the successive monomorphic equilibria (trait value and corresponding stationary age structure). If there exists a unique nontrivial stable stationary solution ξ x (da) = n(x, a)da, it is sufficient to consider the trait valued process that jumps from one equilibrium trait to another. This process, called trait substitution sequence process for age-structured populations (TSSPASP), introduced and analyzed in [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF], can be described as follows.

• In a monomorphic population of trait x at equilibrium, mutants are generated with rate

p R+ b(x, a) n(x, a)da = p n(x, 0) = p N x E(T x )
where N x = +∞ 0 n(x, a)da is the size of the population at equilibrium and E(T x ) is the expected individual lifespan:

E(T x ) = +∞ 0 e - R a 0 d(x,α, b ξxU(x,α))dα da.
• The probability that the resulting mutant population with trait x + h replaces the resident population with trait x cannot always be calculated explicitly when we deal with populations that are structured by age. However, it can be computed numerically (e.g. [START_REF] Méléard | Trait substitution sequence process and canonical equation for age-structured populations[END_REF]).

The theory of random point processes is necessary to model these events that occur at discrete random times. Evolutionary models have also been developed from a deterministic point of view, but with different renormalizations that do not describe the same rare mutations (Diekmann et al. [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF], Carrillo et al. [START_REF] Carrillo | Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model[END_REF]).

If mutation steps are additionally assumed small, the TSSPASP can be approximated by the solution of an ordinary differential equation that generalizes the "canonical equation of adaptive dynamics" (see Dieckmann and Law [START_REF] Dieckmann | The dynamical theory of coevolution: a derivation from stochastic ecological processes[END_REF], Champagnat [START_REF] Champagnat | Convergence and existence for polymorphic adaptive dynamics jump and degenerate diffusion models[END_REF]).

Recently, models of populations with age structure have been considered in adaptive dynamics theory dealing with functional traits (e.g. [START_REF] Dieckmann | The adaptive dynamics of function-valued traits[END_REF][START_REF] Ernande | Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation[END_REF][START_REF] Parvinen | Function-valued adaptive dynamics and the calculus of variations[END_REF]). The traits x(a) are functions of age (growth curve, flowering intensity, birth or death curves...) In Dieckmann et al. [START_REF] Dieckmann | The adaptive dynamics of function-valued traits[END_REF] or Parvinen et al. [START_REF] Parvinen | Function-valued adaptive dynamics and the calculus of variations[END_REF], the birth and death rates are functions of the functional trait, but not of age (for example, the averaged form b(x) = B( +∞ 0

x(a)da) with B ∈ C b (R, R + ) was assumed).

Age and trait structures: model examples and insights from simulations

We now present several examples of interesting biological questions involving populations with age and trait structures. Mechanisms are described at the individual level, and we are interested in the resulting macroscopic dynamics. Not surprisingly, the more realistic and complex the model is, the more difficult it is to carry out an analytical study of the model behavior. Simulations offer an alternative and complementary approach.

Simulation algorithm

Following the algorithms proposed by Fournier and Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF], it is possible to simulate exactly the law of the process Z (4), without approximation scheme or grid. The main difficulty comes from the fact that the rates depend on age that changes continuously in time. To handle this, we use acceptance-reject procedures. Let Z 0 ∈ M P ( X ) be an initial condition. We simulate by recursion a succession of birth and death events that modify the size of the population. Let us set T 0 = 0 for the event number 0. Assume that we have already simulated k events (k ∈ N), and that the last of these events had occurred at time T k . The size of the population N T k = Z T k , 1 at time T k is finite and the global jump rate is upper bounded by bN T k + d(1 + N T k )N T k , which is finite. To obtain T k+1 for the k + 1 th event, we simulate candidate events from time T k . The latter are given by a sequence (τ k,ℓ ) ℓ∈N of possible event times following a Poisson point process with intensity bN T k + d(1 + N T k )N T k . The first of these times which is accepted by the procedure defines T k+1 . 0. We set τ k,0 := T k , N τ k := N T k and ℓ := 0.

1. We simulate independent exponential variables ε k,ℓ with parameter 1 and we define

τ k,ℓ+1 = τ k,ℓ + ε k,ℓ /[ bN T k + d(1 + N T k )N T k ]. 2. On the interval [τ k,ℓ , τ k,ℓ+1 [, only aging takes place. For i ∈ [[1, N T k ]], the age of individual i becomes A i (τ k,ℓ ) + τ k,ℓ+1 -τ k,ℓ at time τ k,ℓ+1 . 
3. We simulate an integer valued r.v.

I k,ℓ uniformly distributed on [[1, N T k ]],
and we define the following quantities in [0, 1]:

e m1(τ k,ℓ+1 , Zτ (k,ℓ+1) -, I k,ℓ ) = `1 -p ´b(XI k,ℓ (τ (k,ℓ+1)-), AI k,ℓ (τ (k,ℓ+1) -)) b + d(1 + NT k ) e m2(τ k,ℓ+1 , Zτ (k,ℓ+1) -, I k,ℓ ) = e m1(τ k,ℓ+1 , Zτ (k,ℓ+1) -, I k,ℓ ) + p b(XI k,ℓ (τ (k,ℓ+1)-), AI k,ℓ (τ (k,ℓ+1) -)) b + d(1 + NT k ) e m3(τ k,ℓ+1 , Zτ (k,ℓ+1) -, I k,ℓ ) = e m2(τ k,ℓ+1 , Zτ (k,ℓ+1) -, I k,ℓ ) + d " XI k,ℓ (τ (k,ℓ+1)-), AI k,ℓ (τ (k,ℓ+1) -), Zτ (k,ℓ+1) -U (XI k,ℓ (τ (k,ℓ+1)-), AI k,ℓ (τ (k,ℓ+1) -)) " b + d(1 + NT k )
4. We simulate a r.v. Θ k,ℓ with uniform law on [0, 1].

(a) If 0 ≤ Θ k,ℓ < m 1 (τ k,ℓ+1 , Z τ (k,ℓ+1) -, I k,ℓ
), then the k + 1 th event occurs: Individual I k,ℓ gives birth to a clone with age 0 ∈ R + and one defines

T k+1 = τ k,ℓ+1 . (b) If m 1 (τ k,ℓ+1 , Z τ (k,ℓ+1)-, I k,ℓ ) ≤ Θ k,ℓ < m 2 (τ k,ℓ+1 , Z τ (k,ℓ+1) -, I k,ℓ
), then the k +1 th event occurs: Individual I k,ℓ gives birth to a mutant of age 0 and trait x + h where h follows the distribution probability of density k(X

I k,ℓ (τ (k,ℓ+1)-), A I k,ℓ (τ (k,ℓ+1)-), h ′ ). One defines T k+1 = τ k,ℓ+1 . (c) If m 2 (τ k,ℓ+1 , Z τ (k,ℓ+1)-, I k,ℓ ) ≤ Θ k,ℓ < m 3 (τ k,ℓ+1 , Z τ (k,ℓ+1) -, I k,ℓ
), then the k +1 th event occurs: Individual I k,ℓ dies and one defines T k+1 = τ k,ℓ+1 .

(d) If m 3 (τ k,ℓ+1 , Z τ (k,ℓ+1)-, I k,ℓ ) ≤ Θ k,ℓ then nothing happens. We reiterate the algorithm from 1.

with ℓ + 1 in place of ℓ until we obtain the k + 1 th event.

Remark 2. To each individual are associated three clocks corresponding respectively to birth (with or without mutation) and death events. The event that actually occurs corresponds to the minimum of these durations, over the set of all individuals.

Examples

Simulations of particular cases are now presented. For each example, simulations have been run several times ; only one particular simulation is presented for each example as an illustration. The programs have been written with the R freeware (1 ) and Matlab.

Example 1: Evolution of offspring size in age structured populations with sizedependent competition

In this example, we are interested in a population with size-dependent competition, and ask how the evolution of body size changes when we take the growth of individuals into account. Individuals are characterized by their body size at birth x 0 ∈ [0, 4] which is the heritable trait subject to mutation, and by their physical age a ∈ [0, 2], with aging velocity 1. Body size is an increasing function of age:

x = x 0 + g a, ( 20 
)
where g is the growth rate, which is assumed constant and identical for all individuals. An individual of trait x 0 ∈ [0, 4] gives birth at the age independent rate:

b(x 0 ) = 4 -x 0 . (21) 
This is a simple expression of the standard trade-off between fecundity and offspring size (e.g. Stearns [START_REF] Stearns | The Evolution of Life Histories[END_REF]). With probability p = 0.03 a mutation occurs and affects x 0 . The new trait is x ′ 0 = min(max(0, x 0 + y x0 ), 4), where y x0 is a Gaussian r.v. with expectation 0 and variance 0.01. With probability 1 -p, the offspring inherits its parent's trait, x 0 .

The death rate of an individual with trait x 0 ∈ [0, 4] and age a ∈ [0, 2] living in a population

Z ∈ M P ([0, 4] × [0, 2]
) is given by:

d(x 0 , a, Z) = e X U (x 0 + g a -x ′ 0 -g α)Z(dx ′ 0 , dα), (22) 
where

U (x -y) = 2 300 1 - 1 1 + 1.2 exp (-4(x -y)) ∈ 0, 2 300 (23) 
is the asymmetric competition kernel introduced by Kisdi [55] which gives a competitive advantages to larger individuals. The important point is that the size of competitors, hence the intensity of competition between them, are not constant when g = 0. Even in a monomorphic population, size varies across individuals and competition experienced by each individual varies with its size, which is age-dependent.

In the simulations of Figure 2, we chose g = 0, g = 0.3 and g = 1. The population at time t = 0 is monomorphic with trait x 0 = 1, 06, and contains N 0 = 900 individuals. The initial age distribution is uniform on [0, 2], and the corresponding sizes are computed using [START_REF] Charlesworth | Evolution in Age-structured Population[END_REF]. For each t the support of the measure Nt i=1 δ (x0)i is represented. For g = 0 (constant size during life), we observe a branching phenomenon around t = 300: the distribution of trait x 0 splits into two "branches". The initial branch first stabilizes around some equilibrium (x 0 ≃ 2.7), and then, a second branch appears below (x 0 ≃ 2). For g = 0.3, the population branches into two subpopulations (x 0 ≃ 2.7 and x 0 ≃ 2) sooner, around t = 100. For g = 1, the branching phenomenon is not observed anymore. The occurrence of branching in Fig. 2 (a) shows that the coexistence of subpopulations can be promoted by the competition-fecundity trade-off: small individuals may compensate for their competitive inferiority by reproducing more often. In (b), non-zero body growth results in a wider size-structure in the population, so that the conditions of branching are met earlier. Here, growth acts as a mixing factor, which lessens the differences between traits. In (c), individual growth is so fast that the differentiation of a subpopulation of smaller individuals is always prevented by strong competition with very large individuals. The age at maturity a M separates the life history of individuals into two periods: a growth period and a reproduction period. Calsina and Cuadrado [START_REF] Calsina | A model for the adaptive dynamics of the maturation age[END_REF] also studied a population that is structured into two age classes, juveniles and adults. Assuming that the length of the juvenile period is exponentially distributed, they described population dynamics by a system of two ODEs. They then modelled the evolution of the age at maturity by considering whether a small mutant population can invade the resident population, leading to questions of stability of the stationary solutions. Ernande et al. [START_REF] Ernande | Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation[END_REF] considered a similar problem: their population was divided into age classes, and the age at maturity was plastic and determined by a heritable reaction norm that was subject to mutation.

In our model, the size of an individual with trait (x 0 , g, a M ) and age a is given by:

x(a, x 0 , g, a M ) = x 0 + g (a ∧ a M ). ( 24 
)
Before maturity, individuals (called juveniles) do not reproduce and invest all their resources into growth.

Once the age a M has been reached, individuals (called adults) have constant size and begin to reproduce (see Fig. 3).

The birth rate of an individual with traits (x 0 , g, a M ) ∈ [0, 4] × [0, 2] × [0, 2] is 0 for juveniles and a decreasing function of x 0 for adults:

b(x 0 , a M , a) = (4 -x 0 ) 1 a≥aM . (25) 
The traits x 0 , g and a M are heritable and can be affected in offspring by mutation that occur with probability p = 0.03. Mutated traits are chosen according to:

x ′ 0 = min(max(0, x 0 + y x0 ), 4) g ′ = min(max(0, g + y g ), 2), a ′ M = min(max(0, a M + y aM ), 2), where y x0 , y g and y aM are Gaussian independent r.v. with expectation equal to 0 and variance equal to 0.01. The death rate of an individual with traits (x 0 , g, a

M ) ∈ [0, 4] × [0, 2] × [0, 2] and age a ∈ [0, 2] in the population Z ∈ M P ([0, 4] × [0, 2] × [0, 2] × [0, 2]
) is given by:

d(x 0 , g, a M , a, Z) =    d 0 × g + 10 -5 e X U (x 0 + g a -x ′ 0 -g ′ (a ′ ∧ a ′ M ))Z(dx ′ 0 , dg ′ , da ′ M , da ′ ) if a ≤ a M , e X U (x 0 + g a M -x ′ 0 -g ′ (a ′ ∧ a ′ M ))Z(dx ′ 0 , dg ′ , da ′ M , da ′ ) if a M < a ≤ 2, +∞ if a > 2,
where U is the competition kernel introduced in (23) and d 0 ≥ 0 measures the adversity of environmental conditions. During the juvenile period the main factor of death is related to growth: individuals with high growth rates g need more ressources and incur a survival cost of foraging ; thus, the density-independent component d 0 g of their death rate is higher if d 0 is larger. Then, during the adult period, there is no more growth and death is fully determined by logistic competition, which was soften for juvenile individual. This may apply to species that shift to different habitats or resources as individuals reach maturity.

As in Example 1, we chose as initial state a monomorphic population (x 0 = 1.06, g = 0.74 and a M = 0.20) with N 0 = 900 individuals whose age is uniformly drawn in [0, 2]. Fig. 4 shows that changing d 0 can result in very different dynamics. When d 0 is small (Fig. 4(a), d 0 = 3.3 10 -3 ), individuals with higher growth rates do not pay much of a cost (∀g ∈ [0, 2], 0 ≤ d 0 g ≤ 6.6 10 -3 ). The juvenile death rate is small (of the order of 10 -2 for a population of 1000 individuals) compared to the adult death rate (of the order of 1). Since competition favors larger individuals (the term U (x 0 + ga M -x) describing competition exerted by an individual with size x on an adult with size x 0 + ga M is smaller when x 0 + ga M is large). Hence there is a strong selective advantage to grow fast (g ≃ 2) and long (a M ≃ 1.3). The reproduction loss caused by delayed maturity is further compensated by the evolution of relatively small size at birth. Consequences for population dynamics are shown in Fig. 6. The population stabilizes numerically around a state with high growth rate and late maturation.

When d 0 is large (Fig. 4(b), d 0 = 0.5), a state with moderate growth and early maturation evolves. We observe that the growth rate decreases towards 1 and evolution seeks to minimize the age at maturity (a M ≃ 0.3). To understand the changes when d 0 increases, let us introduce the probability that an individual of traits (x 0 , g, a M ) born at t = c survives until age at maturity a M in a population (Z t ) t∈R+ :

Π(x 0 , g, a M ) = E exp - c+aM c d x 0 , g, a M , a, Z a da . (26) 
When the population size is bounded by N , the probability Π(x 0 , g, a M ) is upper and lower bounded by: In the simulations, we observe that the size of the population remains bounded and that it stabilizes around an "equilibrium" value (600 for d 0 = 3.3 10 -3 and 200 for d 0 = 0.5, see Fig. 5). The "equilibrium" traits obtained in the two simulations of Figure 4 are distributed around (x 0 , g, a M ) = (1.8, 2, 1.3) and (x 0 , g, a M ) = (2.6, 0.8, 0.3). The strategy that is observed can be naturally explained. For d 0 = 0.5 and N = 600, we hence obtain 0.27251 ≤ Π(1.8, 2, 1.3) ≤ 0.27254, instead of Π(1.8, 2, 1.3) ≃ 0.99 when d 0 = 3, 3.10 -3 , whereas 0.88690 ≤ Π(2.6, 0.8, 0.3) ≤ 0.88692. For d 0 = 0.5, the traits (x 0 , g, a M ) = (2.6, 0.8, 0.3) are more competitive. They correspond to individual who have a higher probability to reach maturity and reproduce, even if these individuals are likely to be exposed to higher competition pressure that individuals with trait (x 0 , g, a M ) = (1.8, 2, 1.3).

exp -a M d 0 g + N • 10 -5 2 300 ≤ Π(x 0 , g, a M ) ≤ exp (-d 0 ga M ) . (27) 
In the case of a favorable environment with abundant ressources (d 0 is small), the growth period has a small cost and a long growth phase (a M large) allows individuals to reach a mortality refuge: i.e. a state where they escape the effects of strong competition pressure. When d 0 increases, the mortality refuge See main text for details.

The transition from "cheap" growth (low d 0 , Fig. 4(a)) to "expensive" growth (high d 0 , Fig. 4(b)) is investigated numerically in Fig. 6, where d 0 varies between 0.01 and 0.6. Figure 6(a) shows the kernel density estimator (e.g. [START_REF] Bosq | Théorie de l'estimation fonctionnelle[END_REF]) of the maternal age at birth. Fig. 6(b) shows the density estimator of lifespan. When d 0 increases from 0.01 (favorable environment) to 0.6 (hostile environment), lifespan and reproduction age decrease continuously from 1.5 to 0.5. Compared to the results of [START_REF] Taborsky | Unexpected discontinuities in life-history evolution under sizedependent mortality[END_REF], the surfaces displayed in Fig. 6 do not show strict discontinuities, but the smooth variation of the distribution of maternal age at birth (a) contrasts with an abundant shift in the distribution of lifespan (b). This shift occurs in spite of the survival probability (26) (and hence the lifespan density) being a continuous function of d 0 .

Conclusion

Classical models for the dynamics of populations with continuous age structure ignore stochastic processes operating at the level of individuals, and therefore take the form of deterministic PDEs, e.g. the celebrated McKendrick-von Foerster equation. Stochastic models that start at the level of individual processes and account for interactions between individuals face serious mathematical challenges. One way forward is to derive large population limits from these IBMs. This approach was followed here for a large class of IBMs, for which the large population approximation is a PDE that generalizes the Mc Kendrick-Von Foerster model. There are qualitative limitations of the large population approximation, that we demonstrated by showing almost sure extinction of the logistic age-structured population process. However, stochastic and deterministic approaches appear to yield complementary insights into the population dynamics: prior to extinction, stochastic trajectories are proved to spend an exponentially distributed time near the solution of the deterministic approximation model. In general, the rigorous derivation of the deterministic limit from stochastic individual-level processes allows one to derive confidence intervals for model parameters and thus open new ways of confronting models to real individual data.

In populations that are structured by age and trait variation (due e.g. to genetic mutation), the analytical study even of the large population approximation becomes intractable. But the rigorous construction of the individual-based stochastic process yields an efficient algorithm for numerical simulations of population age and trait distributions. Two biological examples were presented. In the first example, offspring size varies genetically and evolves under size-dependent competition and the genetic constraint of a tradeoff with the birth rate. Individual growth and the resulting age and size structures have dramatic influences on trait evolution. Moderate growth shapes the population size structure in a way that exacerbates competition and favors the rapid split of the population into two 'evolutionary branches' (i.e. the trait distribution becomes bimodal). With more rapid individual growth, the size distribution widens even more and competition intensifies to the point where the divergence of trait branches becomes impossible (i.e. the population trait distribution remains unimodal).

In the second example, three traits were allowed to vary genetically and co-evolve: offspring size, growth rate, and age at maturity. The corresponding population model assumes size-and stage-dependent competition. As in the previous example, offspring size evolves under the genetic constraint of a trade-off with the birth rate. The growth rate evolves under a risk-competition tradeoff : faster growth (requiring e.g. acquisition of more resources, hence riskier behavior) entails a mortality cost but ensures a larger size at maturity and hence a competitive advantage in the reproductive stage. Age at maturity evolves under a reproduction-competition tradeoff: reproductive (i.e. mature) individuals face a higher mortality risk due to competition than juveniles. Model simulations were performed to analyze the effect of the mortality cost of growth on the traits' coevolution. High cost promotes the evolution of a moderate growth rate, together with large size at birth and very early maturity. The corresponding distribution of longevity in the population is skewed towards low values. Interestingly, as the mortality cost of growth decreases, the longevity distribution shows a relatively abrupt shift towards large values -a qualitative change in the population demography that was not anticipated given the continuous dependence of the longevity density on the cost of growth.

These examples highlight that the mathematical and numerical analysis of stochastic population models with age and trait structure have the potential to uncover unexpected phenomena of biological interest and to advance ecological and evolutionary population theory in significant ways.
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  (Lemma C), and which requires the Hilbert-Schmidt embedding W 3D+1,D 0 ֒→ H.S. W 2D+1,2D 0 . C -(D+1),2D and C -D,2D are the spaces in which the estimates of the norm of the finite variation part of the process are established (see Section 4.4.2 of [85]). We need these two spaces since ∂ a maps C D+1,2D into C D,2D . The norm of the martingale part is controlled in W -D,3D 0 . Finally, uniqueness of the limiting value is proved thanks to the embedding W -3D+1,D 0 ֒→ C -3D+1,0 .
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 1 Figure 1: Simulated size of a logistic age-structured population. The model is given by (4) rescaled with n = 1, 5 and 10 (from left to right).
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 2 Figure 2: Trait dynamics in an age structured population with size-dependent competition. The evolving trait is offspring size. See Example 1 in main text for details. (a) g = 0, (b) g = 0.3, (c) g = 1.
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 3 Figure 3: Size x as a function of age a. The age at maturity is denoted by aM . Before maturity, juveniles born with size x0 grow at rate g. After maturity, the size of adults is constant.

Figure 4 :

 4 Figure 4: Time dynamics of three co-evolving traits: size at birth, growth rate, age at maturity (rows 1-3), and population structure (distribution of maternal ages at birth) in the "equilibrium state" (row 4). See Exemple 2 in main text for details. (a): d0 = 3.3 10 -3 , (b): d0 = 0.5.
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 56 Figure 5: Population size dynamics as size at birth, growth rate and age at maturity coevolve. See Fig. 4 and main text for details. (a) d0 = 3, 3.10 -3 , (b) d0 = 0.5

  3.2.2 Example 2: Coevolution of offspring size, growth rate and age at maturity under size and stage-dependent competition As in Example 1, we consider an age-and trait-structured population where the traits are the size at birth x 0 ∈ [0, 4], the growth rate g ∈ [0, 2], and the age at maturity a M ∈ [0, 2]. The scalar age a ∈ [0, 2] (with aging velocity 1) still corresponds to the physical age.
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