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Stochastic and deterministic approaches for populations with age

and trait-structure

Régis Ferrière1, Viet Chi Tran2

22nd September 2008

Abstract

Understanding how stochastic and non-linear deterministic processes interact is a major challenge
in population dynamics theory. After a short review, we introduce a stochastic individual-centered
particle model to describe the evolution in continuous time of a population with (continuous) age and
trait structures. The individuals reproduce asexually, age, interact and die. In a large population
limit, the random process converges to the solution of a Gurtin-McCamy type PDE. We show that
the random model has a long time behavior that differs from its deterministic limit. However, the
results on the limiting PDE and large deviation techniques à la Freidlin-Wentzell provide estimates
of the extinction time and a better understanding of the long time behavior of the stochastic process.
This has applications in the theory of Adaptive Dynamics. In a last section, we present on simula-
tions three biological issues dealing with the consequences of size plasticity when taking growth into
account, with growth-reproduction trade-offs and with periodic behavior.

Nous illustrons ici certaines interactions entre processus probabilistes et déterministes en dy-
namique des populations. Après une courte revue, nous commençons par introduire un modèle
particulaire stochastique individu-centré pour décrire l’évolution en temps continu d’une population
structurée en age (continu) et en trait. Les individus se reproduisent de façon asexuée, vieillissent,
interagissent et meurent. Dans une limite de grande population, notre processus aléatoire converge
vers la solution d’une EDP du type Gurtin-McCamy. Nous montrons que le comportement en temps
long du processus aléatoire diffère de celui de sa limite déterministe. Cependant, les deux types de
modèles sont complémentaires : les résultats sur l’EDP limite et des techniques de grandes déviations
à la Freidlin-Wentzell, nous fournissent des estimées du temps d’extinction et une description précise
du comportement en temps grand de notre processus aléatoire, avec des applications à la théorie
des Dynamiques Adaptatives. Dans une dernière section, nous présentons sur des simulations trois
problèmes biologiques liés aux conséquences de plasticité de la taille suite à la prise en compte de la
croissance, aux choix de stratégies d’histoire de vie et aux apparitions de phénomènes périodiques.

Keywords: Population dynamics, age-structure, individual-centered model, large population scaling,
extinction, reproduction-growth trade-off.
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This paper is a proceeding of the CANUM 2008 conference, where a mini-symposium entitled Hybrid
methods was organized by Tony Lelièvre and Madalina Deaconu. In this work, we are interested in the
modelling of populations with age and trait structures. In particular (and this was the purpose of the
mini-symposium Hybrid methods) we wish to emphasize the interplay between stochastic and determin-
istic descriptions.

Structured populations are populations in which the individuals differ according to variables that char-
acterize their survival and reproduction abilities. Traits are morphological, physiological or behaviorial
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variables that are hereditarily transmitted from a parent to its descendants unless a mutation happens.
Other types of variables are ages, which are increasing functions of time, sex or spatial location. Here we
focus on population with trait and age structures.
Age variables sum up individuals past histories and it is natural to take several ages into account to
model the present dynamics. Examples are the physical age (the time since birth), the biological age
(the intrinsic physiological stage that can grow nonlinearly in time), the age or stage of an illness, time
since maturation... To take age-structure into account allows to enrich the modelling of individuals’life
histories. For example, the salmon Oncorhynchus gorbuscha breeds at about 2 years-old, after returning
to native freshwater streams. To study such species, it is important to take life stages into account.
Moreover, age and trait-structures evolve jointly, since the age of expression of a trait and the life-history
implied by a trait modify its fixation into the population, as well as future evolution.

We start with a short review of the literature for stochastic and deterministic modelling of popula-
tions with age and trait-structures in Section 1. In Section 1.3, the links between these descriptions is
established: from a stochastic individual-centered model, we recover the PDEs of Demography via a large
population limit. Section 1.4 proposes some illustrations of how deterministic and stochastic approaches
complement each other. The PDEs bring us information to study the measure-valued stochastic differen-
tial equations (SDEs) that are introduced. The latter in turn provides results that can not be observed
in large populations. An application to the study of extinction time is presented. Using these results, a
second application (obtained in [65]) in the Adaptive Dynamics theory for Evolution is developed in Sec-
tion 1.5. This example highlights the importance of probabilistic modelling of point events. We address
some interesting biological applications through simulations in Section 2.

1 Populations with continuous age (and trait) structure: a brief

review

Here, we restrict our attention to the literature dealing with continuous age and time population models
(for discrete-time models with age or stage classes, the interested reader can refer to [13, 18, 81] for
instance).

1.1 Deterministic models

Population models with continuous age and time that generalize the equations of Malthus [59] and Ver-
hulst’s well-known logistic equation [84] have often been written as PDEs (see e.g. [18, 43, 72, 81, 86] for
introductory presentations).

PDE models for populations structured by a scalar age have been introduced by Sharpe and Lotka
[77], Lotka [58], McKendrick [62] and Von Foerster [34]: ∀t ≥ 0, ∀a ≥ 0,

∂n

∂t
(a, t) +

∂n

∂a
(a, t) = −d(a)n(a, t), n(0, t) =

∫ +∞

0

b(a)n(a, t)da, n(a, 0) = n0(a), (1)

where d, b and n0 are nonnegative continuous functions (death and birth rates, initial age distribution)
with b bounded and n0 integrable. Equation (1) is known as McKendrick-Von Foerster PDE. It is a
transport PDE that describes the aging phenomenon, with death terms and births on the boundary a = 0.
A drawback is that phenomena that model regulations in the size of the population or environmental
limitations are not taken into account (no interaction terms).

The first nonlinear models for populations with age structure have been introduced by Gurtin and
MacCamy [39]. The rates b(a) and d(a) of (1) are replaced by functions b(a, Nt) and d(a, Nt) of the

scalar age a ∈ R+ and of the size Nt =
∫ +∞

0
n(a, t)da ∈ R+ of the population at time t. The nonlinearity

involves the unknown solution and introduces a feed-back term that allows to control the population size.
A particular case is when

d(a, Nt) = d(a) + ηNt (2)

where d(a) is the natural death rate at age a and where ηNt is the logistic competition term. The
stationary solutions, their global stabilities and estimates of the rates of decay are studied by Marcati
[60]. Stability conditions for a more general class of birth and death rates have been obtained in [32, 31].
The logistic competition term assumes that the competitors exert the same interactions. Busenberg and
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Iannelli [9] study the case where the death rate takes the form d(a) + F (t, Nt, S1(t), . . . Sm(t)) where

∀i ∈ [[1, m]] , Si(t) =
∫ +∞

0
γi(a)n(a, t)da, F being continuous in t and Lipschitz continuous with respect

to the other variables, and the γi being positive continuous bounded functions that describe the pressure
exerted by an individual depending on its age. However the competition term remains non-local (and
thus finite-dimensional).
Webb [86] proposed PDEs with local interactions in the coefficients with rates of the form b(a, n(., t)) and
d(a, n(., t)), where n(., t) belongs to the Banach space L1(R+, R+) of integrable functions w.r.t. a ∈ R+.
The case of multitype populations was also considered. Local interactions mean that the competition
terms are of the form

∫ +∞

0
U(a, α)n(α, t)dα where U(a, α) is the interaction of an individual of age α on

an individual of age a.
More recently, entropy methods have extended to equations that are not conservation laws the notion

of relative entropy for conservative equations. They have been developed by Perthame and coauthors
[68, 69, 72, 73] with the aim of providing new proofs of existence of solutions, long time behavior or
attraction to periodic forcing.

There are many examples in the literature where additional structures other than age-based have been
taken into account. The population can be divided into a finite number of classes: see [86] for a survey on
multi-type models, including prey-predator or epidemiological models (e.g. [10, 44]). In epidemic models,
the class of susceptible, infectious or removed individuals are considered, leading to different behavior
in the propagation of the infectious illness. From the modelling point of view, taking age-structure into
account is important as, for example, the time since the primal infection matters.

To our knowledge, populations with age structure and spatial diffusions have been first studied by
Langlais [55, 56, 57] and Busenberg and Iannelli [8].

Structure variables with values in a non-finite state-space other than position have been considered
for instance by Rotenberg [76] for instance. He considered the maturation velocity x ∈ X =]0, 1] as a
trait that can change at birth and during the life of an individual. For an individual born at time c ∈ R

and with traits xi ∈]0, 1] on [ti, ti+1[ (i ∈ N, t0 = c and (ti)i∈N are times of trait change in [c, +∞[), the
biological age at t > c is a =

∑
i∈N

xi(ti+1 ∧ t− ti ∧ t). Here, the biological age a differs from the physical
age t − c as soon as ∃i ∈ N, ti < t and xi 6= 1. A nonlinear version of this model has been studied by
Mischler et al. [69].

1.2 Stochastic models

Dealing with stochastic models, generalization of the Galton-Watson process [38] have been studied by
Bellman and Harris [3, 40], and then Athreya and Ney ([1] Chapter IV). They consider non Markovian
processes, called age-structured branching processes, in which the lifespan of an individual does not follow
an exponential law. Upon death, a particle is replaced by a random number of daughter particles, with
a reproduction law that does not depend on the age of the mother, nor on the state of the population.

The assumptions of births at the parent’s death and of independence between the reproduction law
and the age of the parent are biologically restrictive. Kendall [52], Crump and Mode [20, 21], Jagers
[46, 47], Doney [27], study birth and death processes in which a particle can give birth at several random
times during its life, with rates that may depend on its age. More recently Lambert [54] uses contour
processes to study the properties of splitting trees which are formed by individuals with independent and
identically distributed (i.i.d.) lifespans and who give birth at the same constant rate during their lives.
His results give a new interpretation of the link between branching processes and Lévy processes [37, 74].

In the two types of models introduced above, particles alive at the same time are independent, which
is also a biologically restrictive assumption. Wang [85], Solomon [78] have considered birth and death
processes in which the lifespans of individuals are independent, but where the birth rate and reproduction
law of each particle depend on the state of the population. Oelschläger [70], Jagers [46], Jagers Klebaner
[50] study models in which both the birth and death rates include interactions, but these rates remain
bounded. In [50, 46], the interactions vanish in the limit, so that the authors recover the population-
independent behaviors. These models hence exclude logistic-type interactions. Such interactions are
included in the models considered by [83].

When the individuals interact, the key branching property does not hold, and classical approaches
based on generating or Laplace functions (e.g. [1]) do not apply. The behavior of the stochastic processes
is then difficult to study. However, in a large population limit, a law of large number can be established
[85, 78, 70, 83], under which we obtain a limiting deterministic process that can be identified as a weak
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solution of a PDE that generalizes the McKendrick-Von Foerster equation (1). We present such results in
Section 1.3. Once this link between PDEs and stochastic processes has been evaluated, results for PDEs
may provide interesting results for the stochastic process, even if the behaviors of the stochastic model
and of its corresponding deterministic limit differ (see Sections 1.4 and 1.5).

Multitype populations with age-structure have been considered by many authors (e.g. Athreya and
Ney [1], Chap. V.10). A stochastic model of epidemics with age structure has been considered for in-
stance in [19]. Stochastic models of populations with age and trait-structures have been addressed by
Jagers [48, 49] and Méléard and Tran [65] for instance. In [65], the mutation rate which is responsible
for generating the trait diversity is decreased so that the mutations become more and more rare. A sepa-
ration of the time scales of mutations and demography (births and deaths) is obtained with applications
to the evolutionary theory of Adaptive Dynamics (see Section 1.5).

Finally, let us mention that other large-population scalings have made the object of abundant research.
Superprocess limits of age-structured branching processes obtained by rescaling the lifespan and mass of
the particles, by increasing their number and by modifications of the birth rate or reproduction law have
been studied by Dynkin [29], Kaj et Sagitov [51]. For age-structured birth and death processes, this has
been investigated by Dawson et al. [22], Bose and Kaj [5, 6].

1.3 From stochastic individual-centered modelling of age-structured popula-
tions to deterministic PDEs

1.3.1 A microscopic model

We study a stochastic model that takes into account trait and age dependence in the birth and death rates
together with interactions between individuals. We introduce a microscopic process that generalizes the
approach of Fournier and Méléard [35], Champagnat et al. [17, 16], for which the dynamics is specified at
the level of individuals. When the population is large, we establish a macroscopic approximation of the
process, which describes the evolution at the scale of the population (individual paths are lost). These
results are taken from [83].

More precisely, in the individual centered model that is studied, the population is discrete and repre-
sented at time t ≥ 0 by a point measure

Zt =

Nt∑

i=1

δ(xi(t),ai(t)), (3)

where each individual is described by a Dirac mass (x, a) ∈ X̃ := X × R+, X ⊂ R
d being the trait space

and R+ the age space. We denote by Nt the number of individuals alive at time t. For a function f , we

denote by 〈Zt, f〉 the integral
∫
X̃

f(x, a)Zt(dx, da) =
∑Nt

i=1 f(xi(t), ai(t)). An individual of trait x and

age a in a population Z ∈ MP (X̃ ) reproduces asexually, ages and dies. When reproduction occurs, the
trait is transmitted hereditarily to descendants unless a mutation occurs. The mechanism is as follows:

• Birth rate is b(x, a) ∈ R+. With probability p ∈ [0, 1], the new individual is a mutant with
trait x + h where h is chosen in the probability distribution k(x, a, h)P (dh) (that depends on the
characteristics of the parent) where P (dx) is a σ-finite reference measure on X (the Lebesgue
measure or the uniform measure when X is bounded for instance),

• Death rate is d(x, a, ZU(x, a)) ∈ R+. It depends on the trait and age of the individual but also

on the measure Z describing the whole population. The function U : X̃ 2 7→ R
m is an interaction

kernel: each component of U((x, a), (y, α)) describes a different interaction of (y, α) on (x, a), and
ZU(x, a) =

∫
X̃

U((x, a), (y, α))Z(dy, dα).

• Aging velocity is here 1.

Assumption (H1) The birth rate b(x, a) is assumed continuous and bounded by a positive constant
b̄. The function k(x, a, h) is assumed to be bounded by a positive constant k̄. The death rate is assumed
continuous in (x, a), Lipschitz continuous in the interaction term and such that it is lower bounded by a
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strictly positive constant and upper bounded by d̄(1 + 〈Z, 1〉) with d̄ > 0.

More general models are considered in [82, 83], where vectorial ages with nonlinear aging velocities
are considered for instance.

Following [35, 17, 16, 83], we describe the evolution of (Zt)t∈R+ by a SDE driven by a Poisson point
process. The mathematical difficulty lies in the fact that the birth and death rates depend on age which
varies continuously with time.

Let Z0 ∈ MP (X̃ ) be a random variable (r.v.) such that E (〈Z0, 1〉) < +∞, and let Q(ds, di, dθ, dx′)
be a Poisson point measure (P.P.M.) on R+ ×E := R+ ×N

∗ ×R+ ×X with intensity q(ds, di, dθ, dx′) :=
ds ⊗ n(di) ⊗ dθ ⊗ P (dx′) and independent of Z0 (For P.P.Ms, the reader can for instance refer to [45]
Chapter I).

Let us denote by Xi(t) and Ai(t) the trait and age of the ith particle at time t, the particles being
ranked in the lexicographical order on R

d × R+ (see [35, 83] for a rigorous notation).

Zt =

N0∑

i=1

δ(Xi(0),Ai(0)+t) +

∫ t

0

∫

E

1{i≤Ns
−
}

[
δ(Xi(s−),t−s)1{0≤θ<m1(s,Zs

−
,i,x′)}

+δ(x′,t−s)1{m1(s,Zs
−

,i,x′)≤θ<m2(s,Zs
−

,i,x′)}

− δ(Xi(s−),Ai(s−)+t−s)1{m2(s,Zs
−

,i,x′)≤θ<m3(s,Zs
−

,i,x′)}

]
Q(ds, di, dθ, dx′), (4)

where:

m1(s, Zs−
, i, x′) = (1 − p)b(Xi(s−), Ai(s−))k(Xi(s−), Ai(s−), x′)

m2(s, Zs−
, i, x′) = m1(s, Zs−

, i, x′) + p b(Xi(s−), Ai(s−))k(Xi(s−), Ai(s−), x′)

m3(s, Zs−
, i, x′) = m2(s, Zs−

, i, x′) + d(Xi(s−), Ai(s−), Zs−
U(Xi(s−), Ai(s−)))k(Xi(s−), Ai(s−), x′).

The interpretation is as follows. To describe the population at a given time t, we start with the individuals
present at t = 0. Then we add all the ones that were born between 0 and t and finally we delete the
points corresponding to individuals who died between 0 and t. The individuals of the initial condition
are expected at time t with an age that is increased by t (first term of (4)). When a birth takes place at
time s, we add in the measure describing the population at time t a point at age t− s (the age expected
for this newborn individual, second and third term of (4)). When an individual of age a dies at time s,
in the measure describing the population at time t we suppress a point at age a + t − s (the age this
individual would have had if it had survived). As the rates vary with time, we use a P.P.M. with a rate
that upper-bounds the age-dependent rates and use an acceptance-rejection procedure (the indicators in
θ) to obtain exactly the rates that we need.

We emphasize that exact simulation of this SDE can be done easily (see Section 2) and correspond
to the algorithms used by many biologists who run simulations of individual-based population models.

Proposition 1.1. For every given Poisson point measure Q on R+ × E with intensity measure q, and
every initial condition Z0 such that E (〈Z0, 1〉) < +∞, there exists a unique strong solution to SDE

(4) in D(R+,MP (X̃ )). The solution is a Markov process with infinitesimal generator given for all f ∈
C0,1(X̃ , R), F ∈ C1(R, R), and Z ∈ MP (X̃ ) by

LFf (Z) =

∫

X̃

[
∂af(x, a)F ′ (〈Z, f〉) +

(
Ff

(
Z + δ(x,0)

)
− Ff (Z)

)
b(x, a)(1 − p(x, a))

+

∫

X

(
Ff

(
Z + δ(x′,0)

)
− Ff (Z)

)
b(x, a)p(x, a)k(x, a, x′)P (dx′)

+
(
Ff

(
Z − δ(x,a)

)
− Ff (Z)

)
d(x, a, ZU(x, a))

]
Z(dx, da), (5)

with Ff (Z) = F (〈Z, f〉).

The proof of this result is given in Propositions 2.2.5, 2.2.6 and Theorem 2.2.8 of [82]. It is based on
moment estimates and uses the algorithmic construction of (4) which will be detailed in Section 2. The
behaviour of the solution is far more difficult to study. For this reason, and also in order to link the SDE
(4) with the PDEs that are classically introduced in Demography (see Section 1.1), we consider a large
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population limit that consists in letting the size of the initial population grow to infinity proportionally
to an integer parameter n while individuals and interaction intensities are assigned a weight 1/n. Under
proper assumptions on the initial condition, the sequence of rescaled processes (Zn)n∈N converges in the
limit to the solution of a deterministic equation that we will identify as weak solution of a PDE that
generalizes the ones introduced in Section 1.1.

1.3.2 Large population limit

The large population renormalization that we consider is inspired by the work of Fournier and Méléard
[35]. Full details and proofs can be found in [83, 82]. We will consider a sequence (Zn

t , t ∈ R+)n∈N∗

satisfying SDEs as in (4) but with the following recalings:

• We let the size of the initial population tend to infinity proportionally to the parameter n ∈ N
∗

and renormalize the weights of the individuals by 1/n:

Assumption (H2): The sequence (Zn
0 )n∈N∗ =

(
1
n

∑Nn
t

i=1 δ(Xi(0),Ai(0))

)
converges in probability to the

finite measure ξ0 ∈ MF (X̃ ) for the weak convergence topology.

• In addition, we also rescale the interactions between individuals by 1/n so that the interaction term

ZU(x, a) =
∑Nt

i=1 U((x, a), (xi, ai) is replaced by 1
n

∑Nn
t

i=1 U((x, a), (xi, ai)) = ZnU(x, a).

This rescaling can be understood as a constraint in ressources: if we increase the size of the population,
we have to decrease the biomass of the individuals to keep the system alive. If the individuals are smaller,
their interactions will be decreased proportionally to their weights.

Proposition 1.2. (i) If supn∈N∗ E
(
〈Zn

0 , 1〉2
)

< +∞, then for every f ∈ C1,1,0(R+ × X̃ , R) the process

Mn,f
t =〈Zn

t , f(., ., t)〉 − 〈Zn
0 , f(., ., 0)〉 −

∫ t

0

∫

X̃

[∂af(x, a, s) + ∂sf(x, a, s) + f(x, 0, s)b(x, a)(1 − p(x, a))

+

∫

X

f(x′, 0, s)b(x, a)p(x, a)k(x, a, x′)dx′ − f(x, a, s)d(x, a, Zn
s U(x, a))

]
Zn

s (dx, da) ds, (6)

is a square integrable martingale with the following quadratic variation process:

〈Mn,f〉t =
1

n

∫ t

0

∫

X̃

[
f2(x, 0, s)b(x, a)(1 − p(x, a)) +

∫

X

f2(x′, 0, s)b(x, a)p(x, a)k(x, a, x′)dx′

+ f2(x, a, s)d(x, a, Zn
s U(x, a))

]
Zn

s (dx, da) ds. (7)

(ii) If ∃η > 0, supn∈N∗ E
(
〈Zn

0 , 1〉2+η
)

< +∞, then the sequence (Zn)n∈N∗ converges in distribution in

D(R+,MF (X̃ )) to the unique solution ξ ∈ C(R+,MF (X̃ )) of the following equation: ∀f : (s, x, a) 7→
fs(x, a) ∈ C1,0,1(R+ × X̃ , R),

〈ξt, f(., ., t)〉 =〈ξ0, f(., ., 0)〉 +

∫ t

0

∫

X̃

[∂af(x, a, s) + ∂sf(x, a, s) + f(x, 0, s)b(x, a)(1 − p(x, a))

+

∫

X

f(x′, 0, s)b(x, a)p(x, a)K(x, a, dx′) − f(x, a, s)d(x, a, ξsU(x, a))

]
ξs(dx, da) ds, (8)

This result is proved by a tightness-uniqueness argument (see [35, 83]). Point (i) is obtained by
stochastic calculus for jump process. Heuristically, since the quadratic variation is in 1/n, it vanishes as
n → +∞. Moreover, when births or deaths occur, we add or delete individuals of weight 1/n (the pro-
cess has a jump of order 1/n). This explains why we obtain in the limit a continuous deterministic process.

The link of (8) with PDEs is specified in the next proposition, which is proved in [83] (Propositions
3.6 and 3.7).

Assumption (H3): ξ0 admits a density n0(x, a) with respect to P (dx) ⊗ da on X̃ .
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Proposition 1.3. The measures ξt ∈ MF (X̃ ), for t ∈ R+, admit densities n(x, a, t) with respect to

P (dx) ⊗ da on X̃ and the family of these densities (n(., ., t))t∈R+ is a weak solution of:

∂n

∂t
(x, a, t) = −∂an(x, a, t) − d

(
x, a,

∫

X̃

U((x, a), (y, α))n(y, α, t)P (dy) dα

)
n(x, a, t) (9)

n(x, 0, t) =

∫

R+

n(x, a, t)b(x, a)(1 − p(x, a))da +

∫

X̃

b(x′, a)p(x′, a)k(x′, a, x)n(x′, a, t)P (dx′) da

n(x, a, 0) = n0(x, a).

These equations generalize the McKendrick-Von Foerster’s PDEs. They describe ecological dynamics
at the scale of the population (individual trajectories are lost). The densities n(x, a, t), when they exist,
correspond to the number density, that describes the trait and age distributions of a ”continuum” of
individuals. An interesting point is that the equation (8) does not always admit function solutions (see
[83]).

1.3.3 Central limit theorem

In large populations, the microscopic process Zn can be approximated by the solution of PDE (9) that
generalizes classical PDEs of Demography for populations in continuous time and structured by a scalar
age. In order to construct confidence intervals or to assess the quality of the approximation, it is useful
to study the fluctuation process,

∀t ∈ [0, T ], ∀n ∈ N
∗, ηn

t (dx, da) =
√

n (Zn
t (dx, da) − ξt(dx, da)) . (10)

For n ∈ N
∗, ηn is a process of D([0, T ],MS(X̃ )). Since the space MS(X̃ ) of signed measures on X̃ can

not be meterized when embedded with the topology of weak convergence, we follow the works of Métivier
[66] and Méléard [64], and consider ηn as a distribution-valued process.
For a multi-index k ∈ N

d+1, we denote by Dkf the derivative ∂|k|f/∂xk1
1 · · · ∂xkd

d ∂a. The Banach space
Cβ,γ is the space of functions f of class Cβ such that for k such that |k| ≤ β, limDkf(x, a)/(1 + aγ) = 0
when a → +∞ or when x → ∂X , embedded with the norm ‖f‖Cβ,γ =

∑
|k|≤β sup(x,a)∈X̃ |Dkf(x, a)|/(1+

aγ). The Hilbert space W j,α
0 is the closure of C∞

K with respect to the norm ‖f‖2
W

β,γ
0

=
∫
X̃

∑
|k|≤β |Dkf(x, a)|/(1+

a2γ)da. We denote by C−β,γ and W−β,γ
0 their dual spaces.

We are going to consider the following embeddings. Let D = [(d + 1)/2] + 1,

C3D+1,0 →֒ W 3D+1,D
0 →֒H.S. W 2D+1,2D

0 →֒ CD+1,2D →֒ CD,2D →֒ WD,3D
0 →֒ C0,3D+1 (11)

the second embedding being Hilbert-Schmidt.
Assumption (H4): We assume that Assumptions (H1), (H2) and (H3) are satisfied and that:

• The sequence (ηn
0 )n∈N∗ converges in W−D,3D

0 to η0 and supn∈N∗ E
(
‖ηn

0 ‖2
W

−D,3D
0

)
< +∞

• supn∈N∗ E
(( ∫

X̃
|a|6DZn

0 (dx, da)
)2)

< +∞

• Assumption (H3) is satisfied and the functions (x, a) 7→ b(x, a), (x, a) 7→ k(x, a, x′), (x, a) 7→
U((x′, α), (x, a)) and (x, a) 7→ U((x, a), (x′, α)) (for almost every (x′, α) ∈ X̃ ) belong to C3D+1,0.

• The death rate (x, a, u) 7→ d(x, a, u) is such that for all u, it belongs to C3D+2,0 with a norm bounded
by a polynomial in u. We assume that its derivative with respect to u is Lipschitz continuous.

Proposition 1.4. Let T > 0. Under Assumptions (H4), the sequence (ηn)n∈N∗ converges in distribution

in D([0, T ], W−3D+1,D
0 ) to the unique continuous solution of: ∀t ∈ [0, T ], ∀f ∈ W 3D+1,D

0 ,

〈ηt, f〉 =〈η0, f〉 + Wt(f) +

∫ t

0

∫

X̃

[
∂af(x, a) + b(x, a)

(
(1 − p)f(x, 0) + p

∫

X

f(x′, 0)K(x, a, dx′)
)

− d(x, a, ξsU(x, a))f(x, a) −
∫

X̃

f(y, α)du(y, α, ξsU(y, α))U((y, α), (x, a))ξs(dy, dα)

]
ηs(dx, da) ds

(12)
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where (Wt(f))t∈R+ is a continuous centered square-integrable Gaussian process with quadratic variation:

〈W (f)〉t =

∫ t

0

∫

X̃

[
b(x, a)

(
(1 − p)f2(x, a) + p

∫

X

f2(x′, 0)K(x, a, dx′)
)

+ f2(x, a)d(x, a, ξsU(x, a))

]
ξs(dx, da) ds.

(13)

The tightness is proved in the space W−3D+1,D
0 using a tightness criteria for Hilbert-valued processes

that is stated in [64] (Lemma C), and which necessitates the Hilbert-Schmidt embedding W 3D+1,D
0 →֒H.S.

W 2D+1,2D
0 . The spaces C−(D+1),2D and C−D,2D are the spaces in which the estimates of the norm of the

finite variation part of the process are established (see Section 4.4.2 of [82]). We need these two spaces

since ∂a maps CD+1,2D into CD,2D. The norm of the martingale part is controlled in W−D,3D
0 . Finally,

uniqueness of the limiting value is proved thanks to the embedding W−3D+1,D
0 →֒ C−3D+1,0.

1.4 Extinction in logistic age-structured population

Extinction is one of the recurrent and important issue when studying the ecology of a population. Here,
the conclusions given by the deterministic and the stochastic models differ, but we will see that they still
provide complementary information.

For the sake of simplicity, we consider here a logistic age-structured population (without trait-
structure). An individual of age a in a population of size N gives birth with rate b(a) and dies with the rate
d(a)+ηN given in (2). From Proposition 1.3, under the large population renormalization of Section 1.3.2,
the sequence (Zn)n∈N∗ converges to the unique weak solution of the Gurtin McCamy PDE with the death
rate (2). Let us recall some known facts about this PDE. We denote by Π(a1, a2) = exp

( ∫ a2

a1
δ(α)dα

)

the probability of survival from age a1 to age a2 in absence of competition.

Proposition 1.5. (i) The following renewal equation: ∀t ∈ R+

B(t) =

∫ t

0

g(a)B(t − a)da + B0(t) (14)

with

g(a) = b(a)Π(0, a)1la≥0 and B0(t) = 1lt≥0

∫ +∞

0

b(a + t)
n0(a)

N0
Π(a, a + t)da,

where N0 =
∫ +∞

0
n0(a)da admits a unique bounded solution on compact sets of R+ given by:

B(t) = B0 ∗ U(t), where u(t) =

+∞∑

n=0

g∗n(t). (15)

(ii) There exists a unique classical solution of class C1 to the Gurtin-McCamy equation with death rate
(2). It is given by: ∀a ∈ R+, ∀t ∈ R+

n(a, t) =
N0v(a, t)

1 + N0

∫ t

0

∫ +∞

0
v(α, s)dα ds

with v(a, t) =

{
n0(a − t)Π(a − t, a)/N0 if a ≥ t

B(t − a)Π(a, 0) if a < t
(16)

Point (i) is obtained by following [33] (Chap. XI) and [1] (Chap. IV.4). For Point (ii) see [86] (Section
5.4).

Since the family (n(a, t)da)t∈R+ defines a weak solution of the Gurtin-McCamy PDE in this case, we
obtain as a corollary of Propositions 1.3 and 1.5:

Corollary 1.1. In the case of logistic age-structured population, we have for the limiting process ξ of the
sequence (Zn)n∈N∗ : ∀t ∈ R+, ξt(da) = n(a, t)da where n(a, t) is explicitly given in (16).

Thanks to the results known for the PDE, an explicit expression and regularities of the density of ξ
are obtained directly.

As explained in Section 1, the long time behavior of the Gurtin-McCamy PDE is well known. In
particular:
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Proposition 1.6. (see [60, 86]) Under the assumption R0 :=
∫ +∞

0 b(a)Π(0, a)da > 1, which expresses
the renewal of the generations in absence of competition, there exists a unique nontrivial asymptotically
exponentially stable steady state given by:

n̂(a) =
λ1e

λ1aΠ(0, a)

η
∫ +∞

0
e−λ1αΠ(0, α)dα

where λ1 satisfies 1 =

∫ +∞

0

e−λ1ab(a)Π(0, a)da. (17)

(a) (b) (c)
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Figure 1: Simulated size of a logistic age-structured population. The model is given by (4) rescaled with n = 1, 5

and 10 (from left to right).

Even if simulations may lead us to the false impression that the long time behavior of the stochastic
processes is the same as for their deterministic limit, the situation is much more complicated. We show
that the stochastic process gets extinct almost surely, but after having spent an exponentially long time
in the neighborhood of the stationary solution ξ̂(da) = n̂(a)da (17) of its deterministic approximation.
Here, deterministic and stochastic models give different conclusions, but the results for the limiting PDE
make it possible to understand the behavior of the stochastic processes.

First of all, on compact time intervals, the stochastic process belongs with large probability to a tube
centered on the deterministic limit:

∀ε > 0, ∀T > 0, lim
n→+∞

P

(
ρ(Zn

tε
, ξ̂) > ε

)
= 0, (18)

where ρ is for instance the Dudley metric which meterizes the topology of weak convergence on MF (X̃ )
(see [75] p79). Heuristically, stochastic and deterministic processes have the same behavior on compact
time intervals. In particular, since the deterministic process enters a given ε-neighborhood of its nontrivial
stationary solution ξ̂ after a sufficiently large time that does not depend on n, the stochastic process enters
an 2ε-neighborhood with a probability that tends to 1 when n grows to infinity. However, when T → +∞,
the long time behavior differ.

Proposition 1.7. For fixed n, one has almost sure extinction:

P (∃t ∈ R+, 〈Zn
t , 1〉 = 0) = 1. (19)

Because of the logistic competition, the population stays finite with a size that is controlled and can
not grow to infinity (see Proposition 5.6 [83]). The stochastic process finally quits the neighborhood of ξ̂
to drive the population to extinction. We can thus wonder how long the stochastic process stays in the
neighborhood of ξ̂.

An estimate of the time T n that the stochastic process spends in the neighborhood of ξ̂ can be
established by large deviation results à la Freidlin and Ventzell [36, 23] and generalized to our measure-
valued setting (see Section 5.2 [83]).

Proposition 1.8. ∃V̄ > 0, V > 0, ∀δ > 0,

lim
n→+∞

P(en(V −δ) < T n < en(V̄ +δ)) = 1 (20)
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Of course, when n → +∞, T n also tends to infinity in probability and extinction eventually disap-
pears in the limit. As a corollary, for every sequence (tn)n∈N∗ such that limn→+∞ tne−n(V −δ) = 0 and
limn→+∞ tn = +∞,

lim
n→+∞

P
(
ρ(Zn

tn
, ξ̂) > ε

)
= 0. (21)

Equation (20) is interesting in itself to understand the persistence time of a stochastic finite population
but is also useful to separate timescales in models of Adaptive Dynamics, which we now present.

1.5 Application to the Adaptive Dynamics theory of Evolution

In the theory of Evolution, mutations are responsible for generating trait diversity in the population while
natural selection acting through interactions and competitions determines the traits that are getting fixed.
Important questions in evolutionary biology require to include age structure in population models, as
was emphasized by Charlesworth [18], Medawar [63] or Stearns [79]. The selective pressure and fixation
probability of a trait may be functions of the age at which this trait is expressed, as well as of the age-
structure of the population. Reciprocally, the traits that are getting fixed can modify the age-structure
of the population.

The frame of Adaptive Dynamics are large population asymptotics and rare mutations. They describe
the evolution of traits in the population when it is possible to separate the time scales of ecology (birth
and death events) and evolution (generation of new traits). For populations with only trait structure,
these models have been introduced and studied by Hofbauer and Sigmund [42], Marrow et al. [61],
Dieckmann and Law [25], Metz et al. [67, 28] and Champagnat et al. [15, 17, 16].

These studies have been generalized to population with age and trait-structured by Méléard and Tran
[65], where equations of Adaptive Dynamics are derived from microscopic models by following [15] and
where several examples are studied and illustrated with numerical simulations. When mutations are
sufficiently rare, natural selection wipes out the weakest competitors so that the resident population at
the next mutation is monomorphic and in a stationary state. The estimates of extinction time provided
in Section 1.4 tell us that the mutation should not be too rare if we wish to neglect the fact that the
population could get extinct before the occurrence of a new mutant. Neglecting the transition periods,
it is possible to describe evolution as a jump process by considering only the successive monomorphic
equilibria (trait value and corresponding stationary age-structure). If there exists a unique nontrivial

stable stationary solution ξ̂x(da) = n̂(x, a)da, then it is sufficient to consider the trait-value process that
jumps from one equilibrium trait to another. This process, called trait substitution sequence process for
age-structured populations (TSSPASP), introduced and analyzed in [65], can be described as follows:

• in a monomorphic population of trait x at equilibrium, mutants are generated with rate

p

∫

R+

b(x, a)n̂(x, a)da = pn̂(x, 0) =
pN̂x

E(Tx)

where N̂x =
∫ +∞

0
n̂(x, a)da is the size of the population at equilibrium and E(Tx) =

∫ +∞

0
exp

(
−∫ a

0 d(x, α, ξ̂xU(x, α))
)
dα is the expected individual lifespan.

• The probability that the resulting mutant population with trait x′ replaces the resident population
with trait x can not be always explicitly calculated when we deal with populations that are age-
structured. However, it can be numerically computed.

Here, the theory of random point processes is necessary to model these events that occur at discrete
random times. Evolution models have also been considered from a deterministic point of view, but with
different renormalizations that do not describe the same rare mutations [26, 12].

When we additionally assume that mutation steps are small, the TSSPASP can be approximated by
the solution of an ordinary differential equation that generalizes the canonical equation of [25, 14].

Recently, models of population with age structure have been involved in adaptive dynamics studies
dealing with functional traits (e.g. [30], [24], [71]). The traits x(a) are then functions of age such as
the growth curve, the flowering intensity, the birth or death curves... In [24] or [71], the birth and
death rates are functions of the functional trait, but not of age (they take for instance the averaged form

b(x) = B(
∫ +∞

0
x(a)da), where B ∈ Cb(R, R+)).
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2 Age and trait structures: a large variety of situations (the

simulation point of view)

We now present several examples of interesting biological questions involving populations with age and
trait structures. Mechanisms are described at the individual level, and we are interested in the resulting
macroscopic dynamics. The more realistic and complex the model is, and the more difficult it is to carry
the theoretical study to the end. Simulations allow us to go forward in the understanding and in the
study of these problems.

2.1 Simulation algorithm

Following the algorithms proposed by Fournier and Méléard [35], it is possible to simulate in the exact
law of the process Z (4) without approximation scheme nor grid. The main difficulty comes from the
fact that the rates depend on age that changes continuously in time. We use for this acceptance-reject
procedures.

Let Z0 ∈ MP (X̃ ) be an initial condition. We simulate by recursion a succession of birth and death
events that modify the size of the population. Let us set T0 = 0 for the event number 0. Assume that
we have already simulated k events (k ∈ N), and that the last of these events has occurred at time Tk.
The size of the population NTk

= 〈ZTk
, 1〉 at time Tk is finite and the global jump rate is upper bounded

by b̄NTk
+ d̄(1 + NTk

)NTk
, which is finite. To obtain Tk+1 for the k + 1th event, we simulate candidate

events from time Tk. The latter are given by a sequence (τk,ℓ)ℓ∈N of possible event times following a
Poisson point process with intensity b̄NTk

+ d̄(1 + NTk
)NTk

. The first of these times which is accepted
by the procedure defines Tk+1.

0. We set τk,0 := Tk, Nτk
:= NTk

and ℓ := 0.

1. We simulate independent exponential variables εk,ℓ with parameter 1 and define τk,ℓ+1 = τk,ℓ +
εk,ℓ/[b̄NTk

+ d̄(1 + NTk
)NTk

].

2. On the interval [τk,ℓ, τk,ℓ+1[, only aging takes place. For i ∈ [[1, NTk
]], the age of individual i becomes

Ai(τk,ℓ) + τk,ℓ+1 − τk,ℓ at time τk,ℓ+1.

3. We simulate an integer valued r.v. Ik,ℓ uniformly distributed on [[1, NTk
]], and define the following

quantities in [0, 1]:

m̃1(τk,ℓ+1, Zτ(k,ℓ+1)
−

, Ik,ℓ) =

(
1− p

)
b(XIk,ℓ

(τ(k,ℓ+1)−), AIk,ℓ
(τ(k,ℓ+1)−))

b̄ + d̄(1 + NTk
)

m̃2(τk,ℓ+1, Zτ(k,ℓ+1)
−

, Ik,ℓ) = m̃1(τk,ℓ+1, Zτ(k,ℓ+1)
−

, Ik,ℓ) +
p b(XIk,ℓ

(τ(k,ℓ+1)−), AIk,ℓ
(τ(k,ℓ+1)−))

b̄ + d̄(1 + NTk
)

m̃3(τk,ℓ+1, Zτ(k,ℓ+1)
−

, Ik,ℓ) = m̃2(τk,ℓ+1, Zτ(k,ℓ+1)
−

, Ik,ℓ)

+
d

(
XIk,ℓ

(τ(k,ℓ+1)−), AIk,ℓ
(τ(k,ℓ+1)−), Zτ(k,ℓ+1)

−

U(XIk,ℓ
(τ(k,ℓ+1)−), AIk,ℓ

(τ(k,ℓ+1)−))
)

b̄ + d̄(1 + NTk
)

4. We simulate a r.v. Θk,ℓ with uniform law on [0, 1]

(a) If 0 ≤ Θk,ℓ < m̃1(τk,ℓ+1, Zτ(k,ℓ+1)
−

, Ik,ℓ), then the k + 1th event occurs: Individu Ik,ℓ gives

birth to a clone with age 0 ∈ R+ and one defines Tk+1 = τk,ℓ+1.

(b) If m̃1(τk,ℓ+1, Zτ(k,ℓ+1)−
, Ik,ℓ) ≤ Θk,ℓ < m̃2(τk,ℓ+1, Zτ(k,ℓ+1)

−

, Ik,ℓ), then Individu Ik,ℓ gives birth

to a mutant with trait x′ where x′ follows k(XIk,ℓ
(τ(k,ℓ+1)−), AIk,ℓ

(τ(k,ℓ+1)−), x′)P (dx′) and
age 0 ∈ R+. One defines Tk+1 = τk,ℓ+1.

(c) If m̃2(τk,ℓ+1, Zτ(k,ℓ+1)−
, Ik,ℓ) ≤ Θk,ℓ < m̃3(τk,ℓ+1, Zτ(k,ℓ+1)

−

, Ik,ℓ), then Individu Ik,ℓ dies and

one defines Tk+1 = τk,ℓ+1.

(d) If m̃3(τk,ℓ+1, Zτ(k,ℓ+1)−
, Ik,ℓ) ≤ Θk,ℓ then nothing happens. We reiterate the algorithm from 1.

with Nτk,ℓ+1
= NTk

and ℓ + 1 in place of ℓ until we obtain the k + 1th event.

Remark 2.1. To each individual are associated three clocks corresponding respectively to birth (with or
without mutation) and death events. The event that occurs corresponds to the minimum of these three
durations, on the set of whole individuals.
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2.2 Examples

Simulations on particular cases are now presented. For each example, simulations have been run several
time ; only one particular simulation is presented for each example as an illustration. The programs have
been written with the R freeware (2) and Matlab.

2.2.1 Example 1: Size-dependent competition in an age-structured population

In this example, we are interested in a population with size-dependent competition, and ask how the
evolution of body size changes when we take the growth of individuals into account.

Individuals are characterized by their body size at birth x0 ∈ [0, 4] which is the trait that is submitted
to hereditary transmission and mutations, and by the physical age a ∈ [0, 2], with aging velocity 1. Body
size x is an increasing function of age:

x = x0 + g a, (22)

where g is the growth rate, which is assumed fixed and identical for all individuals.
An individual of trait x0 ∈ [0, 4] and age a ∈ [0, 2] gives birth at rate:

b(x0) = 4 − x0. (23)

This is a simple expression of the standard trade-off between fecundity and offspring size (e.g. Stearns
[79]). With probability p = 0.03 a mutation occurs and affects x0. The new trait is x′

0 = min(max(0, x0 +
yx0), 4), where yx0 is a Gaussian r.v. with expectation 0 and variance 0.01. With probability 1 − p, the
offspring is a clone of its parent with the same trait x0.

The death rate of an individual with trait x0 ∈ [0, 4] and age a ∈ [0, 2] living in a population
Z ∈ MP ([0, 4] × [0, 2]) is given by:

d(x0, a, Z) =

∫

X̃

U(x0 + g a − x′
0 − g α)Z(dx′

0, dα), (24)

where U(x − y) =
2

300

(
1 − 1

1 + 1.2 exp (−4(x − y))

)
∈

[
0,

2

300

]
(25)

is the asymmetric competition kernel introduced by Kisdi [53] that favors larger individuals. The impor-
tant point is that the sizes x on which the selection operates are not constant when g 6= 0, they vary
with the age of the individual. Even in a monomorphic population, sizes vary across individuals and the
competition exerted on individuals is not uniform.

(a) (b) (c)

Figure 2: Trait dynamics (size at birth) in an age-structured population with size-dependent competition. See

Example 1 in main text for details. From left to right: (a) g = 0, (b) g = 0.3, (c) g = 1

In the simulations of Figure 2, we choose g = 0, g = 0.3 and g = 1. The population at time t = 0 is
monomorphic with trait x0 = 1, 06, and its size is N0 = 900 individuals. The initial age distribution is
uniform on [0, 2], and sizes are computed using (22). For each t the support of the measure

∑Nt

i=1 δ(x0)i

is represented.

2http://www.r-project.org/
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For g = 0 (constant size during life), we observe a branching phenomenon at the neighborhood of
t = 300. For g = 0.3, the population separates in two subpopulations (x0 ≃ 2.7 and x0 ≃ 2) around
t = 100. For g = 1, this ”branching” phenomenon is not observed anymore. When g takes small
values (g = 0.3), differences between sizes at birth are lessen since growth acts as a mixing factor: adult
individuals with smaller x0 can compete equally with juvenile individuals with a larger x0. Thanks to
this, branching may appear more rapidly (at t = 100). However, when g is large, this phenomenon hands
over to increased competition as individuals with a bigger size at birth are much more competitive than
juveniles individuals with small x0. This domination prevents the development of the lower branches
observed in Fig. 2(a) and 2(b).

2.2.2 Example 2: A population structured into two age-classes

As in Example 1, we consider an age- and trait-structured population where the traits are the size at
birth x0 ∈ [0, 4], the growth rate g ∈ [0, 2], and the age at maturity aM ∈ [0, 2]. The scalar age a ∈ [0, 2]
(with aging velocity 1) still corresponds to the physical age.

The age at maturity aM separates the life history of individuals into two periods: a growth period
and a reproduction period. Calsina and Cuadrado [11] also study a population that is structured into
two age classes, juveniles and adults. Assuming that the length of the juvenile period is exponentially
distributed, they describe population dynamics by a system of two ODEs. They then study the age
at maturity from the evolutionary point of view by considering whether a small mutant population can
invade the resident population, leading to stability problems of stationary solutions. Ernande et al. [30]
consider a similar problem: their population is divided into age-classes, and the age at maturity is plas-
tic and determined by a functional reaction norm that is hereditarily transmitted and subject to mutation.

In our model, the size of an individual with trait
(x0, g, aM ) and age a is given by:

x(a, x0, g, aM ) = x0 + g (a ∧ aM ). (26)

Before maturity, individuals do not reproduce and
invest all their resources into growth. Once the
age aM has been reached, adult individuals have
constant size and begin to reproduce.

-

6

0 aM a

x

x0

x = x0 + g a

x = x0 + g (a ∧ aM )

�
�

�
�

�
�

�
�

The birth rate of an individual with traits (x0, g, aM ) ∈ [0, 4]× [0, 2]× [0, 2] is 0 for juvenile individuals
and it is a decreasing function of x0 for adults:

b(x0, aM , a) = (4 − x0)1a≥aM
. (27)

The traits x0, g and aM are hereditarily transmitted and mutations can occur at birth with probility
p = 0, 03. Mutated traits are chosen according to:

x′
0 = min(max(0, x0 + yx0), 4) g′ = min(max(0, g + yg), 2), a′

M = min(max(0, aM + yaM
), 2),

where yx0 , yg and yaM
are Gaussian independent r.v. with 0 expectation and variance 0.01.

The death rate of an individual with traits (x0, g, aM ) ∈ [0, 4]× [0, 2]× [0, 2] and age a ∈ [0, 2] in the
population Z ∈ MP ([0, 4]× [0, 2] × [0, 2]× [0, 2]) is given by:

d(x0, g, aM , a, Z) =






d0 × g + 10−5
∫
X̃

U(x0 + g a − x′
0 − g′(a′ ∧ a′

M ))Z(dx′
0, dg′, da′

M , da′) if a ≤ aM ,∫
X̃

U(x0 + g aM − x′
0 − g′(a′ ∧ a′

M ))Z(dx′
0, dg′, da′

M , da′) if aM < a ≤ 2,
+∞ if a > 2,

where U is the kernel introduced in (25) and where d0 ≥ 0 measures the hostility of the environment:
individuals with high growth rates g need more ressources and incur a survival cost of foraging, hence
the density-independent component d0g of their death rate is all the higher that d0 is important.

As for Example 1, we chose for the initial state is a monomorphic population (x0 = 1.06, g = 0.74
and aM = 0.20) with N0 = 900 individuals whose ages are uniformly draw in [0, 2].
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Figure 3: Dynamics of three co-evolving traits: size at birth, growth rate, age at maturity (rows 1-3), and

population structure; distribution of maternal ages at birth (row 4). See Exemple 2 in main text for details.

d0 = 3.3 10−3 (left), d0 = 0.5 (right).

We first choose d0 = 3.3 10−3, and then d0 = 0.5. Fig. 3 shows that changing d0 results in two very
different dynamics. When d0 is small, individuals with higher growth rates do not pay much of a cost.
The population stabilizes numerically around a state with high growth rate and late maturation. When
d0 is large, a state with moderate growth rate and very early maturation appears.

In Figure 3 (a), d0 = 3.3 10−3 is very small. Individuals with high growth rate g are little penalized
during the juvenile period (∀g ∈ [0, 2], 0 ≤ d0g ≤ 6.6 10−3). Since the death rate during the juvenile
period is small (of the order of 10−2 for a population of 1000 individuals) compared with the death rate
during the adult period (of the order of the unit), and since the competition favors large individuals
(the terms U(x0 + gaM − x) describing the competition exerted by an individual with size x on an adult
with size x0 + gaM is minimized when x0 + gaM is large), there is a strong selective advantage to large
individuals having high growth rate (g ≃ 2) and long growth period (aM ≃ 1.3). We see that it is the
competitiveness of an individual in its adult period that is decisive.

When d0 = 0.5 (Figure 3 (b)), we observe that the growth rate decreases towards 1 and maturity
is reached early in life (aM ≃ 0.3). To understand the changes when d0 increases, let us introduce the
probability that an individual of traits (x0, g, aM ) born at t = c survives until age at maturity aM in a
population (Zt)t∈R+ :

Π(x0, g, aM ) = E

[
exp

(
−

∫ c+aM

c

d
(
x0, g, aM , a, Za

)
da

)]
. (28)
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When the population size is bounded by N , the probability Π(x0, g, aM ) can be upper and lower bounded:

exp

(
−aM

(
d0g + N · 10−5 2

300

))
≤ Π(x0, g, aM ) ≤ exp (−d0gaM ) . (29)

In the simulations, we observe that the size of the population remains bounded and that it stabilizes
around an ”equilibrium” value (600 for d0 = 3.3 10−3 and 200 for d0 = 0.5, see Fig. 4). The ”equilib-
rium” traits obtained in the two simulations of Figure 3 are (x0, g, aM ) = (1.8, 2, 1.3) and (x0, g, aM ) =
(2.6, 0.8, 0.3). The strategy that is observed can hence be naturally explained. For d0 = 0.5 and N = 600,
we hence obtain 0.27251 ≤ Π(1.8, 2, 1.3) ≤ 0.27254, instead of Π(1.8, 2, 1.3) ≃ 0.99 when d0 = 3, 3.10−3,
whereas 0.88690 ≤ Π(2.6, 0.8, 0.3) ≤ 0.88692. For d0 = 0.5, the traits (x0, g, aM ) = (2.6, 0.8, 0.3) are more
competitive. They correspond to individual who have a higher probability to reach maturity and repro-
duce, even if these individuals are likely to be exposed to higher competition pressure that individuals
with trait (x0, g, aM ) = (1.8, 2, 1.3).

(a) (b)
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Figure 4: Population size dynamics. See text for details. (a) d0 = 3, 3.10−3, (b) d0 = 0.5

In the case of a favorable environment with abundant ressources (d0 is small), the growth period has
a small cost and a long growth phase (aM large) allows individuals to reach a mortality refuge: i.e. a
state where they escape the effects of strong competition pressure. When d0 increases, the mortality
refuge becomes inaccessible: long period of initial growth result in low probabilities of survival to the
reproduction period. An alternative life profile appears, with early reproduction (small aM ) and small
individuals. Similar phenomena have been discovered and discussed in Taborsky et al. [80].

(a) (b)

Figure 5: Long term density of maternal ages at birth (a) and lifespans (b) with respect to the mortality cost of

growth, d0. See main text for details.

We now investigate in more detail the transition from the column (a) of Fig. 3 to column (b). In Fig.
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5 we let d0 vary between 0.01 and 0.6. In Figure 5 (a), we have plotted for each value of d0 the kernel
density estimator of the age of mothers at birth times. In Fig. 5 (b), we have done the same for lifespans.

It can be observed that when d0 increases from 0.01 (favorable environment) to 0.6 (hostile envi-
ronment), lifespans and ages at reproduction decrease continuously from 1.5 to 0.5. Contrarily to the
results of [80], the surfaces that are represented in Fig. 5 do not show abrupt discontinuities. This can
be understood as a consequence of the survival probability (28) (and hence the lifespan density) being a
continuous function of d0.

2.2.3 Example 3: competition between age classes

Here, we consider a monomorphic population for which (x0, g, aM ) = (0, 0.90, 3.72), x0 being the size at
birth, g the individual growth rate, aM the age at maturity. The population is structured by physical
age a and by size: ∀a ∈ [0, 10],

x(x0, g, aM , a) = x0 + g × a 1a≤aM
+ (g × aM + 0.95 g × (a − aM )) 1a>aM

. (30)

The birth rate is proportional to the size x:

b(x0, g, aM , a) = 2x(x0, g, aM , a)1a>aM
. (31)

The death rate of an individual (x0, g, aM ) with age a in a population of size N :

d(x0, g, aM , a, N) =





3, 3.10−3 gN if a ≤ aM

1, 6.10−2 aN if aM < a ≤ 10
+∞ if a > 10.

(32)

We assume that growth continues after aM , but individuals have to face a trade-off between reproduction
and growth. Individuals are subject to logistic competition, with coefficients depending of whether
a ≤ aM or a > aM .

Figure 6: Sustained oscillations of population size. The population is initiated as monomorphic, with 900 indi-

viduals and traits (x0, g, aM ) = (0, 0.90, 3.72). There is no mutation. Competition is size-dependent. Size, birth

rate and death rate are given by Eqs. (30)-(32).

Simulations (Fig. 6) show that the size of the population undergoes sustained oscillations probably
driven by deterministic nonlinearities rather than stochastic noise. This phenomenon has been studied
for instance by Thieme [81] Chapter 11, Mischler et al. [69] or Henson [41] for ODE and PDE models.

Heuristically, the adult population crashes when the size of the population becomes larger than a
certain threshold which occurs when the juvenile population becomes too large. The deficit in adults
entails a deficit in births resulting subsequently in a small juvenile class. This juvenile class experience
less competition during its growth phase, and competition is less severe also in the resulting adult class.
As a consequence, the birth rate rises, and the cycle is repeated.

3 Conclusion

We have shown here that the PDEs that are used in age-structured population modelling and Demography
can be seen as large-populations limits of stochastic particle processes. The latter are often used by
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biologists as they allow to describe the population dynamics at the level of individuals and are easy to
simulate. We have seen in Section 1.4 that both approaches complement each other. Some phenomena
that exist only in finite or random populations, such as almost sure extinction in finite exponentially long
time, may disappear in the large population limit. However the study of the deterministic approximation
provides useful information about the random process, for example estimates of the time to extinction.

Another benefit from random particle models, that has been elaborated in [19, 4] is that the stochastic
process approach suits the formalism of statistical methods which involve sets of individual data. This
makes it possible to use the battery of statistical methods which deal with problems that may not always
be treated with deterministic methods (such as missing or noisy data). The convergence and fluctuations
of Propositions 1.3 and 1.4 would then provide consistence and asymptotic normality for the estimators.
Calibrating the parameters of a PDE thanks to its underlying microscopic interpretation provides an
alternative to deterministic approaches (e.g. [2, 7]).

Introducing age structure is important to take life histories into account. We have seen that age and
trait-structures evolve jointly. In some examples, age-structure acts like a refinement (see the examples
developed in [65] for instance). In other cases, when the traits imply trade-offs in life-histories strate-
gies for instance, age structure becomes a key ingredient of the model. This makes the mathematical
development of age and trait-structured population theory utterly valuable.
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[64] S. Méléard. Convergence of the fluctuations for interacting diffusions with jumps associated with boltzmann
equations. Stochastics and Stochastics Reports, 63:195–225, 1998.
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