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Abstract. - Out of equilibrium magnetised solutions of the XY -Hamiltonian Mean Field (XY -
HMF) model are build using an ensemble of integrable uncoupled pendula. Using these solutions
we display an out-of equilibrium phase transition using a specific reduced set of the magnetised
solutions.

Long-range interactions are such that the two-body po-
tential decays at large distances with a power–law ex-
ponent which is smaller than the space dimension. A
large number of fundamental physical systems falls in
such a broad category, including for instance gravitational
forces and unscreened Coulomb interactions [1], vortices
in two dimensional fluid mechanics [2–4], wave-particle
systems relevant to plasma physics [5, 6], Free-Electron
Lasers (FELs) [7–9] and even condensed matter physics
for easy-axis anti-ferromagnetic spin chains, where dipolar
effects become dominant. While for short–range systems
only adjacent elements are effectively coupled, long-range
forces result in a global network of inter-particles con-
nections, each element soliciting every other constitutive
unit. Clearly, from such an enhanced degree of complexity
stems the difficulties in addressing the fascinating realm
of long-range systems, for which standard techniques in
physics, notably in the framework of equilibrium statis-
tical mechanics, proves essentially inadequate. It is in
particular customarily accepted that long–range systems
display universal out-of-equilibrium features: Long-lived
intermediate states can in fact emerge, where the system
gets, virtually indefinitely, trapped (the time of escape di-
verging with the number of particles), before relaxing to-
wards its deputed thermodynamic equilibrium. These are
the so–called Quasi Stationary States (QSSs) which have
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been shown to arise in several different physical contexts,
ranging from laser physics to cosmology, via plasma ap-
plications. A surprising, though general, aspect relates to
the role of initial conditions of which QSS keeps memory.
More intriguingly, such a dependence can eventually ma-
terialise in a genuine out-of-equilibrium phase transition:
By properly adjusting dedicated control parameters which
refers to the initial state, one observes the convergence to-
wards intimately distinct macroscopic regimes (e.g. homo-
geneous/non homogeneous) [10, 11]. Recently, such phase
transitions for systems embedded in one spatial dimension
have been re-interpreted as a topological change in the sin-
gle particles orbits [12]. This conclusion is achieved by per-
forming a stroboscopic analysis of individual trajectories,
which are being sampled at a specific rate imposed by the
emerging time evolution of a collective variable and con-
sequently sensitive to the intrinsic degree of microscopic
self-organisation.

QSSs out of equilibrium regimes have been explained
by resorting to a maximum entropy principle inspired to
the Lynden-Bell’s seminal work on the so-called violent
relaxation theory, an analytical treatment based on the
Vlasov equation and originally developed for astrophysical
applications [13].

In this letter we shall provide a strategy to construct
a whole family of out-of-equilibrium solutions with ref-
erence to the paradigmatic XY -Hamiltonian Mean Field
(XY -HMF) model [14]. This procedure exploits the anal-
ogy with an ensemble made of uncoupled pendula and
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explicitly accommodate for self-consistency as a crucial
ingredient. Even more importantly, out-of equilibrium
phase transitions are displayed using a reduced set of the
non-homogeneous (magnetised) solutions. The proposed
approach is inspired by the observation that in the con-
tinuum limit (for an infinite number of particles) the dis-
crete set of equations describing the physical system under
scrutiny, converges towards the Vlasov equation, which
governs the evolution of the one-particle distribution func-
tion.

The N -body Hamiltonian for the XY -HMF model with
ferromagnetic interactions writes

H =

N
∑

i=1





p2
i

2
+

1

2N

N
∑

j=1

1 − cos (qi − qj)



 , (1)

where pi and qi are respectively the (canonically conju-
gate) momentum and position of particle (rotor) i. To
monitor the time evolution of the system, one can intro-
duce the “magnetisation” as

M =
1

N

(

∑

cos qi,
∑

sin qi

)

= M (cosϕ, sin ϕ) . (2)

The equations of motion for the particles can be therefore
cast in the form

{

ṗi = −M sin (qi − ϕ)
q̇i = pi

, (3)

where the dot denotes the time derivative. Notice that
it is tempting to imagine equations (3) as resulting from
a set of uncoupled, possibly driven, one dimensional pen-
dula Hamiltonian. Inspired by this analogy, we here in-
tend to shed light onto the out-of-equilibrium dynamics
of the original N -body model, by investigating the equi-
librium properties of an associated pendula system. More
specifically, let us imagine that the system of coupled ro-
tators has reached some equilibrium state , such that in
the N → ∞ limit the magnetisation M of the XY -HMF
model is constant and equal to m. Equations of motion
(3) implies that the system formally reduces to an infinite
set of uncoupled pendula. Our strategy to construct sta-
tionary solutions for (1) is to consider a finite ensemble of
N uncoupled pendula whose Hamiltonian reads

H =
N

∑

i=1

p2
i

2
+ m(1 − cos qi) , (4)

and compute stationary solutions in the thermodynamic
limit of this m−pendula system [15].

Given an initial condition each pendulum i is confined
on a specific torus of the pendulum phase portrait depicted
in Fig 1.

To build a stationary state we naturally consider the
ergodic measure on the torus which originate from the
pendulum motion and time averages. In order to proceed
further in the analysis and due to integrability, we employ
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Fig. 1: Phase portrait of the pendulum for m = 0.5. The
gray region is here used as a tool to estimate numerically the
function g(I) as introduced in eq. (9). It is termed in the litera-
ture a water-bag and has no reference to the selected particles’
initial condition.

the canonical transformation to the action-angle variables
(I, θ) of the system (see for instance [16]). We thus obtain
Hm = Hm(Ii), with θ̇i = ∂Hm/∂I = ω(Ii), where Ii

stands for the constant action, which is fixed by the initial
state of the uncoupled pendulum i. For any selected initial
condition, as time evolves, θ covers uniformly the circle
[−π, π[, while the action I keeps its constant value. The
ergodic measure reduces hence to ρi(I, θ) = 1

2π
δ(I − Ii),

which immediately translates in

ρE =
N
∏

i=1

ρi , (5)

when considering an ensemble of N particles. Because
of the above and since particles are identical and non in-
teracting one can straightforwardly deduce the following
expression for the one particle density function:

f(I, θ) =
g(I)

2π
, (6)

where g(·) is a discrete valued function, solely determined
by the selected initial conditions. In the limit N → ∞, g(·)
can change smoothly with the (continuous) action vari-
able.

In order to get a stationary equilibrium solution of the
system of pendula we can then consider a given posi-
tive and integrable function g, associate to it the func-
tion f(I, θ) according to (6). Then we perform an “in-
verse” transform to obtain an explicit expression for the
one particle density function f̃(p, q) as defined in the origi-
nal phase space Γpq. This latter represents an equilibrium
(time invariant) solution, and enables us to estimate any
macroscopic observable, defined as a function of the sea
of microscopic constituents. More concretely let us turn
to consider the global magnetisation M as specified by eq.
(2)). In the infinite N limit the time average of the mag-
netisation, which coincides with the ergodic-spatial aver-
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age, reads:

M̄ = 〈M〉 =

(
∫

f̃(p, q) cos q dpdq , 0

)

, (7)

where the observation that f̃ is even in p and q has been
used. Expressing the above in term action-angle variables,
one can write

M̄ = 〈M〉 =

(

1

2π

∫

g(I) cos q(I, θ) dIdθ , 0

)

. (8)

The integration over the angle can be performed (see Ap-
pendix), yielding to the final form

M =

∫ 8

π

√
m

0

g(I)

(

2
E(κ)

K(κ)
− 1

)

dI

+

∫ ∞

8

π

√
m

g(I)

(

1 + 2κ2

(

E(κ−1)

K(κ−1)
− 1

))

dI, (9)

with κ = κ(I) = (H(I) + m)/2m. Notice that if we con-
sider an initial distribution given by f̃ , then the mag-
netisation (9) stays constant as, by construction f̃ is sta-
tionary. In order to reconcile the m-model of uncoupled
pendula to the XY -HMF interacting rotors, we need to
impose the condition

〈M〉 = m . (10)

Should there exist an f̃ for which equation (10) had an
m 6= 0 solution, then we would have obtained a stationary
solution of the system of pendula, which is in turn also
magnetised stationary solution of the XY -HMF model in
the N → ∞ limit. Indeed the equations of motion for the
system of pendula write

{

ṗi = −m sin qi

q̇i = pi
, (11)

and given the imposed condition (10) they are formally
identical to (3) with a constant ϕ = 0. Note that the
condition of the phase ϕ = 0, can be modified at will by
a simple shift in the m-pendula Hamiltonian.

Such an out of equilibrium solution is displayed in Fig. 2,
for a specific choice of the initial condition and output
magnetisation amount. One typically recognises the un-
derlying pendulum phase portrait, with each tori being
differently populated according to the function g(I). The
non-uniformity of f̃(p, q) on each torus stems from the
nonlinearity of the transformation q = q(I, θ), p = p(I, θ).

As previously mentioned out of equilibrium, phase tran-
sition have been previously reported separating macro-
scopically distinct QSSs phases. These findings are here
revisited in the framework of the proposed approach,
which holds promise to generalise the conclusion beyond
the water-bag regime so far inspected via the Lynden-
Bell ansatz. The water-bag regimes correspond to ini-
tially assign the particles to populate, randomly and uni-
formly, a bound domain [−q0, q0] × [−p0, p0] depicted

Fig. 2: Stationary out of equilibrium distribution f̃(p, q) with
m = 〈M〉 = 0.5 obtained for g(I) reconstructed from a water-
bag with q0 = 2π/5 and p0 = 1.37.

in gray in Fig. 2. This latter initial condition is then
univoquely specified by the magnetisation at time zero,
namely M0 = sin(q0)/q0, and the energy per particle
U = p2

0/6 + (1 − M2
0 )/2. Notice that the water bag con-

cept will be here invoked as a mere numerical strategy
to calculate the needed function g(I). We are hence not
limiting the present analysis to a specific class of initial
conditions, as e.g. done in [10], but we rather present a
compelling evidence on the existence of a phase transition
in a broader perspective.

Equation (10) is implicit in m parametrised through the
initial conditions which enter the definition of the function
g. Such an equation admits m = 0 as a trivial solution.
One can then look for more general solutions of Eq. (10)
with m 6= 0. Even though f̃(p, q) water bag type is def-
initely not of, the water-bag type, as clearly depicted in
Fig. 2, we have here decided to facilitate the forthcoming
analysis, namely the calculation of the associated g(I), by
focusing on a finite portion of phase space as delimited
by a water-bag window. This choice allows us to obtain a
family of solutions monitored by the two same parameters,
namely U and M0. To construct g(I) it is possible to ana-
lytically compute the length of the intersection of each tori
with the water-bag (see Fig. 2), however we settled for a
simple numerical procedure. Namely we consider a large
ensemble of particles whose distribution approximates a
waterbag, then for each particle and a given m we com-
pute its corresponding action to construct an histogram of
I and use it as an approximate form of g(I). Finally we
use this expression and check whether m = 〈M〉 and look
for possible solutions. The drawback of this choice results
in a dependence on the number N of particles used to con-
struct the approximate waterbag wich may be important
when we are close to the m = 〈M〉 = 0 transition line. We
however believe its accuracy is sufficient to present our
point.

Results for different M0 are depicted in Fig. 3. One can
clearly appreciate the transition from a magnetised state
to a non magnetised one, as well as a first order type of
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Fig. 3: Magnetisation 〈M〉 as a function of energy density U
for different values of M0. The symbols +, ×, +, ◦ correspond
to non-zero solutions of the system of equations (9) and (10)
computed respectively for M0 = 0.854, 0.637, 0.368, 0. One can
notice a dependence on M0, as well as a first order transition
for M0 = 0. Computation of the function g(I) is made using
an approximate water-bag filled with 1.6 107 particles. Note
also that the that the transition point around U = 0.59 for
M0 = 0 is very close to that found, numerically in [10] probably
because the initial condition is “closer” to a water-bag one
when M0 = 0.

transition for M0 = 0.
A few comments are mandatory at this point. First,

we insist on the fact that the phase space trajectories cor-
responding to derived solutions and its associated time
evolution in Γpq apply to two, intrinsically different, dy-
namical systems, namely (1) and (4). Second, consider
the average energy per particle U = E/N . We point out
that the constants in Hamiltonians (1) and (4) are cho-
sen in order to have 0 as a minimal value for the energy,
which, in the thermodynamic limit, implies U = 0 for a
zero temperature. Now focus on UHMF for the XY -HMF
model: We obtain UHMF = T/2 − M2/2 + 1/2, while for
the pendula one gets Up = T/2− M2 + M . Here, in both
cases, T/2 is the average kinetic energy per particle. Dif-
ferent energies are thus associated to the same trajectory,
depending on the dynamical system that is being chosen
to generate it. In order to reconcile the two models one
can infer that the chemical potential of the particle is dif-
ferent, yielding to δµ = δU = (M − 1)2/2 for respectively
the integrable uncoupled model and the globally coupled
one. Moreover, solutions with constant M = m = 0 do
correspond to a one dimensional perfect gas: the observed
phase transition can hence be seen as a sort of sublimation.

In conclusion, with reference to the XY -HMF model, we
have designed an analytical scheme which allows to iden-
tify all possible stationary solutions with constant mag-
netisation M using a set of integrable uncoupled pendula.
This includes as a subset the celebrated QSSs, which are
therefore formally understood within a consistent mathe-
matical framework. Following these lines, it can be in-
ferred that the out of equilibrium states predicted by

the statistical mechanics scenario pioneered by Lynden-
Bell [11], should belong to the class of solutions here dis-
played. We are then providing de facto a testbed for ac-
curacy of the controversial Lynden-Bell theory [13]. Note
though that the stability of the solutions has not been dis-
cussed, it is currently under investigation and is likely to
provide further restrictions on the possible out of equilib-
rium stationary states.
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Appendix. – We shall here review the main mathe-
matical tools which are employed in the above derivation.
When it comes to the pendulum motion, trapped orbits
(libration) are characterised by:

q = 2 sin−1

[

κsn

(

2K(κ)θ

π
, κ

)]

I =
8

π

√
m

[

E(κ) − κ′2K(κ)
]

〈cos q〉 = 2
E(κ)

K(κ)
− 1

while for the untrapped ones (rotation) the following re-
lations hold:

q = 2am

(

2K(1/κ)θ

π
, κ−1

)

I =
8κ

π

√
mE(1/κ)

〈cos q〉 = 1 + 2κ2

(

E(κ−1)

K(κ−1)
− 1

)

with κ2 = (h + m)/2m. Here < · >=
∫ 2π

0
·dθ/(2π).
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