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Non linear damping of a plate using Faraday

instability of a fluid film

J.M. Génevaux, N. Dauchez, O. Doutres

Laboratoire d’Acoustique de l’Université du Maine, Avenue Olivier Messiaen,
72085 LE MANS Cedex 9

Abstract

Damping using an instability of a fluid film in contact with a vibrating structure is
investigated. Waves induced in the fluid film are the source of the added damping.
A model based on the theory of Faraday instability is applied to a clamped circular
plate covered by a fluid film. It is shown that this original technique can provide a
significant damping, as with viscoelastic or porous material treatments. It is related
to the amplitude of the waves which is a non linear function of the plate acceleration.
Theoretical and experimental results are compared. The model overestimates the
added damping: it is four times greater than the measured one.

Key words: Non linear damping, Damping of panels, Faraday instability, Fluid
film, Vibroacoustics
PACS: 43.55.Wk, 46.40.Ff, 68.35.J, 43.25

1 Introduction

This paper examines a method to reduce the vibration and therefore the emit-
ted noise of a structure by means of a fluid film in the low frequency range.
The usual techniques for noise and vibration reduction from a structure use
a viscoelastic layer bonded onto the structure [1]. In this case, the dissipation
is proportional to the loss factor of the material and to the flexural strain
energy of the viscoelastic layer. To be efficient, this technique requires the use
of a thick layer. Its thickness, and therefore the mass adding, can be reduced
by using a light and stiff constraining sheet that increases the strain energy
in the dissipating layer. Optimal partial covering may also be used to reduce
the added mass [2]. These techniques are limited by viscoelastic properties
that depend on frequency and temperature [3]. Designed primarily for sound
absorbing, porous materials such as polymer foam may also add significant
damping when mounted onto a structure [4–6]. To improve the efficiency of



Fig. 1. Oscillation of a fluid film on a vibrating plate, with w(x, y, t) the transverse
displacement of a point P of the plate (coordinates in the plane (x, y)), t the time,
h the water level of the fluid film at rest and ξ(x, y, t) the amplitude of the waves
above the point P.

passive treatments, active control techniques have also been developed [7, 8]
but require more sophisticated set up. Moreover, their robustness has to be
carefully demonstrated.

In this paper, damping added by a fluid film in contact with a structure is
investigated (Fig. 1). When the normal acceleration of the structure is strong
enough, stationary waves appear in the fluid film (Fig. 2). This phenomenon
is called Faraday instability [9, 10]. In case of a finite area of the fluid-air
interface, the boundary conditions select countable wave lengths and several
stationary mode shapes are solution of the problem [11]. The mode shape
which has the greater amplification coefficient appears [12, 13]. In case of an
infinite area, this amplification coefficient will select the shape of the free sur-
face among elementary cell patterns (roll, hexagon or square) (Fig. 2). These
elementary cells can be considered as oscillators distributed over the surface
of the structure [14], which damping depends on fluid flow in a cell and on the
viscosity of the fluid. Moreover, the relation between the wave amplitude and
the driving acceleration of the plate is nonlinear: it is necessary to determine
the acceleration threshold for waves to appear and their amplitude at satu-
ration [11, 15]. Note that for high acceleration level, ejection of droplets can
be observed [16]. This paper focuses on the added dissipation to the struc-
ture by the Faraday instability, using the thinnest fluid layer without droplet
ejections. To the author’s knowledge, this technique aimed at reducing the
vibration using the Faraday instability has not been previously presented.

In a first part (Sec. 2), the modelling the method of calculating the added
damping is detailed. To this end, a particular geometrical configuration is
chosen: a circular plate clamped at its edge.

In section 3, the corresponding experiment is designed in order to measure the
added damping of the first mode of the plate. This highlights the nonlinear
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Fig. 2. Stationary waves at the fluid-air interface (top view of the plate). Driving
acceleration Wa(0, 0) : 13.8 m s−2

behaviour of the instability of the fluid film and the influence of the parameters
governing the phenomenon.

The results of the model are compared with those obtained by the experiment
in section 4.

2 Model

2.1 From local to global dissipation

This section details how to calculate the global dissipation added on the struc-
ture as function of the driving acceleration and for a given mode shape of the
plate. Indeed, the modal dissipation is function of the area where the instabil-
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ity appears and of the nonlinear relation between the amplitude of the waves
and the local acceleration.

In the present paper, the first mode of a circular clamped plate of diameter d
is considered. Its mode shape is given by [17],

φ(r, θ) =
I0(β01d/2) J0(β01r)− J0(β01d/2) I0(β01r)

I0(β01d/2) J0(0)− J0(β01d/2) I0(0)
, (1)

with r the distance of the point to the centre of the plate, I0 as the modified
Bessel function, J0 the Bessel function and β01 = 1.0152π

d
. This mode shape

is normalized so that φ(0, 0) = 1.

The modal damping ratio of the plate is given as function of modal parameters,

ζap =
cap

2
√

kpmpf

, (2)

where cap is the damping coefficient added on the plate, kp the modal stiffness
of the plate and mpf the modal mass of the plate loaded by the fluid film.
These three terms cap, kp and mpf are calculated in the two following sections.

2.1.1 Modal stiffness and modal mass

The strain energy of the plate is calculated by integrating the local strain
energy over the plate. This expression gives the modal stiffness kp [17]:

1

2
kp (φ(0, 0))2 =

1

2
D

∫ 2π

θ=0

∫ R

r=0

((
φ,rr +

1

r
φ,r

)2

− 2(1− νp)
φ,rrφ,r

r

)
rdrdθ,

(3)
with D the stiffness of the plate defined by

D = Ee3/(2(1− ν2
p)), (4)

with E the Young modulus and νp the Poisson’s ratio of the material, e the
thickness of the plate. This modal stiffness does not depend on the fluid film
properties.

By the same approach, the modal mass of the plate mp is given by [17]:

1

2
mp (φ(0, 0))2 =

1

2

∫ 2π

θ=0

∫ R

r=0
ρpeφ(r, θ)2rdrdθ, (5)

with,
ρpe = ρse + ρfh = ρse(1 + ρ̃), (6)

the equivalent mass per unit area of the system, based on ρs the density of
the aluminum, ρf the density of the fluid and an added mass due to the fluid

4



layer. In this equation, the kinetic energy of the fluid due to the flow relative
to the plate is neglected. Assuming that ρp is constant along the plate and
that φ(0, 0) = 1, equation (5) can be rewritten,

mp = ρpe
∫ 2π

θ=0

∫ R

r=0
φ(r, θ)2rdrdθ. (7)

The value of ρs is given by fitting the first resonance frequency of the bare
plate,

f1 =
1.0152

2π

π2

(d/2)2

√
D

ρse
. (8)

2.1.2 Added damping coefficient

The added damping coefficient cap is determined considering the dissipated
energy during one period of the plate vibration [9, 12, 18–20],

∫ 2π/ωe

t=0

1

2
capẇ

2(0, 0, t)dt =
∫ 2π/ωe

t=0


1

2

∫ 2π

θ=0

∫ R

r=0
ĉ

(
∂hα(r, θ) cos(ωf t)

∂t

)2

rdrdθ


 dt,

(9)
with w(0, 0, t) = W sin(ωet) the instantaneous transverse displacement of the
centre of the plate, W the amplitude of the displacement at this point, ĉ
the local damping coefficient per unit area, α(r, θ) = A(r, θ)/h (Eq. 12) the
dimensionless amplitude of the waves , A(r, θ) = maxt(ξ(r, θ, t) the amplitude
of the waves at saturation (Fig. 2), ξ(r, θ, t) the instantaneous position of the
free surface, ωf the circular frequency of the free surface waves due to the
Faraday instability, ωe the circular frequency of excitation and t the time.

Taking into account the axisymmetry of the first mode shape, that ωf = ωe/2
and ẇ(0, 0, t) = Wωe sin(ωet), the integration in time and in angle θ gives,

capW
2 = ĉh2π

∫ R

r=0
α(r)2rdr. (10)

The integration is made on the area where the instability appears. It is a disk
of radius rd, so that for r > rd, α(r) = 0. Assuming that the amplitude of
the waves does not depend on the acceleration of the other points of the plate
(local hypothesis), rd may be defined by

ẅ(rd, θ) = ε̃cg, (11)

with ε̃c the dimensionless acceleration threshold for the Faraday instability to
appear and g the gravity.

For r < rd, a linear relation between α2 and ε̃ is accounted for as suggested in
ref. [11]: the amplitude of the waves at saturation, when ∂A

∂t
= 0, is an affine
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function of ε̃,
α2 = ε̃Aωf

−Bωf
, (12)

where Aωf
and Bωf

are two parameters which will be determined experimen-
tally in this paper (Sec. 3 and Fig. 7). Note that ε̃c is ε̃ for α = 0 in equation
(12):

ε̃c =
Bωf

Aωf

. (13)

Equation (10) then writes

cap =
πĉh2

W 2

[
Aωf

g
∫ rd

r=0
ε̃(r)rdr −Bωf

∫ rd

r=0
rdr

]
, (14)

where the dimensionless acceleration ε̃(r) can be related to φ(r, θ) the normal-
ized mode shape of the plate (Eq. 1) by

ε̃(r) =
Wω2

e

g
φ(r, θ). (15)

2.2 Equivalent damping coefficient of a fluid cell

The aim of this section is to calculate the modal damping coefficient ĉ of the
fluid per unit area, which is required to calculate cap (Eq. 14). It is given by,

ĉ(r, θ) = 2ζ0mfωf , (16)

with mf the modal mass per unit area and ζ0 the damping ratio of the fluid.
ζ0 can be related to the logarithmic decrement αs of free oscillations [17] by

ζ0 =
αs√

4π2 + α2
s

, (17)

with αs = 2πδk [15]. Here δ =
√

2ν/ωf is the thickness of the viscous layer
for a fluid with a kinematic viscosity ν solicited at the circular frequency ωf ,
and k the wave number. This wave number is solution of [21]

ω2
f = gk tanh(kh)

(
1 +

σk2

ρfg

)
, (18)

with σ the surface tension of the fluid-air interface.

The modal mass per unit area mf is

mf =
mfcell

(λ/2)2
, (19)
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with mfcell the modal mass of one cell whose area is (λ/2)2, with λ = 2π/k
the wave length. Here, the first mode of a fluid cell for a given pattern of
the free surface is considered. Several patterns appear successively on the free
surface with the increase of the level of the acceleration [10]: roll, hexagon, then
square. In this paper, the square pattern which is present for high accelerations
is chosen (Fig. 2). The modal shape can be defined according to a potential
function for the flow: the Reynolds is large enough (Re = 1.7 106) for the
thickness of viscous boundary layer (δ = 0.063 mm) to be smaller than the
fluid depth. Let us consider a fluid cell defined by a volume of incompressible
fluid whose dimensions are λ/2 in x and y directions, and h in z direction.
Symmetry arguments allow the use of a flow v relative to the plate associated
to Φf (x, y, z, t) = φf (x, y, z)g(t), with g(t) a harmonic function and

φf (x, y, z) = β(r, θ) cos(q(2x/λ− 1)) cos(q(2y/λ− 1)) cosh(
√

2q, z/λ), (20)

with β the amplitude of the potential function which depends on the position
of the fluid cell (cylindrical coordinates r,θ), and (x,y,z) the coordinates of a
point into the cell. The velocity field v is given by,

h
∂φf

∂x
g(t) = v.x, h

∂φf

∂y
g(t) = v.y, h

∂φf

∂z
g(t) = v.z. (21)

The boundary conditions at x = λ/2 and y = λ/2 give for the first mode of
the fluid cell, q = π.

The kinetic energy of the fluid in the cell is used to calculate mfcell:

1
2
mfcell

(
∂α(r,θ) cos(ωf t)

∂t

)2
=

1
2
ρfg(t)2

∫ λ
x=0

∫ λ
y=0

∫ h
z=0

(
φ2

f,x + φ2
f,y + φ2

f,z

)
dxdydz,

(22)

with φf,x = ∂f
∂x

. β(r, θ) is derived from α(r, θ) the amplitude of the waves, by
equating the vertical velocity of a point of the free surface (z = h):

α(r, θ)
∂ cos(ωf t)

∂t
= g(t)

∂φf

∂z
∀t, (23)

and using equation (20) it gives,

α(r, θ) = β(r, θ)
2
√

2π

λ
sinh(

√
2πh/λ), (24)

g(t) = −ωf sin(ωf t) (25)

so that,

β(r, θ) =
α(r, θ)λ

2
√

2π sinh(
√

2πh/λ)
. (26)
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Using equation (26), and integrating the second member of equation (22), the
modal mass of the 1 degree of freedom system associated to the fluid cell
writes,

mfcell =
ρfλ

3
√

2

256π

(
1− exp

(
−8
√

2πh
λ

))
exp

(
4
√

2πh
λ

)

cosh
(√

2πh
λ

)2 − 1
. (27)

The modal mass per unit area mf and the modal damping coefficient by unit
area ĉ may be obtained with equations (16) and (19).

3 Experimental results

The aim of this section is to determine experimentally the plate damping
induced by the Faraday instability of the fluid film. Because the system is
nonlinear, all experimental quantities are referenced to the acceleration at the
centre of the plate, called driving acceleration, and denoted Wa(0, 0). Four
water levels and four values of the driving acceleration are considered.

3.1 Experimental set-up

The geometrical configuration is presented in figure 3. A circular aluminum
plate of diameter d = 0.290 m is clamped. Its characteristics are summa-
rized in tables 1 and 2. It is excited by a shaker connected to its centre via
a force transducer giving the excitation force F . An accelerometer of mass
ma = 0.0042 kg is bonded at 1 cm of the centre of the plate to get the refer-
ence acceleration Wa(0, 0) = ω2

eW . A laser vibrometer is focused on the plate
through the fluid film. The laser spot area is less than gives a measured area
of the order of 1 mm2.

The frequency range is set between 40 Hz and 120 Hz to ensure Faraday
instabilities for experimentally achievable accelerations. The thickness of the
fluid layer is chosen to be of the order of the wavelength: this ensures a total
covering of the plate and a small added mass.

The frequency response functions are obtained using a step by step harmonic
excitation for a constant acceleration amplitude Wa(0, 0).
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Fig. 3. Experimental set-up.

3.2 Determination of the free surface velocity of the fluid

The signal given by the laser vibrometer is proportional to the apparent ve-
locity of the plate dw̃

dt
. It is a combination of the plate and of the free surface

velocities:

dw̃(r, θ, t)

dt
=

dw(r, θ, t)

dt
−

(
c0

c1

− 1
)

d(h + ξ(r, θ, t))

dt
, (28)

with w(r, θ, t) the displacement of the plate at the point P (r, θ), c0 the light
velocity in the air, c1 the light velocity in the fluid, h(r, θ, t) the water level
crossed by the beam. The time signal of the apparent speed of the plate (Fig.
4) exhibits a sub-harmonic at ωe/2. Their contributions can be easily identified
because they are at different frequencies (see Fig. 4). To do so, equation (28)
is rewritten as:

dw̃(r, θ, t)

dt
= ã1 cos(ωet + ã2) + ã3 cos

(
ωe

2
t + ã4

)
. (29)

The parameters ã1 and ã2 are associated to the plate velocity, and the para-
meters ã3 and ã4 to the fluid interface movement. They are determined using
a nonlinear optimization. The position of the nodes of the free surface mode
shape are not stationary: ã3 = 0 if the laser beam focuses through a node, and
is maximum if the laser beam focuses through an antinode. Indeed, for level of
accelerations far higher the threshold, second order effects [22] induce a slow
drift of the positions of the antinode of the fluid air interface. Thus, the time
of acquisition must be long enough to contain measurement on an antinode.
The amplitude of the waves is then deduced from the greatest value of ã3.
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Fig. 4. Signals (V) of the acceleration of the plate (dotted line 31.6 m s−2/ V) and
its apparent velocity measured by the laser vibrometer (bold line 0.025 m s−1 / V)
maximum velocity of the plate : 0.039 m s−1 ; water level 0.0046 m ; ρ̃ = 0.88 ;
frequency of excitation 65 Hz.

3.3 Influence of the driving acceleration and water levels

The experiments are performed with water to test the influence of the fluid
level on the frequency response functions. The water levels remain below
0.0133 m and above 0.004 m for all the experiments. Below this lower limit,
the wetting mechanism prevents the water from covering the whole plate. The
ratio of added mass per unit area is:

ρ̃ =
ρfh

ρse
. (30)

Near the resonance frequency (75 Hz), stationary waves are observed on the
free surface (Fig. 2). Their amplitude is higher at the centre of the plate. This
coincides with the maximum amplitude of the first mode shape. They appear
as square patterns within a circle at the centre of the plate. Their wavelength,
which are consistent with capillarity waves on the surface, increases as the
frequency decreases.
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To determine the acceleration threshold for Faraday instability, the frequency
response function is measured for several amplitudes of the driving acceleration
for water levels from 0 to 0.0133 m. Nonlinear effects are observed (Fig. 5)
when increasing the amplitude of acceleration:

• the existence of a threshold for waves to appear,
• an increase in the area of the circular surface on which waves are present,
• a slight increase in the frequency resonance,
• a reduction of the amplitude of the peak (up to 13 dB).

In figure 5, the threshold is between 6 m s−2 and 13 m s−2. It corresponds
to a sharp increase in damping. Figure 6 shows damping ratio ζpf which is
estimated using the half-power method. The measured damping for this non
optimized configuration can be half the value of the damping measured in
the case of unconstrained-layer treatment, and is greater than the damping
added by foam or fiber layer. This increase is not observed for the bare plate
(continuous line). The thinner the fluid layer, the stronger the damping is.

Fig. 5. Influence of the driving acceleration Wa(0, 0) on the frequency response
function (accelerometer/force) for a water level of 0.0046 m, ρ̃ = 0.88: continuous
line, Wa(0, 0) = 3.16 m s−2 ; dashed line, Wa(0, 0) = 6.32 m s−2 ; dotted line,
Wa(0, 0) = 12.7 m s−2 ; dashed dotted line, Wa(0, 0) = 25.3 m s−2.
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Fig. 6. Influence of the driving amplitude Wa(0, 0) on the plate damping for several
water levels: continuous line, 0.0 m ; dashed line, 4.6 mm ; dotted line, 8.0 mm ;
dashed dotted line, 13.3 mm.

4 Comparison between theoretical and experimental results

Comparison between theoretical and experimental values of the plate damping
induced by the fluid film is now evaluated. Water with the thinner thickness is
used to induce the stronger damping. The numerical values of the parameters
of the model are given in tables 1 and 2 for this configuration.

The added damping ratio depends on the local dissipation of the fluid layer
and on the area of the instability area.

This local dissipation is a function of the relation between the local accelera-
tion of the plate and of the wave amplitude (Fig. 6). The relation between the
wave amplitude and the motion of the plate is quantified by the coefficients
Aωf

and Bωf
(Eq. (12)) which are identified on the experimental data by a

least-squares regression method (Fig. 7). The uncertainties on the position of
the regression line are calculated with a confidence of 95%. Note that three
points are not taken into account: the noise on the signal and the low spatial
stability of the waves do not allow a correct evaluation of the amplitude of the
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Table 1
Numerical inputs of the model.

Plate

Diameter of the plate (m) d 0.290

Thickness of the plate (m) e 0.001

Material of the plate aluminum

Young’s Modulus (Pa) E 7 1010

Poisson’s ratio νp 0.3

Frequency of the first resonance

of the bare plate (Hz) f1 100

Frequency of excitation (Hz) fe 75

Fluid

Gravity (ms−2) g 9.81

Fluid layer thickness (m) h 0.0046

Kinematic viscosity of water (m2s−1) ν 10−6

Density of the fluid (kg m−3) ρf 1000

Wave length of the free surface (m) λ 0.0063

First amplitude of the wave coefficient Aωf
[0.0135, 0.0163]

Second amplitude of the wave coefficient Bωf
[0.0111, 0.0134]

waves for these three acceleration levels. In the following, above the threshold
ε̃c, the dimensionless amplitudes of the waves lie in the following boundaries:

0.0135(ε̃ − 0.82) < α2 < 0.0163(ε̃ − 0.82). (31)

The wave length λ = 0.004 m given by the model using σ = 0.072 N m−1 the
surface tension of the fluid-air interface, is near the measured experimental
wave length (0.00626 m< λ < 0.00634 m, Sec. 3.3). The experimental average
value λ = 0.0063 m is used in the model to evaluate the damping.

Moreover, the equivalent damping coefficient cap added to the structure de-
pends on the area on which the damping occurs. The first mode shape of the
plate induces a circular limit of instability of radius rd where, Wa(rd, θ) =
8.04 m s−2. The relationship between this radius and the acceleration in the
centre of the plate is given by the mode shape of the plate φ(r, θ) (Eq. 1) and
the instability threshold. The evolution of cap, as function of Wa at the centre
of the plate, can then be calculated taking into account the uncertainty of the
amplitude of the waves (Eq. 31). From the evolution of cap, the damping ratio
added by the fluid ζap can be plotted (Fig. 8).
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Table 2
Numerical outputs of the model.

Loaded plate

Stiffness of the plate (N m) Eq. (4) D 8.82

Dimensionless added mass Eq. (30) ρ̃ 0.88

Density of the plate with air loading (kg m−3) Eq. (8) ρs 5230

Modal stiffness (Nm−1) Eq. (3) kp 1.08 105

Equivalent mass of the plate with fluid (kgm−3) Eq. (6) ρp 7215

Modal mass (kg) Eq. (7) mp 0.0875

Fluid

Threshold of instablility (ms−2) Eq. (13) ε̃cg 8.04

Local damping ratio of the fluid Eq. (17) ζ0 14.5%

Modal mass of a fluid cell (kg) Eq. (27) mfcell 2.23 10−6

Modal mass per unit area (kg m−2) Eq. (19) mf 2.25 10−1

Equivalent damping coefficient per unit area (kg m−2s−1) Eq. (16) ĉ 9.69

Damping ratio added by the fluid Eq. (2) ζap Fig. 6

For the experimental point of view, the damping ratio added by the fluid can
be deduced by the comparison of the damping ratio observed with the fluid
ζpf and the damping ratio of the bare plate ζp (Fig. 6). The damping ratio of
the bare plate is,

ζp =
cp

2
√

kpmp

, (32)

with cp the modal damping coefficient of the plate, mp the modal mass of the
plate. With the fluid layer the damping ratio is given by,

ζpf =
cp + cap

2
√

kpmpf

=
cp

2
√

kpmpf

+ ζap. (33)

By neglecting the kinetic energy of the waves compared to the kinetic energy
of the loaded plate, the relation mpf = mp(1 + ρ̃) gives,

ζpf =
cp

2
√

kpmp(1 + ρ̃)
+ ζap. (34)

Thus, the experimental value of the added damping ratio is

ζap = ζpf − ζp
1√

1 + ρ̃
. (35)
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Fig. 7. Experimental evolution of the dimensionless oscillation amplitude α = A/h
with the acceleration above the threshold for a given frequency (75 Hz) with water.
The two lines corresponds to the uncertainty with a confidence of 95% of the mean
square line which fits the data.

The comparison (Fig. 8) between experimental and theoretical values of ζap

shows that above the threshold the amplitude of the theoretical damping is
four times greater than the experimental damping.

The source of this discrepancy can be sought in the high sensitivity of the
model to the amplitudes of the waves. The relation between the wave ampli-
tude and the acceleration has been determined assuming a locally reacting
behaviour of each fluid cell. This hypothesis is valid where the acceleration
is uniform: this is the case in the vicinity of an antinode (centre of the plate
for the first mode). This assumption may not be valid where an acceleration
gradient is present. Moreover, in this transition region, the cell shape is no
longer square (Fig. 2).

Nevertheless, note that the damping added by the fluid film is comparable to
thoses obtained with viscoelastic or porous material treatments [1, 6].

5 Conclusion

Damping of a vibrating structure by means of a heavy fluid film subjected to
Faraday instability has been studied. It is shown that added damping may be
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Fig. 8. Evolution of the damping ratio added by the fluid versus the driving accel-
eration Wa(0, 0): theoretical values (between the two lines: the uncertainties on the
measurement of the water waves induce two curves of dimensionless damping with
95% of confidence), experimental values (crosses)

.

significant. A model has highlighted the governing parameters: the accelera-
tion threshold and the amplitude of the waves, which depend on the frequency,
on the viscosity and the fluid thickness of the fluid and on the mode shape
of the structure. The model takes into account that the dissipation does not
act on the overall structure. Experimental results have confirmed the ten-
dencies of the predicted damping. Nevertheless, the model overestimates the
added damping: it is four times greater than the measured one. Further experi-
ments are needed to detect the sources of discrepancies: the Faraday instability
threshold and the amplitude of the waves must be studied in the case of non
uniform acceleration.
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