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72085 LE MANS Cedex 9

Abstract

Damping using an instability of a fluid film in contact with a vibrating structure is

investigated. Waves induced in the fluid film is the source of the added damping. A

model based on the theory of Faraday instability is applied to a clamped circular

plate covered by a fluid film. It is shown that this original technique can provide

a significant damping. It depends of the viscosity of the fluid, the local amplitude

of the vibration, the threshold of the instability and the amplitude of the induced

waves. The non linear relation between the amplitude of the waves and the plate

acceleration induces a non linear damping. Theoretical and experimental results are

compared. The model slightly overestimates the added damping. Comparison with

viscoelastic and porous material treatments shows that damping are of the same

order.

Key words: Thin films acoustical properties, Non linear acoustics, Mechanical

waves resonance and damping, liquids viscosity, vibrations solid surfaces and

interfaces, Vibroacoustics, Faraday instability

PACS: 68.60.B, 43.25, 46.40.F, 66.20, 68.35.J

Preprint submitted to Elsevier Science 22 July 2008



1 Introduction

This paper examines a method to reduce the vibration and the emitted noise

of a structure by mean of a fluid film in the low frequency range.

Usual techniques use a viscoelastic layer [1][2][3][4]. When bonded onto a struc-

ture, the viscoelastic layer is considered as undergoing a pure bending strain.

Dissipation is proportional to the loss factor of the material and the flexural

strain energy in the viscoelastic layer. This technique requires a sufficiently

thick layer so that strain energy in the viscoelastic is significant compared to

the strain energy of the base structure. To reduce the weight adding, a light

and stiff constraining layer can be added: in this configuration, the viscoelastic

layer undergoes shear strain and the thickness of the viscoelastic layer can be

reduced. Optimal partially covering may also be used to reduce added mass

[5]. Both techniques are limited by viscoelastic properties that are frequency

and temperature dependent [6].

Usually used for sound absorbing, porous materials such as wool, fibre or

polymer foam, may add significant damping when mounted onto a structure

[7][8][9]. Below the first resonance frequency of the porous layer in its thickness,

the porous layer acts as a viscoelastic layer undergoing flexural strain. Due to

its higher thickness compared to those of the viscoelastic layers, its efficiency

is limited by shear strain [9]. Around the thickness resonance, a high damping

effect can be observed, but the acoustic radiation is amplified [7][8]. At higher

frequencies the porous layer acts as a filter, that highly reduces the radiation

of the structure.

To improve the efficiency of passive treatments, active control techniques have
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been developed [10][11] but requires more sophisticated set up. Moreover, their

robustness has to be carefully demonstrated.

In this paper, the presence of a fluid film in contact with a structure, can

create a useful damping at low frequencies, due to wave generation at the fluid-

air interface by Faraday instability (fig. 1). This technique can be compared

with techniques using a distribution of small oscillators with or without low

damping [12][13][14]. This instability appears when the normal acceleration of

the wall in contact with the fluid film is strong enough [15][16]. In case of a

finite area of the fluid-air interface, the boundary conditions select countable

wave lengths and several stationary mode shapes are solution of the problem

[17]. Several patterns of the fluid-air interface can occurs, but only the pattern

which presents the smallest acceleration threshold appears [18]. The non-linear

model of this parametric instability must take into account the dissipation in

the fluid in order to evaluate the value of the acceleration threshold [19].

Experimental studies [17] confirm the threshold values and give the amplitude

of the waves at saturation. For level of excitation far higher the threshold,

the slow drift of the positions of the antinode of the fluid air interface can be

explained by second order effects [20], and if the excitation is yet increased,

ejection of droplets can be observed and modelled [21].

This paper focuses on the added dissipation to the structure by the Faraday

instability, using the thinnest fluid layer without droplet ejections. To the

author’s knowledge, this technique to reduce the vibration using the Faraday

instability was never presented.

In a first part (sec. 2), the modelling of the Faraday instability mechanism, its

coupling with the vibrating structure and the method to calculate the added
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damping is detailed. At this step, a geometrical configuration is chosen: a

circular plate clamped at its edge.

In section 3, the corresponding experiment is designed in order to measure the

added damping of the first mode of the plate. This highlight the non-linear

behaviour of the instability of the fluid film and the influence of the parameters

governing the phenomena and its coupling with the plate.

The results of the model are compared with those obtained by the experiment

in section 4.

Finally a comparison with experimental results obtained on the same structure

covered by porous material or a viscoelastic layer shows how effective the two

techniques are (sec. 5).

2 Model

Faraday instability appears at the surface of a fluid subjected to normal os-

cillations. A model predicting the added damping by this phenomena on a

plate is presented in this section. It is achieved in five steps that determine

successively (fig. 2):

• 2.1) the wave length on the free surface,

• 2.2) the fluid damping ratio,

• 2.3) the damping coefficient of a fluid cell,

• 2.4) the local acceleration threshold, criterion for defining the area of insta-

bility and the amplitude of the waves,

• 2.5) the modal added damping coefficient, the modal stiffness, the modal
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mass of the plate and the added damping ratio of the plate.

2.1 Calculation of the wave length on the free surface

2.1.1 Circular frequency of the free surface

For the Faraday instability which is a non linear phenomenon, a subharmonic

circular frequency of the free surface at half the circular frequency of the

excitation is obtained. This ratio between the two frequencies was not detected

by Faraday in 1831 [15] who first observed the instability of free surfaces due

to normal oscillations. For experiments using a single frequency excitation

like ours [22] [23] [18], a model based on the hypothesis of inviscid fluid, slight

displacement of the free surface and unwetting fluid, is given by Benjamin

and Ursell [18]. In the case of the specific geometry of a gas bubble excited by

an acoustic waves, Faraday instability is also present at the gas-fluid interface

[24]. The finite area of the free surface induces that the stability, the increase of

the waves and their saturation have been studied for countable wave lengths.

This is not the case in this paper, due to the greatness of the ratio between

the smallest length of the free surface and the concerned wave length: the side

boundary conditions are so far that all the wave lengthes can be excited.

The free surface displacement ξ(x, y, t) (fig. 1) is given by [18],

ξ(x, y, t) = AS(x, y) exp(iωf t) + c.c., (1)

with S(x, y) as the shape of the free surface, t the time and A the amplitude

of the waves, ωf the circular frequency of the free surface, and c.c the complex

conjugate of the first term. Benjamin and Ursell [18] show that the amplitude
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equation of the waves is governed by a Mathieu equation,

∂2A

∂t2
+ ω2

fA − ε̃gk tanh(kh) cos(ωet)A = 0, (2)

with ε̃ the dimensionless acceleration of the bottom of the container, g the

gravity, k the wave number of the free surface shape, h the thickness of the

fluid layer and ωe the circular frequency of the excitation. Douady [17] gives

a dimensionless form of this equation,

∂2α

∂τ 2
+ (1 − ε cos(r̃τ))α = 0, (3)

with α = A/h, τ = tωf , r̃ = ωe/ωf , and

ε =
ε̃

1 + σk2

ρf g

, (4)

with σ the surface tension of the fluid-air interface and ρf the volumetric mass

of the fluid.

Benjamin and Ursell [18] gave the stability chart of the solutions for Mathieu’s

equation, and equation (3) corresponds in their figure to p = 1 and

q =
2kεg tanh(kh)

ω2
e

. (5)

It appears that the half-frequency instability r̃ ≃ 2 for p = 1 is obtained, and

that no acceleration threshold is predicted by this model.

The first instability is thus given by,

ωf =
ωe

2
. (6)

The frequency of the free surface is half the frequency of the excitation. This

value of subharmonic comes from a local condition, so it does not depend on

the geometry of the system [18][24]. This equation 6 will be considered in the
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rest of the paper.

2.1.2 Wave number and wave length

The dispersion equation of free surface waves is given by [25] [26],

ω2
f = gk tanh(kh)

(

1 +
σk2

ρfg

)

. (7)

In order to point out the influence of the surface tension over the gravity, it

is written in the following form,

ω2
f =

2πg

λ
tanh

(

2πh

λ

) (

1 +
4π2σ

ρfλ2g

)

, (8)

with λ = 2π/k the wave length. The wave length of the free surface oscillations

is given by solving eq. 8.

The term 4π2σ
ρf λ2g

is negligible before 1 below 20 Hz for water (σ = 0.072 N m−1,

ρf = 1000 kg m−3): the gravity gives the rigidity of the free surface [26] [27] [28]

[29]. The applicability of the method is restricted to horizontal free surfaces.

Above 20 Hz, the surface tension plays the most important role. This paper is

focused on this case of capillary waves. This damping method could be applied

to a surface which is not horizontal. Note that in this case, an other type of

instability due to the flow of the falling fluid film along a steady structure can

occurs [30], but is not considered in this paper.

2.2 Type of damping in the fluid film

The damping due to the fluid film has three origins [31][32]: a) the surface

layer, b) the viscous boundary layer at the interface with the structure and c)

the dissipation due to the movement of the meniscus for a wetting fluid.
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Mechanism c) which is strongly dependent of the cleanness of the contact line

air-fluid-solid, is managed to be avoided: the plate is clamped at its boundaries

and the dimensions of the plate are chosen far greater than the wave length

λ. In this context, the waves are avoided in the vicinity of the meniscus.

Mechanism b) is not considered in this study. The chosen flow field in a fluid

cell is approximated by a potential flow. The thickness of the viscous skin is

neglected.

Only mechanism a) is considered. The damping of the free surface waves is

given by the logarithmic decrement [19]:

αs = 2πδk, (9)

with δ =
√

2ν/ωf as the thickness of the viscous layer for a fluid with a

kinematic viscosity ν solicited at the circular frequency ωf .

2.3 Calculation of the equivalent damping coefficient of a fluid cell

The aim of this section is to calculate the modal damping coefficient ĉ of the

fluid per unit area. It is given by,

ĉ(r, θ) = 2ζ0mfωf , (10)

with mf the modal mass per unit area and ζ0 the damping ratio of the fluid.

ζ0 can be related to the logarithmic decrement αs (eq. 9) of free oscillations

[33] by,

ζ0 =
αs

√

4π2 + α2
s

. (11)

The modal mass par unit area mf is derived from mfcell the modal mass of
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one cell whose area is (λ/2)2,

mf =
mfcell

(λ/2)2
. (12)

Indeed, the first mode of a fluid cell for a given pattern of the free surface

is considered. The literature theories of Faraday instability show that several

pattern (roll, square, hexagon) can be present on the free surface if a single fre-

quency composes the excitation [16]. In this paper, the square pattern is chosen

to develop the model (see fig. 7). The modal shape can be defined according to

a potential function for the flow. Let us consider a fluid cell defined by a vol-

ume of incompressible fluid, whose lengthes are λ/2 in x and y directions, and

a depth h in direction z (fig. 3). Symmetry arguments allow the use of a flow

v relative to the plate associated to Φf (x, y, z, t) = φf (x, y, z)(−ωf sin ωf t),

as,

φf (x, y, z) = β(r, θ) cos(q(2x/λ − 1)) cos(q(2y/λ − 1)) cosh(
√

2qz/λ), (13)

with β the amplitude of the potential function which depends of the position

of the fluid cell (cylindrical coordinates r,θ), and (x,y,z) the coordinates of a

point into the cell. The velocity field v is given by,

h
∂φf

∂x
(−ω sin ωf t) = v.x, (14)

h
∂φf

∂y
(−ω sin ωf t) = v.y, (15)

h
∂φf

∂z
(−ω sin ωf t) = v.z. (16)

The boundary conditions at x = λ/2 and y = λ/2 give,

q = nπ. (17)

The value n = 1 corresponds to the first mode.
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The kinetic energy of the fluid in the cell is used to calculate mfcell:

1
2
mfcell

(

∂α(r,θ) cos(ωf t)

∂t

)2
=

1
2
ρf (−ωf sin(ωf t))

2
∫ λ
x=0

∫ λ
y=0

∫ h
z=0

(

φ2
f,x + φ2

f,y + φ2
f,z

)

dxdydz,

(18)

with α(r, θ) as the dimensionless amplitude of the wave and φf,x = ∂f
∂x

. The

equality of the vertical velocity of a point of the free surface (z = h) gives the

relation between α(r, θ) and β(r, θ):

α(r, θ)
∂ cos(ωf t)

∂t
= (−ω sin(ωf t))

∂φf

∂z
, (19)

α(r, θ)(−ωf sin(ωf t)) = β(r, θ)(−ωf sin(ωf t))
2
√

2π

λ
sinh(

√
2πh/λ), (20)

so that,

β(r, θ) =
α(r, θ)λ

2
√

2π sinh(
√

2πh/λ)
. (21)

Using 21, and integrating the second member of equations 18, the modal mass

of the 1 degree of freedom system associated to the fluid cell is,

mfcell =
ρfλ

3
√

2

256π

(

1 − exp
(

−8
√

2πh
λ

))

exp
(

4
√

2πh
λ

)

cosh
(√

2πh
λ

)2 − 1
. (22)

The modal mass per unit area mf (eq. 12) and the modal damping coefficient

by unit area (eq. 10) are finally obtained.

2.4 Calculation of the local acceleration threshold, the amplification of the

waves, and the instability domain

The dissipation is added on the structure only in the area in which the insta-

bility is present. A local hypothesis is assumed: the amplitude of the waves of

a fluid cell at a point depends solely on the amplitude of the acceleration of
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this point. This need to determine the local acceleration of the plate, and the

relation between this acceleration to get the amplitude of the waves.

2.4.1 Amplitude of the induced waves

In this section a model to determine the amplitude of the waves at saturation

is presented.

In the case of a spatially uniform excitation of the fluid film, Douady [17] gives

the amplification rate of the waves as a function of ε the excitation and Ā is

the complex conjugate of A the amplitude of the wave,

∂A

∂t
= γ exp(iφ)A +

εωf

4
Ā + c exp(iψ)|A|2A, (23)

with γ the acceleration. The amplitude at saturation, when ∂A
∂t

= 0, is an

affine function of ε̃ = γ/g,

α2 = ε̃Aωf
− Bωf

, (24)

where Aωf
and Bωf

are two parameters which will be determined experimen-

tally in this paper (sec. 4.2 and fig. 12).

2.4.2 Definition of the local threshold

Because of the dissipation in the fluid cell, a phenomenological damping term

is added in the equation 3 [17],

∂2α

∂τ 2
+ (1 − ε cos(rτ))α + 2η

∂α

∂τ
= 0. (25)

The evaluation of η can be found in [19] and [34] for a theoretical approach

and in [17] for an experimental approach. This induces a threshold beyond
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which surface waves are observed.

Several threshold values can be found in the literature.

• For capillary waves, deep water, and inviscid fluids, Milner [19] gives a

threshold for the first half-frequency instability which is

ε̃c1 =
1

g
8ωfkν. (26)

• With a hypothesis of low viscosity, the dissipation can be calculated accord-

ing to the inviscid flow field and gives a second estimation of the threshold

[35]

ε̃c2 =
1

g
8(ρf/σ)1/3νω

5/3
f , (27)

which is a little higher than the evaluation of Milner [19].

The comparison with the experimental thresholds obtained by Douady [17]

are in good agreement with both models which are very close to each other.

Nevertheless, two hypothesis of the preceding models are not verified in our

case and may affect the threshold:

• the acceleration of the structure is not uniform,

• the depth of the fluid film is not infinite, and this may increase the threshold

due to dissipation at the bottom of the fluid domain.

Consequently, an approximation of the threshold will be determine posing

α = 0 in the equation 24. It can be written as a function of the measured

values of Aωf
and Bωf

,

ε̃c =
Bωf

Aωf

. (28)

12



2.4.3 Local hypothesis

The hypothesis of a local reacting behaviour is assumed: the amplitude of

the waves of a fluid cell at a point P (r, θ) depends solely on the ampli-

tude Wa(r, θ) of the acceleration of the corresponding point of the plate

ẅ(r, θ, t) = Wa(r, θ) sin(ωet). The amplitude of the waves does not depend

on the acceleration of the other points on the plate.

The dimensionless amplitudes of the waves α at each point of the plate must

verify 0 ≤ α ≤ 1. Using equation (24), according to the acceleration at a given

point:

• Wa(r, θ)) ≤ ε̃cg, no waves below this value,

• ε̃cg ≤ Wa(r, θ)) ≤ g
1+Bωf

Aωf

, waves are present between these values,

• g
1+Bωf

Aωf

≤ Wa(r, θ)), the model is not valid above this value.

2.5 Calculation of equivalent modal dissipation, stiffness and mass of the

plate and added damping ratio

This section describes the procedure to calculate the added damping ratio of

the plate. The area of fluid instability depends on the shape of the displace-

ment of the plate at the excitation frequency and the amplitude of excitation.

In the present paper, the response of a circular clamped plate of diameter d

(sec. 3.1) near its first mode is considered. The first mode shape of the plate

is given by [33],

φ(r, θ) =
I0(β01d/2) J0(β01r) − J0(β01d/2) I0(β01r)

I0(β01d/2) J0(0) − J0(β01d/2) I0(0)
, (29)
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with I0 as the modified Bessel function, J0 the Bessel function and β01 =

1.0152π
d

(fig. 6). This mode shape is normalized so that φ(0, 0) = 1.

The equivalent damping ratio added to the plate ζap is given by,

ζap =
cap

2
√

kpmpf

, (30)

with cap as the added damping coefficient on the plate, kp the modal stiffness

of the plate and mpf the modal mass of the plate loaded by the fluid film.

This three terms cap, kp and mpf are calculated in the following sections. The

comparison between theoretical and experimental values (sec. 3) of ζap will be

presented in section 4.

2.5.1 Added damping coefficient

The added damping coefficient cap is related to the modal shape φ(r, θ) of the

plate, the local damping coefficient per unit area ĉ and the amplitude of the

waves α(r, θ) (eq. 24):

∫ 2π/ωe

t=0

1

2
capẇ

2(0, 0, t)dt =
∫ 2π/ωe

t=0





1

2

∫ 2π

θ=0

∫ R

r=0
ĉ

(

∂hα(r, θ) cos(ωf t)

∂t

)2

rdrdθ



 dt.

(31)

Taking into account the axisymmetry of the first mode shape, that ωf = ωe/2

(eq. 6) and ẇ(0, 0, t) = W (0, 0)ωe sin(ωet), the integration in time and in angle

θ gives,

capW (0, 0)2 = ĉh2π
∫ R

r=0
α(r)2rdr. (32)

Introducing rd as the radius at which the instability appears,

ẅ(rd, θ) = ε̃cg, (33)
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the local hypothesis gives that α(r) = 0 for r > rd, and equation 24 for r < rd

becomes:

cap =
πĉh2

W (0, 0)2

[

Aωf
g

∫ rd

r=0
ε̃(r)rdr − Bωf

∫ rd

r=0
rdr

]

. (34)

The dimensionless acceleration ε̃(r) can be related to φ(r) the normalized

mode shape of the plate (eq. 29),

ε̃ =
W (0, 0)ω2

g
φ(r, θ). (35)

The evolution of cap can then be calculated according to the value of W (0, 0)ω2.

2.5.2 Modal stiffness

The strain energy of the plate is calculated by integrating the local strain

energy over the plate. This expression gives the modal stiffness kp [33]:

1

2
kp (φ(0, 0))2 =

1

2
D

∫ 2π

θ=0

∫ R

r=0

(

(

φ,rr +
1

r
φ,r

)2

− 2(1 − νp)
φ,rrφ,r

r

)

rdrdθ,

(36)

with D = Ee3/(2(1− ν2
p)) the stiffness of the plate. This modal stiffness does

not depend on the fluid film properties.

2.5.3 Modal mass

By the same approach for the kinetic energy of the plate, the modal mass of

the plate mp is given by [33]:

1

2
mp (φ(0, 0))2 =

1

2

∫ 2π

θ=0

∫ R

r=0
ρpeφ(r, θ)2rdrdθ. (37)
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With,

ρp =
ρse + ρfh

e
= ρs(1 + ρ̃), (38)

the equivalent volumetric mass of the system, based on ρs the volumetric mass

of the aluminum and an added mass due to the fluid layer. Assuming that ρp

is constant along the plate and that φ(0, 0) = 1, equation 37 can be rewritten,

mp = ρpe
∫ 2π

θ=0

∫ R

r=0
φ(r, θ)2rdrdθ. (39)

3 Experimental results

The aim of this section is to quantify experimentally the energy dissipation

induced by a Faraday instability of a heavy fluid film. Because the system is

non linear, all experimental quantities are referenced to the acceleration at

the center of the plate which is given for each figure.

3.1 Experimental set-up

The geometrical configuration is presented in figure 4. A circular aluminum

plate of diameter d = 0.290 m is clamped. Its characteristics are summarized in

table 1. It is excited by a shaker connected to its centre via a force transducer

giving the excitation force F . An accelerometer of mass ma = 0.0042 kg is

bonded at 1 cm of the center of the plate to get the reference acceleration

Wa(0, 0). A laser vibrometer is focused on the plate through the fluid film.

The frequency range is set between 40 Hz and 120 Hz to ensure Faraday

instabilities for reasonable accelerations. The thickness of the fluid layer is

chosen to be of the order of the wavelength: this ensures a total covering of
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the plate and a small added mass.

Between each test using different fluids, the container is cleaned up and dried.

The frequency response functions are obtained using a step by step harmonic

excitation for a controlled acceleration amplitude Wa(0, 0).

3.2 Determination of the free surface velocity of the fluid

The signal given by the laser vibrometer is proportional to the apparent ve-

locity of the plate dw̃
dt

, which is a combination of the plate and the free surface

velocities.

dw̃(r, θ, t)

dt
=

dw(r, θ, t)

dt
−

(

c0

c1

− 1
)

dh(r, θ, t)

dt
, (40)

with w(r, θ, t) the displacement of the plate at the point P (r, θ), c0 the light

velocity in the air, c1 the light velocity in the fluid, h(r, θ, t) the water level

crossed by the beam. Their contributions can be easily identified because they

are at different frequencies. To do so, equation 40 is rewritten of the form:

dw̃(r, θ, t)

dt
= ã1 cos(ωet + ã2) + ã3 cos

(

ωe

2
t + ã4

)

. (41)

The parameters ã1 and ã2 are associated to the plate velocity, and the para-

meters ã3 and ã4 to the fluid interface movement. They are determined using

a non linear optimisation. The position of the nodes of the free surface mode

shape are not stationary: ã3 = 0 if the laser beam focuses through a node,

and is maximum if the laser beam focuses through an antinode. Thus, several

identifications must be pursued on different times, and only the greatest value

of ã3 must be considered to calculate the amplitude of the waves.
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3.3 Influence of the parameters

The influence of the following parameters are tested successively: the fluid

level, the amplitude of excitation and the viscosity of the fluid.

Bare plate

First, a reference experiment without fluid is performed. The frequency re-

sponse function (accelerance) is shown in continuous line figure 5. The res-

onance corresponds to the first mode of the plate. Figure 6 shows a good

agreement between the theoretical and experimental mode shapes.

An added mass effect

The following experiments are performed with water to test the influence of

the fluid level on the frequency response functions. The water levels remain

under 0.016 m for all the experiments described. The ratio of added mass per

unit area is:

ρ̃ =
ρfh

ρse
. (42)

As the water level increases (fig. 5):

• the resonance frequency decreases,

• the amplitude of the peak decreases: this not only due to the added mass

but also to the added damping as presented in section 4.

• near the resonance frequency, stationary waves are observed on the free

surface (fig. 7). Their wavelength (0.005 m) increases as the frequency de-

creases. This length is consistent with capillarity waves on the surface. They
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appear as square patterns within a circle at the center of the plate. Their

amplitude is higher at the center of the plate. This coincides with the max-

imum amplitude of the first mode shape.

The excitation threshold for Faraday instability

The frequency response function is measured for several amplitude of the

excitation for water levels from 0 to 0.0133 m. Non-linear effects are observed

(fig. 8):

• a slight increase in the frequency resonance according to the amplitude of

excitation,

• a reduction of the amplitude of the peak (-13 dB),

• an increase in the circular surface on which waves are present according to

the excitation,

• the time signal of the apparent speed of the plate (fig. 10) exhibits a sub-

harmonic at ωe/2.

• the existence of a threshold for waves to appear. In figure 8, the threshold

is between 6 m s−2 and 13 m s−2. It corresponds to a sharp increase in

damping. Figure 9 shows damping estimated using the half-power method

according to the acceleration level. This increase is not observed for the

bare plate (continuous line). The thinner the fluid layer, the stronger the

damping is.
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The effect of viscosity on the acceleration threshold

At a given acceleration, an increase of the viscosity of the fluid do not necessary

induces a higher dissipation. To reveal this fact, the water is replaced by oil

with a much higher viscosity. The amplitude of the excitation (16.75 m s−2) is

chosen such that the waves appear with water but not with oil: this indicates

that the excitation threshold for oil is higher than for water. Moreover, figure

11 shows that the amplitude of the maximum of the frequency response is

10 dB higher than the amplitude with water. Indeed, the viscosity is so strong

that no local relative fluid velocity appears between the oil and the plate: its

viscosity does not contribute to the frequency response of the system, but only

its mass. For water both effects of viscosity and added mass are observed (fig.

5).

4 Comparison between the model and the experimental results

The coherence between the experimental and theoretical values of the dissi-

pation induced by a heavy fluid film on the surface of a vibrating structure is

now evaluated. The numerical values of the parameters of the model will be

given along this section for one specific configuration.

4.1 Stiffness of the bare plate and equivalent mass per unit area of the plate

The apparent stiffness of the plate D and the equivalent volumetric mass of

the plate is determined from the frequencies of the first resonance of the plate

without and with the fluid layer (fig. 5) by f1 = 1.0152

2π
π2

(d/2)2

√

D
ρse(1+ρ̃)

giving
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D = 8.82 N m and ρs = 5230 kg m−3.

4.2 Instability threshold, circular frequency and wave height of the free sur-

face

The instability threshold and the wave height of the free surface measured

during experiments, are compared to the modelled one’s. The frequency of

the excitation is chosen near the first resonance of the coupled system at 75

Hz with a water level of h = 0.0046 m.

The experimental threshold, which is between 6 ms−2 and 13 ms−2 (fig. 9), is

significantly greater than the theoretical one’s (eq. 26, 27): ε̃c1 g = 2.99 ms−2,

ε̃c2 g = 1.73 ms−2. This can be attributed to the small ratio between the wave

length and the fluid layer thickness (effect of finite depth), or to the fact that

the amplitudes of acceleration is not uniform. Above the experimental thresh-

old, the circular frequency of the free surface is half the circular frequency

of the plate, as predicted by the model of the Faraday instability. The two

frequencies ωe = 2π75 s−1 and ωf = ωe/2 = π75 s−1 are present in the signal

corresponding to the apparent velocity of the plate if the instability occurs

(fig. 10).

The identification of the coefficients Aωf
and Bωf

(eq. 24) are determined from

experimental datas by a least-squares regression method (fig. 12). The uncer-

tainties on the position of the regression line are calculated with a confidence

of 95%. Note that three points are not taking into account: the noise on the

signal and the low spatial stability of the waves do not permit to correctly

evaluate the amplitude of the waves for these three acceleration levels.
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The identified values in equation 24 are:

• 0.0135 < Aωf
< 0.0163,

• 0.0111 < Bωf
< 0.0134,

• ε̃cg = 8.04 ms−2.

In the following, above the threshold ε̃c = 8.04/9.81 = 0.82, the dimensionless

amplitudes of the waves lye in the following boundaries:

0.0135(ε̃ − 0.82) < α2 < 0.0163(ε̃ − 0.82). (43)

The wave length λ = 0.004 m given by the model (eq. 7) with σ = 0.072 N m−1

and g = 9.81 m s−2, is coherent with the estimation of the experimental wave

length (λ = 0.005 m, sec. 3.3).

4.3 Added damping

4.3.1 Damping ratio of the fluid

The local dissipation due to the oscillation of the free surface is given by

equation 11: ζ0 = 14.5% for water with ν = 10−6 m2s−1, δ =
√

2 10−6/(π75) =

9.21 10−5 m and αs = 0.919.

4.3.2 Damping coefficient of the fluid per unit area

The preceding dissipation will act strongly or not, according to the considered

movement in a fluid cell. Considering the pre-defined values of λ, g, ωf , σ, ρf ,

equation 22 gives: mfcell = 5.45 10−10 kg which represents a small part of the

mass of the considered fluid cell. Equation 12 gives mf = 1.39 10−4 kg m−2

22



and the equivalent damping coefficient per unit area ĉ = 9.49 kg m−2s−1 (eq.

10).

4.3.3 Added damping ratio from the fluid on the plate

The equivalent damping coefficient cap added to the structure depends on the

area on which the damping occurs and the amplitude of the waves. The first

mode shape of the plate induces a circular limit of instability of radius rd

where,

Wa(rd, θ) = 8.04 m s−2. (44)

The relationship (fig. 13) between this radius and the acceleration in the center

of the plate is given by the mode shape of the plate φ(r, θ) (eq. 29) and the

instability threshold (eq. 44). The evolution of cap as function of Wa(0, 0) can

then be calculated and is plotted figure 14 taking into account the uncertainty

of the amplitude of the waves (eq. 43).

According to the values of the parameters of the plate, the modal stiffness is

kp = 1.08 105 N m−1 (eq. 36), the equivalent mass of the plate with fluid is

ρp = 7215 kg m−3 (eq. 38) and the modal mass is mp = 0.0875 kg (eq. 39).

The evolution of cap, the damping ratio added by the fluid ζap (eq. 30) can be

plotted (fig. 15).

For the experimental point of view, the damping ratio added by the fluid can

be deduced by the comparison of the damping ratio observed with the fluid

ζpf and the damping ratio of the bare plate ζp (fig. 9). The damping ratio of
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the bare plate is,

ζp =
cp

2
√

kpmp

, (45)

with cp the modal damping coefficient of the plate, mp the modal mass of the

plate. With the fluid layer the damping ratio is given by,

ζpf =
cp + cap

2
√

kpmpf

=
cp

2
√

kpmpf

+ ζap. (46)

By neglecting the kinetic energy of the waves compared to the kinetic energy

of the loaded plate, the relation mpf = mp(1 + ρ̃) gives,

ζpf =
cp

2
√

kpmp(1 + ρ̃)
+ ζap. (47)

Thus, the experimental value of the added damping ratio is

ζap = ζpf − ζp
1√

1 + ρ̃
. (48)

The comparison (fig. 15) between experimental and theoretical values of ζap

shows that:

• an increase of the damping beyond the threshold is observed,

• the amplitude of the theoretical damping is of the same order but greater

than the experimental damping.

In fact, the model is strongly sensitive of the amplitude of waves. The rela-

tion between the wave amplitude and the acceleration has been determined

assuming a locally reacting behaviour of each fluid cell. This hypothesis is

valid where the acceleration is uniform: this is the case in the vicinity of an

antinode (center of the plate for the first mode). This assumption may not

be valid where an acceleration gradient is present. Moreover in this transition

region, the cell shape is no more square (fig. 7).
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5 Dissipation efficiency for porous, viscoelastic and fluid film treat-

ments

The same circular plate is tested with a viscoelastic treatment and with porous

materials.

A 2 mm thick viscoelastic layer is bonded on the whole plate. This treatment

induces an added mass of 0.309 kg to the plate : ρ̃ = 0.90. The damping ratio

measured is approximately 4.5% and is independent of the amplitude of the

excitation (fig. 16).

Two sound absorbing polymer foam are also tested. Their acoustical and me-

chanical parameters according to Biot-Allard [7] theory are given in table 2.

It should be noted that the Young Modulus reported and the loss factor of

the skeleton were determined at 5 Hz using quasistatic measurement. A slight

added mass effect is observed when a layer is added. The damping is also

plotted in figure 16. The porous treatments induce slight increases in damp-

ing compared to that obtained for the bare plate. As for the viscoelastic layer,

this added damping appears largely unrelated to the level of excitation.

Compared to these usual materials, the damping induced by the fluid layer

with ρ̃ = 0.88, is strongly non linear, and may be significant in comparison

with other treatments.

6 Conclusion

Damping of a vibrating structure by mean of a heavy fluid film subjected to

Faraday instability as been studied. It is shown that added damping may be
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not negligible. The presence of an heavy fluid film on the surface of a vibrat-

ing structure induces a non negligible dissipation of energy due to Faraday

instability. A model has highlighted the governing parameters: the accelera-

tion threshold and the amplitude of the waves, which depend on the frequency,

the viscosity and the fluid thickness ; the mode shape of the structure. The

model takes into account that the dissipation do not act on the overall struc-

ture. Experimental results has confirmed the tendencies and the order of the

predicted damping.

Nevertheless, this dissipation predicted by the model is slightly overestimated.

Further experiments are needed to detect the sources of discrepancies: the

Faraday instability threshold and the amplitude of the waves must be studied

in the case of non uniform excitation.
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Fig. 1. Oscillation of a fluid film on a vibrating plate.

.
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Fig. 2. Synopsis of the model construction.

.
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Fig. 3. The oscillation pattern of the fluid in a cell excited at its bottom by the

plate.

.
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.

Fig. 4. Experimental configuration.
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Fig. 5. Influence of the water level on the magnitude of the frequency response

functions (acceleration/force): continuous line, bare plate ; dashed line, ρ̃ = 0.88

(film thickness 4.6 mm) ; dotted line, ρ̃ = 1.53 (film thickness 8.0 mm) ; dashed

dotted line ρ̃ = 2.54 (film thickness 13.3 mm). Acceleration at the center of the

plate : 12.7 m s−2.

.
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Fig. 6. Experimental mode shape of the plate along a radius near the first resonance

of the bare plate, obtained by using laser velocimetry (continuous line) compared to

the theoretical results (circles). Acceleration at the center of the plate : 19 m s−2.

.
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Fig. 7. Stationary waves at the fluid-air interface (top view of the plate). Accelera-

tion at the center of the plate : 12.7 m s−2

.
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Fig. 8. Influence of the amplitude of the acceleration (measured at the center of

the plate) on the frequency response function (accelerometer/force) of water added

mass for a water level of 0.0046 m ρ̃ = 0.88: continuous line, 3.16 m s−2 ; dashed

line, 6.32 m s−2 ; dotted line, 12.7 m s−2 ; dashed dotted line, 25.3 m s−2.

.
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Fig. 9. Influence of the amplitude of the acceleration on the frequency response

function of water added mass (accelerometer/force) for several water levels: contin-

uous line, 0.0 m ; dashed line, 4.6 mm ; dotted line, 8.0 mm ; dashed dotted line,

13.3 mm.

.
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Fig. 10. Signals (V) of the apparent velocity of the plate measured through the fluid:

the period of the velocity signal is twice the period of the acceleration signal (bold

continuous line ; 1V=0.025 m s−1 ; maximum apparent velocity of the plate : 0.0875

m s−1) and the acceleration of the plate (dotted line ; 1V=31.6 m s−2 ; maximum

velocity of the plate : 0.039 m s−1) ; water level 0.0046 m ; ρ̃ = 0.88 ; frequency of

excitation 65 Hz.

.
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Fig. 11. Influence of the viscosity on the frequency response function (accelerom-

eter/force) for an added mass of ρ̃ = 1.02: continuous line, water (film thickness

5.3 mm) ; dotted line, oil (film thickness 7.2 mm). Acceleration at the center of the

plate : 16.75 m s−2

.
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Fig. 12. Experimental evolution of the dimensionless oscillation amplitude α = A/h

with the acceleration above the threshold for a given frequency (75 Hz) for water.

The two lines corresponds to the uncertainty with a confidence of 95% of the mean

square line which fits the datas.

.
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Fig. 13. Evolution of the radius of the instability area with the acceleration at the

center of the plate Wa(0, 0).

.
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Fig. 14. The evolution of the damping coefficient added by the fluid to the structure

with the acceleration at the center of the plate Wa(0, 0). The uncertainties on the

measurement of the water waves induce two curves of added damping coefficient

with 95% of confidence.

.

47



Fig. 15. Evolution of the damping ratio added by the fluid versus the acceleration

at the center of the plate ω2W (0, 0): theoretical values (between the two line: the

uncertainties on the measurement of the water waves induce two curves of dimen-

sionless damping with 95% of confidence), experimental values (crosses)

.
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Fig. 16. Influence of the amplitude of the excitation on the damping: bare plate

(continuous line) ; viscous treatment (diamond) ; foams (triangle down: Bulpren ;

triangle up: NCF2) ; water (dotted line) level 4.6 mm.

.
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diameter d = 0.290 m

thickness e = 0.001 m

material aluminum

density (with air loading) ρs = 5230 kg m−3

Young Modulus E = 7 1010 Pa

Poisson coefficient νp = 0.3

Table 1

Characteristics of the plate.

.
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NCF2 Bulpren

thickness (mm) 20.17 31

air flow resistivity (kN m−4 s) 75 4.8

density (kg m3) 59 27.4

porosity 0.97 0.98

Young modulus at 5 Hz (MPa) 285 180

loss factor at 5 Hz 0.128 0.140

Poisson ratio 0.3 0.3

Table 2

Material properties of tested foams.

.
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