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Abstract

This paper presents a method to recover task-related sources from a multi-class Brain-
Computer Interface (BCI) based on motor imagery. Our method gathers two common ap-
proaches to tackle the multi-class problem: 1) the supervised approach of Common Spatial
Pattern (CSP) to discriminate between different tasks; 2) the criterion of statistical indepen-
dence of non-stationary sources used in Independent Component Analysis (ICA). We show
that the resulting spatial filters have to be adapted to each subject and that the combined use
of intra-trial and inter-class energy variations of brain sources yield an increase of classification
rates for four among eight subjects.

1 Introduction

The ultimate goal of Brain-Computer Interfaces (BCIs) is to provide disabled people suffering from
severe motor diseases with a tool to restore communication and movement [1]. A typical example
of a BCI is based on movement imagery, which results in somatotopic brain signal variations in
specific frequency bands [3].

On the one hand, Independent Component Analysis (ICA) has been widely used for analyzing
and cleaning brain signals in electroencephalography (EEG). This approach, initiated in the early
90’s by Jutten and Hérault [7], aims at tackling the Blind Source Separation (BSS) problem (nei-
ther the mixing matrix nor the sources are known) by assuming mutual statistical independence
between sources. Such models have proved useful to increase classification rates of BCIs [2, 9], but
do not use a priori information about the tasks, namely the labels of tasks during the training step.
Different separation principles can be used to tackle the BSS problem. They depend on the sta-
tistical properties of sources, and on how statistical independence is evaluated. When sources are
assumed to be independent and identically distributed (iid), non-gaussianity of sources is required,
which involves higher order statistics or mutual information. The non-gaussianity assumption case
can be relaxed, yielding other families of algorithms based on second order statistics and requiring
coloration or time-varying energy [10].

On the other hand, the goal-oriented approach of Common Spatial Pattern (CSP) has been
introduced in [8]. The idea of CSP is to find the linear combination optimizing the ratio between
within-class scatter and the mixture scatter matrices. From a methodological point of view, it is
nothing but an exact joint diagonalization of two matrices, hence very similar to Approximate Joint
Diagonalization (AJD). This approach proved useful to discriminate two motor imagery tasks but
suffers from a lack of generalization to multi-class problems. A one-versus-rest (OVR) approach
is often used to generalize the approach to multi-class discrimination problems. Following ideas

from [4], an extension to multi-class problems has been proposed in [6, 5]. These approach were
based on AJD of sample covariances matrices.
Extending the work of [6, 5], this paper presents an approach to use intra-trial energy variations

of sources and inter-class diversity. Our method is compared to CSP and the approach proposed
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in [6]. The quality of separation is assessed by classification rates in a 8-subject 4-class motor
imagery experiment (left hand, right hand, foot and tongue). The remainder of this paper is
organized as follows: in section 2, we present the experimental paradigm, section 3 provides the
reader with the detailed description of our method; finally we present and discuss results.

2 Subjects and Experimental Paradigm

In this study, the EEG data of eight subjects (three females and five males with a mean age of 23.8
years and a standard deviation of 2.5 years, [9, 2]), recorded during a cue-based four-class motor
imagery task, was analyzed. Two sessions on different days were recorded for each subject, each
session consisting of six runs separated by short (a couple of minutes) breaks. One run consisted
of 48 trials (12 for each of the four possible classes), yielding a total of 288 trials per session.

As mentioned above, the paradigm consisted of four different tasks, namely the imagination
of movement (motor imagery) of the left hand, right hand, foot, and tongue, respectively. At the
beginning of each trial (¢ = 0s), a fixation cross appeared on the black screen. In addition, a short
acoustic warning tone was presented at this time instant. After two seconds (at ¢t = 2s), a cue in
the form of an arrow pointing either to the left, right, down or up (corresponding to one of the
four classes left hand, right hand, foot or tongue) appeared for 1.25s, prompting the subjects to
perform the target motor imagery task. No feedback (neither visual nor acoustic) was provided.
The subjects were asked to carry out the mental imagination until the fixation cross disappeared
from the screen at ¢t = 6s. A short break followed, lasting at least 1.5s. After that, the next trial
started. The paradigm is illustrated in Figure 1 (a).
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Figure 1: (a): Timing scheme of the BCI paradigm and electrode setup of the 22 channels. (b)
Method overview

22 Ag/AgCl electrodes (with inter-electrode distances of 3.5 cm) were used to record the EEG,
the setup is depicted in Figure 1. Monopolar derivations were used throughout all recordings,
where the left mastoid served as reference and the right mastoid as ground. The signals were
sampled at 250 Hz and bandpass-filtered between 0.5 and 100 Hz. An additional 50 Hz notch filter
was enabled to suppress power line noise.

Although a visual inspection of the raw EEG data was performed by an expert, no trials
were removed from the subsequent analysis in this study in order to evaluate the robustness and
sensitivity to outliers and artifacts of each model. Three EOG channels and one ECG channel
were also used to measure electrophysiological activity of the subjects.



3 Methods

We begin by stating the notations. x € RY represents EEG data, recorded at N electrodes at each
time ¢. In this work, we aim at finding a linear transformation of the data s = W7z to increase
the classification rate. The following section presents different methods for finding W, based on
different criteria. Intentions of the users are called classes and indexed k € [1..4].

Figure 1 (b) shows an overview of the whole processing stage during the training and the
test step. The spatial filter computation is done according to the different methods described
below. The training step is used to fix some of the parameters of the method whereas the test step
consists in applying the procedure to unseen data with previously fixed parameters. The dashed
lines represent information, which is shared between learning and test steps.

3.1 Method 1: Common Spatial Patterns

The idea of Common Spatial Patterns (CSP, [3]) for two-class problems is to find the more dis-
criminative spatial filters v € R", which optimizes the Rayleigh quotient:

T
{min max}iv Caale=1v
’ T
v Cm|k:1,211

where C,,|x—; is the covariance matrix of the data belonging to class ¢;. This optimization problem
can be solved by a generalized eigenvalue decomposition method. An advantage of this technique
is that spatial filters are ranked according to their discriminative power, thus allowing to select
specific features dimension L. Computations are also exact and fast. Although this method is
optimal for two-class problems, extensions to multi-class paradigms is not straight-forward. We
use in the following a One-Versus-Rest CSP to generalize to multi-class problems.

3.2 Multi-Class Independent Common Spatial Patterns

Whereas some algorithms try to maximize independence, e.g. using non-gaussianity of the sources
without considering time structure, another way to separate source components is to consider
simple time structures within the data. The goal of our work is to study the performance of some
simple time structures. We thus look for some kind of non-stationarity in the data.

The general framework is that we are trying to recover sources s(t) related to each task by
assuming the simplest source separation model for linear mixtures of sensor measurements x(t):

x(t) = As(t) (1)

where A is the mixing matrix and sare the sources. The separation principle given by Pham and
Cardoso in [10] aiming at exploiting slow-varying variances of sources yields the joint diagonaliza-
tion of covariance matrices.

The observation interval is partitioned into @ parts: 7, with ¢ € [1..Q)]. For each time interval,
we define the covariance matrix:

Coo(Ty) = Erer, () (t)7)

Then, the estimation of the separation matrix B = A~! is done by approximately jointly diago-
nalizing the set

S = {Cra(Ty)lq € [1.QI}

This joint diagonalization may be performed for example by the Pham’s algorithm [10]

A priori knowledge about the performed tasks during training is included by considering only
task-specific covariance matrices. This makes our approach close to CSPs but with the advantage
of inherently being a multi-class approach.



3.2.1 Model-Based source separation for Spatial Filtering

In the following, Ex(.) will denote the average across all trials related to class k. Cy,(t € [t1, 2], k)
will denote the set of covariance matrices for every trial of one session of a subject for task k
computed with EEG in the time domain between ¢; and ts5.

Different kinds of diversities are to be considered in the following models:

1. Inter-class diversity (ICD): sources related to motor imagery have a varying energy among
classes. We exploit the fact that a source active for one mental task is active with a different
energy (or not active at all) for another mental task. This kind of diversity is exploited by
considering task-specific covariance structures, it is used by CSP to find discriminative linear
transforms of sensors.

2. Time-varying energy (TVE): as motor tasks are known to be a succession of activations in
different brain areas, it can be assumed that sources related to a mental task realization can
be active with different energies across the task. Joint diagonalization covariance matrices
computed using successive time windows will help recovering sources [10].

We want to stress the differences between these approach based on source-separation and the
approach based on CSP. First of all, whereas CSP tries to find the quasi-optimal linear com-
bination that optimizes the Rayleigh quotient given above, our methods try to incorporate the
best physiological spatial diversity. These approaches not only estimates the most discriminating
sources but also allow to recover some independent neurophysiological brain waves (according to
the spatial diversity considered). Lastly we highlight the fact that the types of diversity mentioned
here are sufficient conditions that can be provided to the joint diagonalization algorithm.

3.2.2 Method 2: Exploiting inter-class diversity

This first model uses ICD and was shown to outperform the classical CSP [6]. We recall that
this kind of diversity is exploited by considering task-specific covariance structures. For each trial
of one specific task, we compute the covariance matrix of the EEG from t = 2.5s to t = 7.5s.
Then we average across every trials of one specific task. As this is done for every mental task, the
procedure leads to a joint diagonalization of 4 covariance matrices (one for each task):

S = {E(Cou(t € [2.5,7.5],k)) | ke [l.4}

3.2.3 Method 3: Exploiting inter-class diversity and time-varying energy

This second model aims at exploiting the idea that sources are active with different energies
between different tasks and/or that the energy of a source is time-varying inside one task. This
information is used by partitioning the previous interval to 4 subintervals, [2.5,7.5] = U 7.
Thus the diagonalization set consists of 16 covariance matrices:

S ={Eu(Cea(t € T;,k)) | i1e€[1.4],ke[l.4]}

3.3 Global Procedure

In order to test the generalization ability of each method, a cross-validation procedure is used. For
each subject and each session, we have 72 trials for each of the four classes. We permute the 72
trials of each class to obtain four randomly ordered sets of labeled trials. We then select the first 7
trials of the four randomly ordered sets. They constitute the first test set of the cross-validation,
the remaining trials constitute the first training set of the cross-validation. The second test set
will be the 7 next trials of each class. One cross-validation is completed when the ten successive
test sets and their associated training sets have been considered.

For each test and training sets, we apply the procedure as illustrated in figure 1 (b). We
first consider the band-pass filtered signals corresponding to the training set to find the optimal



spatial filters according to each methods. In the case of CSP, the best potential spatial filters
are naturally ranked in the method, we only keep the first and last spatial filter of each of the
one-versus-rest CSP, thus resulting in 8 spatial filters. In the case of method 2 and 3, the potential
components are not ranked, we thus select relevant sources using the same method as [6], based
on an approximation of the mutual information between the label and the sources. In order to
achieve a fair comparison between the three methods, we also select the 8 best ranked sources and
their associated spatial filters. Thus at the end of step one in figure 1, we have 8 sources for each
method. They correspond to the linear projections of the data onto the source space, depicting
the same time courses as the EEG measurements.

The next step consists in computing the features related to each trial of the training set. In
line with neurophysiological considerations, we computed the energy of each sources in the p and
0 band. This estimation is made by computing the Discrete Wavelet Transform of each sources.
Thus the number of total features to be classified is 16 for each method. The features are gathered
in a 65x16 matrix to train a LDA [9]. Parameters of the LDA are conserved for the test step.

Lastly, as depicted in 1, the procedure is applied on the test set using the selected spatial
filters to project the data, the same method to compute features for each trial. The LDA is used
to classify features gathered in a 7x16 matrix.

This procedure is in fact applied 100 times, which corresponds to 10 cross-validations, a cross-
validation consisting of 10 disjoint test sets.

4 Results

The mean classification accuracies across subjects and sessions are not significantly different:
70.7%, 70.7% and 70.6 % for respectively the CSP, ICD and ICD&TVE. Furthermore, we found
a strong inter-subject variability. Overall, performances of our methods are satisfying considering
the difficulty of the task. Our methods differ from the one employed in [9] because they did not
select features according to some qualitative criterion. A slight increase of classification rates is
thus not surprising. The best result was achieved with Infomax and was about 65 %. Moreover,
Infomax was used in a completely blind manner and did not use any a priori information about the
performed task to achieve the separation. Results obtained in [2] outperforms the results presented
here (ranging from 65 to 75 %) but used a numerically demanding feature selection (sequential
forward selection) to range about 1300 features from the feature extraction step.

High variability of classification rates across subjects (ranging from 40 to 80 percents) leads
us to consider subject-specific results. Table 1 presents results for each subject and each session.
The classification rate (percentage and standard deviation) is considered in the second column of
the table. All pairwise t-test comparing the three models for each subject separately using the
cross-validations as observation units reveals that the best model outperforms the other two (p <
0.5) for five out of eight subjects (S2, S4, S5, S6, S7).

Correct [%] (Std Dev) Best Model Correct [%] (Std Dev) Best Model
ST 80.6 (0.9) ICD, TVE S5 82.1 (7.3) CSP
S2 53.9 (2.2) ICD, TVE  S6 62.8 (5.6) CSP
S3 86.4 (1.5) ICD S7 43.3 (2.6) ICD, TVE
S4 84.5 (2.2) CSP S8 86.0 (3.5) ICD, TVE

Table 1: Classification rates for each subject (S1 to S8) given by the best model.

4.1 Discussion

Different a priori information were considered in this paper, namely we used Inter-Class Diversity
and Time-Varying Energy. First of all, we showed in section 3 that finding multi-class spatial



filters can benefit from the use of simple a priori knowledge. It was quite obvious that using a
priori knowledge about the tasks performed would improve classification rates. But improvements
due to a priori knowledge about time-varying energy was quite surprising. This result supports
the hypothesis that different sources appears during the performance of the tasks and that their
time course is not constant. Time interval partitioning was very simple and we think that some
refined partitioning of intervals could result in significant improvements of the classification rates.

We pointed out a disadvantage of such a refined framework by showing that none of the pre-
sented methods could be considered as best for every subjects. Unsurprisingly, the design of
optimal spatial filters have to cope with inherent difficulties of studying brains and real subjects:
methods have to be subject-dependent to yield optimal results. This consideration has to be tack-
led to make such signal processing algorithm available for daily life use: an automatic procedure
should be designed to select subject-specific methods.

5 Conclusion

In summary, we presented here an efficient framework for increasing classification rates of multi-
class BCI paradigms. Our framework is well grounded on the Pham’s theoretical work about joint
approximate diagonalization and provides natural a priori knowledge that can be used to gather
advantages of both Independent Component Analysis and Common Spatial Patterns.
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