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Abstract

The validity of using the limp model for porous materials is addressed in

this paper. The limp model is derived from the poroelastic Biot model

assuming that the frame has no bulk stiffness. Being an equivalent

fluid model accounting for the motion of the frame, it has fewer limi-

tations than the usual equivalent fluid model assuming a rigid frame.

A criterion is proposed to identify the porous materials for which the

limp model can be used. It relies on a new parameter, the Frame Stiff-

ness Influence (FSI) based on porous material properties. The critical

values of FSI under which the limp model can be used, are determined

using a 1D analytical modeling for two boundary sets: absorption of a

porous layer backed by a rigid wall and radiation of a vibrating plate

covered by a porous layer. Compared with other criteria, the criterion

associated with FSI provides information in a wider frequency range

and can be used for configurations which include vibrating plates.

PACS numbers: 43.20.Jr, 43.20.Gp, 43.50.Gf [KA]
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I. INTRODUCTION

In recent years, there has been a strong effort for modeling the vibroacoustic response of

multilayer systems containing porous materials. During the past decade, numerical methods

such as finite element methods based on the Biot theory1,2 have been widely developed for

automotive and aeronautic industries. Classical methods consider the displacements of the

solid and fluid phases as variables3,4, respectively us and uf , or a mixed formulation5,6 based

on the displacement of the solid phase and the interstitial fluid pressure p. These numeri-

cal methods allow to predict the structural and fluid couplings induced by the poroelastic

medium without any kinematic or geometrical assumptions. However, for large size finite

element models, these methods can require a significant computational time.

To overcome this limitation, one can consider that the porous layer behaves like a dis-

sipative fluid. Two porous ”one-wave” formulations can be found: (i) the ”rigid frame”

model assumes that the solid phase remains motionless (ref.2, page 79-111), (ii) the ”limp”

model assumes that the stiffness of the solid phase is zero but takes into account its inertial

effects7–9 (ref.8, chapter 5-1). Because the motion of the solid phase is considered in the

limp model, this model has to be preferred for most of the applications as in transports

for example (car, train, aircraft), where the porous layers are bonded on vibrating plates.

However, it is valid since the frame ”flexibility” of the porous material has little influence

on the vibroacoustic response of the system. The aim of this paper is to identify, for a given

porous material, the frequency ranges for which the limp model can be used.

The approximation of the limp model was first proposed by Beranek7 and studied more

in detail by Ingard8. It was applied to the poroelastic formulation of Zwikker and Kosten10

to model soft acoustical blankets in aircraft. More recently, Dazel et al.9 applied the limp

approximation to an alternative displacement formulation based on the Biot’s poroelasticity

equations. This simplified model accounts for (i) the dissipation mechanisms induced by

the relative motion between the two phases, (ii) the effects of the motion of the solid phase

∗Electronic address: olivier.doutres.etu@univ-lemans.fr
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using an inertia correction.

The validity of the limp model compared to the poroelastic model has been investigated

by several authors. Beranek7 proposed a simple criterion to identify the porous materials

for which the limp assumption can be applied. This criterion is based on the ratio of the

bulk modulus of the fluid phase Kf over the bulk modulus of the solid phase Ks: the limp

assumption can be used if Kf/Ks > 20. In his book, Ingard8 investigates the absorption

coefficient of a porous layer covered or not by a screen and backed by a rigid wall (as

presented Fig. 1(a)). He pointed out that the limp model is not valid in the low frequency

range situated below the structural frame resonance of the porous layer because this region is

mainly controlled by the stiffness. In the same way, Göransson11,12 investigated the validity

of the limp model in the case of an aircraft double wall transmission problem and concluded

that the limp model can be acceptable since no resonances of the frame are present in the

frequency range of interest. The main conclusion of the previous works is that the use of the

limp model depends not only on the properties of the porous layer but also on the boundary

conditions which are applied to it.

In this paper, a criterion is proposed to identify the porous materials and the associated

frequency ranges for which the limp model can be used according to the boundary conditions

applied to the layer. The identification process relies on the derivation of a new frequency-

dependent parameter, the Frame Stiffness Influence (FSI), based on the properties of the

porous material. This parameter is developed from the Biot theory1,2 and quantifies the

intrinsic influence of the solid-borne wave2 on the displacement of the interstitial fluid.

Critical values of FSI above which the limp model cannot be used are determined for

porous materials of thicknesses from 1 to 10 cm and for two boundary condition sets (see

Fig. 1): (i) sound absorption of a porous layer backed by a rigid wall and (ii) sound radiation

of a porous layer backed by a vibrating wall.

The first part of the paper presents the Biot and the limp models. The FSI param-

eter which characterizes the influence of the frame is then introduced and the method to

determine the critical values of FSI is detailed. Critical values are given in Fig. 8 for two
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FIG. 1. Two one-dimensional configurations: (a) sound absorption of a porous layer backed

by a rigid wall, (b) sound radiation of a porous layer backed by a vibrating wall.

boundary condition sets and for ten porous thicknesses. The reader who is mainly inter-

ested in the application of the FSI criterion could go directly to the final part of the paper

(sec.VI). In this section, a short explanation on how to use the FSI criterion is proposed

and it is illustrated with examples. Finally, a comparison with other criteria validates its

efficiency.

II. POROUS MATERIAL MODELING

The limp model introduced in this paper is derived from the Biot theory adapted by

Johnson13, Allard2 and Champoux14. This poroelastic model accounts for frame motion,

viscous and thermal dissipation mechanisms and is called the Biot model in this paper. In

order to achieve a simple analytical description, the modeling is one-dimensional, i.e. the

porous layer has infinite lateral dimensions in the y and z directions, and only plane waves

propagate in the x direction (see Fig. 2). In this case, only two compressional waves are

considered.

A. Biot theory

The motion of the poroelastic medium is described by the macroscopic displacement of

solid and fluid phases represented by the vectors us and uf . Assuming a harmonic time
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dependence ejωt, the equation of motion can be written in the form2

−ω2ρ̃11u
s − ω2ρ̃12u

f = N∇
2us + (P̃ − N)∇∇.us (1)

+Q̃∇∇.uf ,

−ω2ρ̃12u
s − ω2ρ̃22u

f = Q̃∇∇.us + R̃∇∇.uf , (2)

where the tilde symbol indicates that the associated physical property is complex and fre-

quency dependent. The inertial coefficients ρ̃11, ρ̃22 are the modified Biot’s density of the

solid and fluid phase respectively. The inertial coefficient ρ̃12 accounts for the interaction

between inertial forces of the solid and fluid phases together with viscous dissipation. The

modified Biot’s density can be written in the form:

ρ̃12 = ρ12 + jb̃/ω , (3)

ρ̃11 = ρ11 − jb̃/ω , (4)

ρ̃22 = ρ22 − jb̃/ω , (5)

with ρ12 = −φρf (α∞ − 1), ρ11 = ρ1 − ρ12 and ρ22 = φρf − ρ12. ρ12 is the added mass due

to tortuosity α∞, ρ1 the mass density of the porous material, ρf the mass density of the

interstitial fluid and φ the porosity of the poroelastic material. The coefficient b̃ is related to

the viscous and inertial coupling between the two phases. This parameter was first assumed

real and constant by Biot1. Johnson et al.13 improved the model by introducing a frequency

dependent complex amplitude to account for the viscous effects. In the present work it is

given by

b̃ = φ2σ

√

1 + j
M

2

α∞ρf

φσ
ω , (6)

M =
8α∞µ′

σφΛ2
, (7)

where M is the shape factor, µ′ is the viscosity of air, σ the resistivity of the porous material

and Λ the characteristic viscous length.

In Eq. (1,2), P̃ and R̃ are the bulk modulus of the solid and fluid phases respectively

and Q̃ quantifies the potential coupling between the two phases. For the majority of sound
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absorbing materials, these coefficients are2

Q̃ = (1 − φ)K̃f , (8)

R̃ = φK̃f , (9)

P̃ = 2N∗
1 − ν

1 − 2ν
+

Q̃2

R̃
= P̂ +

Q̃2

R̃
. (10)

The effective bulk modulus of the air in the pores K̃f is related to the thermal coupling

between the two phases. In the initial paper of Biot1, this parameter was real and constant.

Champoux and Allard14 improved the model to account for the thermal effects:

K̃f = Ka/β̃ , (11)

with Ka the adiabatic incompressibility of air and

β̃ = γ − γ − 1

1 +
(
jω

k′

0
ρf Pr

φµ′

)
−1

G̃′

, (12)

G̃′ =

√

1 + j
M ′

2

k′

0ρfPr

φµ′
ω , (13)

M ′ =
8k′

0

φΛ′2
. (14)

In these equations, γ is the ratio of the specific heats, Pr the Prandtl number, k′

0 the

thermal permeability, and Λ′ the thermal characteristic length. According to Eq. (11),

the bulk modulus of the interstitial fluid varies from its isotherm value at low frequencies

(Kf = P0 = 101.3 kPa, the atmospheric pressure at 20◦C) to its adiabatic value at high

frequencies (Kf = Ka = γP0 = 141.2 kPa at 20◦C).

N∗ and ν in Eq. (10) are the complex shear modulus and the Poisson ratio of the frame,

considered as an isotropic material. N∗ corresponds to the second Lame coefficient µ and

can be expressed in terms of the complex Young modulus in vacuo E∗:

N∗ =
E∗

2(1 + ν)
=

E(1 + jη)

2(1 + ν)
, (15)

with η, the loss factor of the frame. Note that N∗ and E∗ are complex and frequency de-

pendent. For the sake of simplicity, these coefficients are assumed to be constant in this work.
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Since the model is one-dimensional, the displacements are scalars and Eq. (1,2) are

rewritten as

−ω2ρ̃11u
s − ω2ρ̃12u

f = P̃∇2us + Q̃∇2uf , (16)

−ω2ρ̃12u
s − ω2ρ̃22u

f = Q̃∇2us + R̃∇2uf . (17)

Equation (16) can be expressed in a more convenient way to identify the influence of the

mechanical properties by introducing the bulk modulus of the solid phase in vacuo P̂ (see

Eq. (10)). By solving Eq. (16)− Q̃

R̃
×Eq. (17), one gets

−ω2 ρ̃12

φ
Γ̃us − ω2 ρ̃22

φ
γ̃uf = P̂∇2us , (18)

with

Γ̃ = φ

(
ρ̃11

ρ̃12
− Q̃

R̃

)

and γ̃ = φ

(
ρ̃12

ρ̃22
− Q̃

R̃

)

. (19)

γ̃ is a notation introduced by Atalla et al.5 in the mixed displacement-pressure formulation.

According to the Biot theory, the two poroelastic equations Eq. (17) and (18), can be solved

to determine the propagation constants of the two compressional waves. A derivation of the

complete system is proposed in the next section.

x z

L

0

∞∞

∞

y

Porous
X1 X2

FIG. 2. One-dimensional porous modeling.

B. Poroelastic model: a two waves formalism

Compared to classical Biot equations1,2, the equations of motion proposed in this paper

(Eq. (17,18)) involve the bulk modulus of the frame in vacuo P̂ . The aim of this section is
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to derive an alternative and a more useful expression of the physical parameters of the Biot

waves. This will be of interest for obtaining the FSI.

Using the vector [w] = [us uf ]T , Eq. (17) and Eq. (18) can be reformulated as

−ω2[ρ][w] = [M ]∇2[w] , (20)

with

[ρ] =




ρ̃12Γ̃/φ ρ̃22γ̃/φ

ρ̃12 ρ̃22



 and [M ] =




P̂ 0

Q̃ R̃



 . (21)

Solution of the eigenvalue problem, −δ2
i [wi] = ∇2[wi], gives the squared complex wave

numbers δ2
i of the two compressional waves (i = 1, 2)

δ2
i =

1

2
(Aδ2

c + δ2
f ) +

(−1)i

2

√
(Aδ2

c + δ2
f )

2 − 4Bδ2
c δ

2
f ,

(22)

where

A =

(
1 − Q̃ρ̃22γ̃

R̃ρ̃12Γ̃

)
and B =

(
1 − γ̃

Γ̃

)
. (23)

The wave numbers of the compressional Biot waves δi are written in terms of two charac-

teristic wave numbers: δf the wave number of the rigid frame model described in the next

section (see Eq. (30)) and δc the wave number of a wave propagating in a medium which

has the bulk modulus of the frame in vacuum and the density of the frame in fluid (it takes

into account the inertial and viscous couplings):

δc = ω

√
ρ̃12Γ̃

φP̂
= ω

√
ρ̃c

P̂
, (24)

with

ρ̃c = ρ1 − ρ̃12/φ . (25)

Note that the expressions of the wave numbers δi (Eq. (22)) are equivalent to the classical

expressions which can be found in reference2 (page 130).
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The two eigenvectors can be written [u1] = [us
1 uf

1 ]
T , [u2] = [us

2 uf
2 ]

T . Each component

of the vectors [ui] (i = 1, 2), corresponds to the displacement of the solid phase us
i and the

fluid phase uf
i induced by the propagation of the Biot wave i. Using Eq. (18), the ratio of

the displacement of the frame over the displacement of the air for the two compressional

waves is given by

µi =
uf

i

us
i

=
ρ̃12Γ̃

ρ̃22γ̃

(
δ2
i

δ2
c

− 1

)
. (26)

This ratio indicates in which medium the waves mainly propagate. If it is less than 1, the

wave is mainly supported by the frame and is referred to as the ”frame-borne wave”. On the

contrary, if the ratio is much greater than 1, the corresponding wave is mainly supported

by the saturating fluid and is referred to as the ”airborne wave”. By considering the whole

set of porous materials used in this study and presented in section III, one notices that the

subscript i = 1 corresponds to the airborne wave and the subscript i = 2 corresponds to the

frame-borne wave.

In the considered geometry (see Fig. 2), the displacement of each phase is due to the

propagation of two compressional waves travelling in both directions, and can be written in

the form

us(x) = X1 + X2 , (27)

uf(x) = µ1X1 + µ2X2 , (28)

where Xi = Si cos(δix) + Di sin(δix) is the contribution of each compressional wave i = 1, 2,

Si and Di being set by the boundary conditions.

C. Equivalent fluid models: a one wave formalism

In this section, after a brief description of the classical rigid frame model, the limp

model is presented. Both models are derived from the Biot theory presented in the previous

section.
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The rigid frame model assumes that the displacement us is zero. This assumption applied

in Eq. (17) gives a propagation equation on uf ,

K̃f∇2uf + ω2 ρ̃22

φ
uf = 0 . (29)

The compressional wave, solution of the propagation equation, is characterized by the wave

number δf ,

δf = ω

√
ρ̃f

K̃f

, (30)

where ρ̃f = ρ̃22/φ.

The limp model is based on the assumption that the frame has no bulk stiffness: P̂ = 0.

It is likely associated to ”soft” materials like cotton and glass wool. Hence, by considering

this assumption in Eq. (18), one gets a simple relation between the displacements of both

solid and fluid phases:

us = − ρ̃22

ρ̃12

γ̃

Γ̃
uf . (31)

Then, substituting the solid displacement in Eq. (17) by Eq. (31) gives the propagation

equation on uf

K̃f∇2uf + ω2ρ̃limpu
f = 0 , (32)

where

ρ̃limp =
B

A
ρ̃f , (33)

with A and B the two coefficients defined in Eq. (23).

The compressional wave, solution of the propagation equation, is characterized by the

wave number δlimp = ω
√

ρ̃limp/K̃f . According to the expression of the density ρ̃limp, the

wave number of the limp model can be expressed in terms of the wave number of the rigid

frame model as:

δ2
limp =

B

A
δ2
f . (34)
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As in the rigid frame model, the bulk modulus of the limp model is the modified bulk

modulus of the saturating fluid K̃f . However, the limp model takes into account the effect

of the solid phase displacement by its modified effective density ρ̃limp which transcribes the

inertia of the solid phase and its interaction with the fluid phase. This property enables

use of the limp model for porous material mounted on a vibrating structure as long as the

frame-borne wave has no influence on the vibroacoustic behaviour of the system. In this

way, it is less restrictive than the rigid frame model.

III. FRAME STIFFNESS INFLUENCE

The aim of this section is to propose a parameter based on the properties of the porous

material which quantifies the influence of the frame stiffness on the porous behaviour. This

parameter is called FSI for ”Frame Stiffness Influence”.

A. FSI development

The use of the limp model is possible when the contribution of the frame-borne wave is

negligible in the considered application. This approximation implies in the expressions of

the solid and fluid displacements (Eq. (27,28)) that:

• (i) the contribution of the airborne wave X1 is great compared to the contribution of

the frame-borne wave X2; this condition depends mainly on the boundary conditions

: two configurations will be studied in section IV to set critical values of the FSI

parameter,

• (ii) considering the fluid motion (Eq. (28)), the displacement ratio µ1 associated to the

airborne wave is great compared to the displacement ratio µ2 associated to the frame-

borne wave: µ2/µ1 ≪ 1; this condition is independent from the boundary conditions

and will be used to build the FSI parameter.
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According to equation (26), the ratio µ2/µ1 can be written in terms of the wave numbers

of the Biot waves δi (Eq. (22)) and the characteristic wave propagating mostly in the frame

δc (Eq. (24)) :

µ2

µ1
=

(δ2
2/δ

2
c ) − 1

(δ2
1/δ

2
c ) − 1

. (35)

From the study of the behavior of 259 porous materials presented in Sec.IV.B, the

condition µ2/µ1 ≪ 1 is met when the following conditions are observed:

• r1 = δ2
1/δ

2
c tends to 0: this occurs when the wave number δ1 of the air-borne wave is

small compared to the wave number δc.

• r2 = δ2
2/δ

2
c tends to 1: this occurs when the wave number δ2 of the frame-borne wave

is close to the wave number δc.

Both r1 and r2 ratios exhibit an asymptotic behavior as the frame stiffness becomes

smaller: their convergence is controlled by a common parameter presented in the next

section.

B. A simplified parameter

Let us first consider the asymptotic behavior of the ratio r1. Substituting δ1 in the

expression of r1 for Eq. (22) gives

r1 =
δ2
1

δ2
c

=
1

2
(δ2

f/δ
2
c + A)

[
1 −

√
1 − ε

]
, (36)

with

ε =
4Bδ2

f/δ
2
c

(δ2
f/δ

2
c + A)2

. (37)

This expression shows that r1 may tend to zero when ε tends to zero. Hence, by using the

first-order Taylor series expansion of the square root function
√

1 − ε = 1 − ε/2, it comes

r1 =
(Bδ2

f )/(Aδ2
c )

1 + δ2
f/(Aδ2

c )
. (38)
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By introducing the wave number of the limp model using Eq. (34), one gets

r1 =
δ2
limp/δ

2
c

1 + δ2
limp/(Bδ2

c )
. (39)

Thus, r1 tends to zero when the wave number ratio δ2
limp/δ

2
c tends to zero or when the term

δ2
limp/(Bδ2

c ) is much greater than 1. The first condition is used as a parameter characterizing

the influence of the frame, denoted the ”Frame Stiffness Influence” (FSI)

FSI =
δ2
limp

δ2
c

=
ρ̃limp

ρ̃c

P̂

K̃f

, (40)

with ρ̃limp, ρ̃c, K̃f and P̂ given in Eq. (33), (25), (11) and (10) respectively. As the Beranek

criterion7, the characteristic parameter FSI is expressed according to the ratio between

the bulk moduli of the two phases. However, in the expression of FSI, each bulk modulus

is divided by the density of their corresponding characteristic wave. Thus, Eq. (40) shows

that FSI is frequency dependent and it decreases with the bulk modulus of the frame in

vaccuo P̂ . Physically, it can be noticed that FSI is small when δc is great compared to

δlimp, meaning that the interaction between the two associated waves is weak.

In the same way, using Eq. (22) and applying the first-order Taylor series expansion of

the square root function, the ratio r2 can be expressed in terms of the parameter FSI as:

r2 = A (1 + FSI/B) − FSI

1 + FSI/B
. (41)

According to Eq. (41), when the parameter FSI tends to zero, r2 tends to the value of the

coefficient A which is close to 1 for all kinds of porous materials. Hence, the parameter FSI

allows to describe the asymptotic behavior of both r1 and r2 and thus the behavior of the

ratio µ2/µ1. In the following, it is used to identify the porous materials according to the

influence of their frame stiffness.

Fig. 3 presents the FSI for three characteristic materials (see section IV.B and TAB. I).

It is shown that the parameter FSI is frequency dependent and that the material A which

has the lower bulk modulus has the smaller FSI.
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FIG. 3. Evolution of the parameter FSI as a function of the frequency: (–) material A,

(– –) material B, (– . –) material C, (see TAB. I).

IV. DESCRIPTION OF THE CONFIGURATIONS

According to the previous analysis, the limp model can be applied instead of the Biot

model if the parameter FSI tends to zero and if the amplitude of the frame-borne wave is

negligible compared to the amplitude of the airborne wave. This last condition depends pri-

marily on the boundary conditions. In this paper, two different sets of boundary conditions

representative of classical applications are investigated. For each configuration, the critical

values of FSI under which the limp model can be used are determined from the response of

a wide variety of porous materials. This section presents the configurations and the tested

porous materials.

A. The characteristic configurations

Fig. 1 presents the two configurations used to evaluate the difference between the Biot

and the limp models. The chosen configurations are characteristic of the applications of the

porous materials in industrial fields.

In configuration (a), the porous layer is attached to a rigid and motionless backing at

x = L and is hit by an acoustic plane wave at x = 0. The normal-incidence absorption

15



coefficient α of the porous material is derived from the complex reflection coefficient Rx:

α = 1 − |Rx|2 , Rx =
Zn − ρfcf

Zn + ρfcf

, (42)

with cf the speed of sound in air and Zn the normal-incidence surface impedance. This

impedance is given by the pressure to the normal velocity ratio in the free air close to the

front face of the material; Zn = p(0)/v(0). Both pressure and velocity are determined using

the appropriate boundary conditions: continuity of the normal stress in the solid and fluid

phases with the external pressure at the fluid-porous interface x = 0

σs
x(0) = −(1 − φ)p(0) , (43)

σf
x(0) = −p(0) , (44)

and continuity of the total flow

jω[(1 − φ)us(0) + φuf(0)] = v(0) , (45)

with us and uf given Eqs. (27,28). On the surface of the porous layer in contact with the

backing (x = L), the displacement of the air and the frame are equal to zero

us(L) = uf(L) = 0 . (46)

An analytical formulation of α can be found in reference2 (page 21 and 137). This coef-

ficient is usually measured in an impedance tube15 and is used in building or automotive

applications16.

In configuration (b), the porous layer is excited by a vibrating plate at x = L and

radiates in a infinite half-space at x = 0. This configuration corresponds to trim panels,

cars roofs or airplane floors. The radiation efficiency factor σR
17, defined as the ratio of the

acoustic power radiated Πa over the vibratory power of the piston Πv, is used as vibroacoustic

response :

σR =
Πa

Πv

=
p(0)v∗(0)

ρfcfv2
w

. (47)

A vibrating surface area of 1 m2 is considered here. Boundary conditions associated to this

configuration are18: continuity of stress and total flow at x = 0 and Eqs. (43)-(45) are used.
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At x = L, the velocity of the fluid and the velocity of the frame are both equal to the wall

velocity

jωus(L) = jωuf(L) = vw . (48)

For each configuration, the vibroacoustic response is derived using the Transfer Matrix

Method (TMM)2,19. This method assumes the multilayer has infinite lateral dimensions

and uses a representation of plane wave propagation in different media in terms of transfer

matrices. To ensure a one-dimensional representation, the multilayer is excited by plane

waves with normal incidence. The porous layer is either simulated using the Biot model

presented in section II.B or the limp model presented in section II.C.

Note that the two characteristic configurations mainly differ by the kind of excitation

applied to the frame: the frame will be less excited by an air domain than by a solid layer.

Consequently, the limp model has a greater chance of being suitable for the configuration

(a) than for the configuration (b).

B. Material properties

In order to study the behaviour of a wide variety of porous materials, a set of 256 simu-

lated materials and 3 real materials is used. The properties of the real materials presented

in Table I have been measured at our laboratory. The viscoelastic characteristics of the

porous frames, Youngs modulus E and loss factor η, were measured at low frequency using

the quasi-static method20,21.

Material A is a low density glass wool material with a very high airflow resistivity. This

material is found in aerospace applications for thermal and sound insulation. Material B is

a high density fibrous material and material C is a plastic foam with a stiff skeleton and a

high airflow resistivity. Both materials B and C are found in automotive applications, for

roofs and floors treatment. According to the Beranek criterion (see last line in TAB. I), only

the material A can be considered as a limp material (|K̃f/P̂ | = 70 ≫ 20).
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TABLE I. Measured properties of materials A, B and C.

Porous A B C

Air flow resistivity: σ (kN s/m4) 105 23 57

Porosity: φ 0.95 0.95 0.97

Tortuosity: α∞ 1 1 1.54

Viscous length: Λ (µm) 35.1 54.1 24.6

Thermal length: Λ′ (µm) 105.3 162.3 73.8

Frame density: ρ1 (kg/m3) 17 58 46

Young’s Modulus at 5 Hz: E (kPa) 1.4 17 214

Structural loss factor at 5 Hz: η 0.1 0.1 0.115

Poisson’s ratio: ν 0 0 0.3

Beranek criterion at 5 Hz: |K̃f/P̂ | 70 6 0.4

The 256 simulated materials are obtained by setting a random value for the main prop-

erties of a porous material: E and η respectively the Young modulus and the loss factor

of the frame in vacuum, ρ1 the density of the porous material, σ the airflow resistivity and

α∞ the tortuosity. The range of values for the properties of the 256 porous materials are

presented in Table II. The viscous characteristic length Λ is derived from the shape factor

given by Eq. (7). For most of the sound absorbing materials, the shape factor lies between

0.1 and 10 (ref.13) and it is chosen here equal to 1. The thermal characteristic length Λ
′

is

three times the viscous characteristic length Λ. For all the simulated materials, the porosity

is set to 0.97 and the Poisson ratio ν to 0.3. The set of the randomly simulated materials is

built to represent the variety of acoustical materials found in industrial applications.

V. DETERMINATION OF CRITICAL FSI VALUES

In section III.B the parameter FSI based on the physical properties of the material

has been introduced. The next step is to identify, for each configuration, the critical values
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TABLE II. Range of values for the properties of the 256 simulated materials.

Air flow resistivity: σ (kN s/m4) 1-100

Porosity: φ 0.97

Tortuosity: α∞ 1-2

Shape factor: M 1

Viscous length: Λ (µm)
√

8α∞µ′/σφM

Thermal length: Λ′ (µm) 3Λ

Frame density: ρ1 (kg/m3) 10-90

Young’s Modulus at 5 Hz: E (kPa) 3-200

Structural loss factor at 5 Hz: η 0.01-0.2

Poisson’s ratio: ν 0.3

of FSI under which the limp model can be used instead of the Biot model. The method

to determine a critical value is demonstrated in the case of the absorption coefficient of

materials A, B and C with a thickness of 2 cm. Then, in order to get a critical value

independent of the chosen material, the method is generalized with a set of 256 simulated

materials which properties are randomly determined among limits given in table II. Results

for the two configurations and thicknesses from 1 to 10 cm are finally presented.

A. Analysis on materials A, B and C

1. Three characteristic frequency ranges

Because the influence of the frame is frequency dependent, the study of the critical values

of FSI will be carried out in three characteristic frequency bands centered around the first

λ/4 resonance frequency of the frame-borne wave, fr. This frequency can be estimated by

simply considering the properties of the frame in vacuo22:

fr ≈
1

4L

√
P̂

ρ1
=

1

4L

√
E (1−ν)

(1+ν)(1−2ν)

ρ1
, (49)
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FIG. 4. Vibroacoustic response of the two configurations including the three real materials

A, B and C of thickness 2 cm: (first line) absorption coefficient α, (second line) radiation

efficiency σR: (–) Biot model, (©) limp model.

where L is the thickness of the porous layer. In the vicinity of fr, the frame stiffness can

have a great influence on both the absorption coefficient16,22 and the radiation efficiency18.

This is illustrated in Fig. 4 (grey zones) where the Biot and the limp simulations of

both configurations are presented for materials A, B and C of thickness 2 cm. In the case

of the absorption configuration, a decrease of the absorption coefficient is observed at the

frequency fr around 1000 Hz for material C (see Fig. 4(c)). In the case of the radiation

configuration, an increase of the radiation efficiency is observed around 200 Hz for material

B (see Fig. 4(e)) and 1000 Hz for material C (see Fig. 4(f)). Higher orders modes (3λ/4,...)

have also an influence in the case of the radiation of material C (Fig. 4(f)).

In the following, three characteristic zones are chosen according to the frequency fr

(Eq. (49)): [1, fr/2] the low frequency range (LF), [fr/2, 2fr] the mid frequency range (MF)

and [2fr, 104] the high frequency range (HF).
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2. Estimation of the difference between the models

The difference between the limp and the Biot models is given in third octave bands by

the absolute value of the difference between the two vibroacoustic responses V (V being

either α or σR): ∆V = |VBiot − VLimp|. The frequency band 1 Hz to 10 000 Hz is divided

in 41 third octave bands. The maximum accepted difference between the two models is set

to 0.1 for the absorption coefficient and to 3 dB for the radiation efficiency. These values

correspond to a classical industrial demand.

3. Method to determine the FSI critical values

The objective of this section is to determine, according to the configuration and the

frequency domain, the maximum value of the FSI under which the limp model can be used.

This maximum value is called ”critical value”.

The method to obtain a critical value is presented for the absorption configuration

with materials A, B and C having a thickness of 2 cm. The difference between the two

simulations |αBiot −αLimp| is presented in Fig. 5 as a function of FSI in the three frequency

ranges for each material. The higher value of FSI above which the maximum acceptable

difference between the two models (here 0.1) is exceeded, is found in the medium frequency

range at FSI = 0.5 (vertical dotted line on Fig. 5(b)): this value is set as critical value. No

critical values are found in the low and the high frequency ranges.

B. Generalization using 256 simulated porous materials

To establish critical values of FSI which are independent of the chosen material, the pre-

ceding study is generalized by using the 256 simulated materials (see TAB. II). Figs. 6(a)-(c)

are equivalent to Fig. 5 but present the difference between the limp and the Biot absorption

coefficient derived for 256 simulated materials having a thickness of 2 cm. Figs. 6(d)-(f)
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present the same results in the case of the radiation configuration.

The first noticeable tendency is that the value of the difference between the limp and

the Biot models increases when the value of FSI increases. This is in agreement with the

parameter behaviour which increases with the bulk modulus of the frame (see III.B). As

stated previously, the critical value of FSI is set when the first parameterized curve exceeds

the maximum accepted difference. However, this method can be inappropriate in this case

because the limit can depend slightly on the random set of simulated materials. Thus, a

simple statistic indicator called the ”confidence rate” is used to set the critical values. The

FSI range is first divided into 10 bands from 10−4 to 100 in a log scale. In each FSI band,

the confidence rate gives the number of points below the acceptable limit (0.1 or 3 dB) over

the number of points present in this FSI range. This rate, given in percent (solid grey line

in Fig. 6), indicates the reliability of using the limp model according to the value of FSI.

The confidence rate of 95% is chosen as a threshold to set the critical value of FSI,

called FSI95. For a FSI larger than FSI95, it is considered that the vibroacoustic response

may become notably sensitive to the frame stiffness for most of the porous materials and

the Biot model should be preferred. Note that the number of FSI bands used to derive the

confidence rate is sufficiently important so that the critical value FSI95 does not depend on

this number.
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In the case of the absorption coefficient in the medium frequency range (see Fig. 6(b)),

the critical value is FSI95 = 0.16. No critical values are set in the low and high frequency

ranges: the limp model can be used to predict the absorption coefficient for all the acoustic

materials. These results obtained for a thickness of 2 cm are summarized in an abacus

presented in Fig. 7(a). In this figure, a white cell corresponds to the FSI values for which

the limp model can be used. A grey cell corresponds to the FSI values for which the Biot

model should be preferred.

Let us consider now the radiation configuration. Figs. 6(d)-(f) present the difference

between the two models as a function of FSI, and the obtained critical FSI are summarized

in Fig. 7(b). As shown Fig. 6(d), no critical FSI values are set in the low frequency range:

the radiation efficiency of a covered plate can be predicted using the limp model for all the

acoustic materials for frequencies at less two times below the first resonance frequency of

the frame fr. Critical values of FSI are set in the medium and the high frequency ranges

as seen in Fig. 6(e) and (f). The difference between the Biot and the limp models can be

great in the high frequency range because higher order resonances (3λ/4, 5λ/4,...) can be

excited in the frame thickness and have a noticeable influence on the radiation efficiency.

C. Critical values as a function of the thickness

The study of the critical values of FSI is carried out for thicknesses from 1 to 10 cm.

Fig. 8 presents, in the three frequency domains, the evolution of the critical values of FSI

as a function of the layer thickness for both configurations.

In the low frequency range (Fig. 8(a,d)), most of the configurations do not exhibit a

critical FSI. In this frequency range, the wavelength of the frame-borne wave is large

compared to the thickness of the layer and thus the frame thickness tends to be constant.

In the medium frequency range (Fig. 8(b,e)), centered around the quarter wavelength

resonance, it is shown that the critical values of FSI slightly decrease when the porous

thickness increases. This tendency is more pronounced in the high frequency range as shown
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Fig. 8 (c,f). For example, the absorption coefficient of a material having a FSI of 100 can

be simulated with the limp model only for thicknesses up to 4 cm (see Fig. 8(c)). This shows

that the difference between the Biot and the limp models increases with the thickness.

VI. DISCUSSION

It is possible to explain how the FSI criterion should be used. The prediction of

the frequency bands for which the limp model can be used is proposed in the case of the

absorption coefficient of materials A, B and C (see table I) of thickness 2 cm. This method

only involves the calculation of the FSI parameter (Eq. (40)) of the tested material and

avoids solution of the absorption or radiation problems using the full Biot model and limp

model (see sec. IV.A). Finally, the FSI criterion is compared to the Beranek criterion and,

in the particular case of the absorption configuration, with classical ”rigid frame” criteria.
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FSI compared to the critical values for the two characteristic configurations in the three

frequency domains: (d) material A, (e) material B and (f) material C.

A. The evaluation procedure and application

The procedure for determining the frequency ranges in which the limp model is valid is

as follows:

• the properties of the porous materials have to be measured (see TAB. I for materials

A, B and C),

• the FSI is derived using Eq. (40); the various parameters (P̂ , ρ̃c and ρ̃limp) are eval-

uated using Eq.(10), Eq.(25) and Eq.(33); FSI curves are drawn for materials A, B

and C in Fig. 9(a), (b) and (c) respectively,

• the frequency bands characteristic of the porous behavior are estimated from the center

frequency of the medium frequency band fr (Eq. (49)); for a 2 cm thick layer, the frame

resonance is frA ≈ 113 Hz for material A, frB ≈ 214 Hz for material B and frC ≈ 990

Hz for material C,

• the critical values of FSI are chosen in Fig. 8 according to the studied configuration,
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the thickness of the porous layer and the frequency band. The data corresponding to

the absorption configuration with a layer having a thickness of 2 cm are added on the

FSI curves presented in Fig. 9(a)-(c).

The comparison between the FSI curve and the critical value FSI95 enables identification

of the frequency bands where the limp model can be used. The results of the comparison

for the two configurations are summarized in Fig. 9(d)-(f). It is shown that materials A

and B can be simulated using the limp model for both the absorption and the radiation

configurations over the whole frequency range (FSI < FSI95). These predictions agree

with the simulations presented in Fig. 4(a,b,d,e). Note that the increase of the radiation

efficiency of material B (see Fig. 4(e)) induced by the frame resonance does not exceed the

maximum accepted difference of 3 dB. For material C, it is predicted that the Biot model

should be used in the medium frequency range for both configurations (FSI > FSI95).

This is confirmed on Fig. 4(c,f). For the radiation configuration, the use of the Biot model

is recommended up to 8 kHz (see Fig. 9(f)). For higher frequencies, the limp model can

be used. This prediction is validated in Fig. 4(f) where the difference between the two

simulations is great around the 3λ/4 frame resonance (from 2 kHz to 5 kHz) and does not

exceed 3 dB above 8 kHz.

B. Comparison with other criteria

According to the Beranek criterion7, only the material A can be simulated with the limp

model (for material A, K̃f/P̂ = 70 ≫ 20, see Table I). The FSI prediction for this material

agrees with Beranek prediction: the absorption coefficient and the radiation efficiency can

be simulated with the limp model in the whole frequency range. For the two other materials,

the criterion proposed by Beranek is too restrictive: the use of the limp model is banned for

both materials B and C (K̃f/P̂ = 6 for material B and 0.4 for material C).

In the particular case of the absorption configuration, the material is generally modeled

using the rigid frame assumption (see sec. II.C). To insure the validity of this assumption,
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one can use a frequency criterion proposed by Biot1. This criterion gives a high critical

frequency limit above which the viscous forces only have a noticeable effect in a layer of air

in contact with the frame, of equal thickness to the viscous skin depth: the frame cannot be

excited by an acoustical wave and can be considered rigid. This frequency is expressed as

the ratio of the airflow resistivity of the porous material over the density of the interstitial

fluid: fBiot = σ/2πρf . Applied to materials A, B and C, this criterion allows the use of the

rigid frame model above 13 881 Hz for material A, 3 041 Hz for material B and 7 535 Hz

for material C. As stated previously, the parameter FSI allows the use of the limp model

in the whole frequency range for both fibrous materials A and B, and recommends the use

of the Biot model in the vicinity of the frame resonance for the material C. Hence, in this

case, the frame can be excited by the motion of the air (predictable with the criterion fBiot)

but, since the stiffness has no influence (predictable with FSI), the ”equivalent fluid” limp

model can nevertheless be used.

Pilon et al.16 proposed a criterion to study the influence of the mounting conditions on

the measurement of the sound absorption coefficient in a duct. This criterion, called FAE

and defined as FAE = σE/ρ2
1, gives informations about the influence of the frame around

its frequency resonance fr. For material C, the FAE is equal to 5.7 MW/kg and greatly

superior to the critical value (1 MW/kg) which indicates that the acoustic behaviour of the

foam is very sensitive to the frame vibration in the vicinity of fr. The prediction is in good

agreement with the FSI criterion.

VII. CONCLUSION

In this paper, a criterion identifying which porous materials can be modeled with the

one-wave limp model instead of the poroelastic Biot model has been investigated. The

identification process relies on a new parameter derived from the properties of the material:

the Frame Stiffness Influence (FSI). This parameter, based on the compressional wave

numbers, expresses the influence of the frame-borne wave on the fluid phase displacement.
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The method consists in evaluating the FSI for a given material and comparing it with

critical values determined for two characteristic configurations: absorption of a porous layer

bonded on a rigid backing and radiation of a vibrating plate covered by a porous layer.

It is shown that the frequency bands predicted to be simulated with the limp or the Biot

model using this method are in close agreement with one-dimensional simulations. Even if

the application cases are one-dimensional, they involve both Biot compressional waves. It

seems realistic to apply this criterion to 3D cases where the shear wave is not mainly excited,

which is the case for a wide variety of industrial applications. Compared with other criteria,

the FSI criterion provides a more accurate information in term of frequency and confirms

that the limp model is less restrictive than the rigid frame one.
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