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The validity of using the limp model for porous materials is addressed in this paper. The limp model is derived from the poroelastic Biot model assuming that the frame has no bulk stiffness. Being an equivalent fluid model accounting for the motion of the frame, it has fewer limitations than the usual equivalent fluid model assuming a rigid frame. A criterion is proposed to identify the porous materials for which the limp model can be used. It relies on a new parameter, the Frame Stiffness Influence (F SI) based on porous material properties. The critical values of F SI under which the limp model can be used, are determined using a 1D analytical modeling for two boundary sets: absorption of a porous layer backed by a rigid wall and radiation of a vibrating plate covered by a porous layer. Compared with other criteria, the criterion associated with F SI provides information in a wider frequency range and can be used for configurations which include vibrating plates.

I. INTRODUCTION

In recent years, there has been a strong effort for modeling the vibroacoustic response of multilayer systems containing porous materials. During the past decade, numerical methods such as finite element methods based on the Biot theory 1,2 have been widely developed for automotive and aeronautic industries. Classical methods consider the displacements of the solid and fluid phases as variables [START_REF] Panneton | An efficient sheme for solving the three-dimensional poroelasticity problem in acoustics[END_REF][START_REF] Hörlin | A 3-D hierarchical FE formulation of Biots equations for elastoacoustic modeling of porous media[END_REF] , respectively u s and u f , or a mixed formulation [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF][START_REF] Rigobert | Investigation of the convergence of the mixed displacement pressure formulation for three-dimensional poroelastic materials using hierarchical elements[END_REF] based on the displacement of the solid phase and the interstitial fluid pressure p. These numerical methods allow to predict the structural and fluid couplings induced by the poroelastic medium without any kinematic or geometrical assumptions. However, for large size finite element models, these methods can require a significant computational time.

To overcome this limitation, one can consider that the porous layer behaves like a dissipative fluid. Two porous "one-wave" formulations can be found: (i) the "rigid frame" model assumes that the solid phase remains motionless (ref. [START_REF] Allard | Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials[END_REF] , page 79-111), (ii) the "limp" model assumes that the stiffness of the solid phase is zero but takes into account its inertial effects [START_REF] Beranek | Acoustical properties of homogeneous, isotropic rigid tiles and flexible blankets[END_REF][START_REF] Ingard | Notes on sound absorption technology[END_REF][START_REF] Dazel | An alternative Biots displacement formulation for porous materials[END_REF] (ref. [START_REF] Ingard | Notes on sound absorption technology[END_REF] , chapter 5-1). Because the motion of the solid phase is considered in the limp model, this model has to be preferred for most of the applications as in transports for example (car, train, aircraft), where the porous layers are bonded on vibrating plates. However, it is valid since the frame "flexibility" of the porous material has little influence on the vibroacoustic response of the system. The aim of this paper is to identify, for a given porous material, the frequency ranges for which the limp model can be used.

The approximation of the limp model was first proposed by Beranek 7 and studied more in detail by Ingard [START_REF] Ingard | Notes on sound absorption technology[END_REF] . It was applied to the poroelastic formulation of Zwikker and Kosten [START_REF] Zwikker | Sound absorption materials[END_REF] to model soft acoustical blankets in aircraft. More recently, Dazel et al. [START_REF] Dazel | An alternative Biots displacement formulation for porous materials[END_REF] applied the limp approximation to an alternative displacement formulation based on the Biot's poroelasticity equations. This simplified model accounts for (i) the dissipation mechanisms induced by the relative motion between the two phases, (ii) the effects of the motion of the solid phase * Electronic address: olivier.doutres.etu@univ-lemans.fr using an inertia correction.

The validity of the limp model compared to the poroelastic model has been investigated by several authors. Beranek 7 proposed a simple criterion to identify the porous materials for which the limp assumption can be applied. This criterion is based on the ratio of the bulk modulus of the fluid phase K f over the bulk modulus of the solid phase K s : the limp assumption can be used if K f /K s > 20. In his book, Ingard [START_REF] Ingard | Notes on sound absorption technology[END_REF] investigates the absorption coefficient of a porous layer covered or not by a screen and backed by a rigid wall (as presented Fig. 1(a)). He pointed out that the limp model is not valid in the low frequency range situated below the structural frame resonance of the porous layer because this region is mainly controlled by the stiffness. In the same way, Göransson 11,[START_REF] Göransson | Acoustic finite element formulation of a flexible porous material: a correction for inertial effects[END_REF] investigated the validity of the limp model in the case of an aircraft double wall transmission problem and concluded that the limp model can be acceptable since no resonances of the frame are present in the frequency range of interest. The main conclusion of the previous works is that the use of the limp model depends not only on the properties of the porous layer but also on the boundary conditions which are applied to it.

In this paper, a criterion is proposed to identify the porous materials and the associated frequency ranges for which the limp model can be used according to the boundary conditions applied to the layer. The identification process relies on the derivation of a new frequencydependent parameter, the Frame Stiffness Influence (F SI), based on the properties of the porous material. This parameter is developed from the Biot theory 1,2 and quantifies the intrinsic influence of the solid-borne wave 2 on the displacement of the interstitial fluid.

Critical values of F SI above which the limp model cannot be used are determined for porous materials of thicknesses from 1 to 10 cm and for two boundary condition sets (see boundary condition sets and for ten porous thicknesses. The reader who is mainly interested in the application of the F SI criterion could go directly to the final part of the paper (sec.VI). In this section, a short explanation on how to use the F SI criterion is proposed and it is illustrated with examples. Finally, a comparison with other criteria validates its efficiency.

II. POROUS MATERIAL MODELING

The limp model introduced in this paper is derived from the Biot theory adapted by

Johnson [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF] , Allard 2 and Champoux [START_REF] Champoux | Dynamic tortuosity and Bulk modulus in air-saturated porous media[END_REF] . This poroelastic model accounts for frame motion, viscous and thermal dissipation mechanisms and is called the Biot model in this paper. In order to achieve a simple analytical description, the modeling is one-dimensional, i.e. the porous layer has infinite lateral dimensions in the y and z directions, and only plane waves propagate in the x direction (see Fig. 2). In this case, only two compressional waves are considered.

A. Biot theory

The motion of the poroelastic medium is described by the macroscopic displacement of solid and fluid phases represented by the vectors u s and u f . Assuming a harmonic time dependence e jωt , the equation of motion can be written in the form 2

-ω 2 ρ11 u s -ω 2 ρ12 u f = N∇ 2 u s + ( P -N)∇∇.u s (1) + Q∇∇.u f , -ω 2 ρ12 u s -ω 2 ρ22 u f = Q∇∇.u s + R∇∇.u f , (2) 
where the tilde symbol indicates that the associated physical property is complex and frequency dependent. The inertial coefficients ρ11 , ρ22 are the modified Biot's density of the solid and fluid phase respectively. The inertial coefficient ρ12 accounts for the interaction between inertial forces of the solid and fluid phases together with viscous dissipation. The modified Biot's density can be written in the form:

ρ12 = ρ 12 + j b/ω , (3) 
ρ11 = ρ 11 -j b/ω , (4) ρ22 
= ρ 22 -j b/ω , (5) 
with 

ρ 12 = -φρ f (α ∞ -1), ρ 11 = ρ 1 -ρ 12 and ρ 22 = φρ f -ρ 12 .
= φ 2 σ 1 + j M 2 α ∞ ρ f φσ ω , (6) 
M = 8α ∞ µ ′ σφΛ 2 , ( 7 
)
where M is the shape factor, µ ′ is the viscosity of air, σ the resistivity of the porous material and Λ the characteristic viscous length.

In Eq. (1,2), P and R are the bulk modulus of the solid and fluid phases respectively and Q quantifies the potential coupling between the two phases. For the majority of sound absorbing materials, these coefficients are

2 Q = (1 -φ) Kf , (8) 
R = φ Kf , (9) 
P = 2N * 1 -ν 1 -2ν + Q2 R = P + Q2 R . (10) 
The effective bulk modulus of the air in the pores Kf is related to the thermal coupling between the two phases. In the initial paper of Biot 1 , this parameter was real and constant.

Champoux and Allard 14 improved the model to account for the thermal effects:

Kf = K a / β , (11) 
with K a the adiabatic incompressibility of air and

β = γ - γ -1 1 + jω k ′ 0 ρ f P r φµ ′ -1 G′ , ( 12 
) G′ = 1 + j M ′ 2 k ′ 0 ρ f P r φµ ′ ω , (13) 
M ′ = 8k ′ 0 φΛ ′2 . (14) 
In these equations, γ is the ratio of the specific heats, P r the Prandtl number, k ′ 0 the thermal permeability, and Λ ′ the thermal characteristic length. According to Eq. (11), the bulk modulus of the interstitial fluid varies from its isotherm value at low frequencies (K f = P 0 = 101.3 kPa, the atmospheric pressure at 20 • C) to its adiabatic value at high frequencies (K f = K a = γP 0 = 141.2 kPa at 20 • C).

N * and ν in Eq. ( 10) are the complex shear modulus and the Poisson ratio of the frame, considered as an isotropic material. N * corresponds to the second Lame coefficient µ and can be expressed in terms of the complex Young modulus in vacuo E * :

N * = E * 2(1 + ν) = E(1 + jη) 2(1 + ν) , (15) 
with η, the loss factor of the frame. Note that N * and E * are complex and frequency dependent. For the sake of simplicity, these coefficients are assumed to be constant in this work.

Since the model is one-dimensional, the displacements are scalars and Eq. (1,2) are rewritten as

-ω 2 ρ11 u s -ω 2 ρ12 u f = P ∇ 2 u s + Q∇ 2 u f , (16) 
-ω 2 ρ12 u s -ω 2 ρ22 u f = Q∇ 2 u s + R∇ 2 u f . (17) 
Equation ( 16) can be expressed in a more convenient way to identify the influence of the mechanical properties by introducing the bulk modulus of the solid phase in vacuo P (see Eq. ( 10)). By solving Eq. ( 16)-Q R ×Eq. (17), one gets

-ω 2 ρ12 φ Γu s -ω 2 ρ22 φ γu f = P ∇ 2 u s , (18) 
with

Γ = φ ρ11 ρ12 - Q R and γ = φ ρ12 ρ22 - Q R . ( 19 
)
γ is a notation introduced by Atalla et al. [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF] in the mixed displacement-pressure formulation.

According to the Biot theory, the two poroelastic equations Eq. ( 17) and (18), can be solved to determine the propagation constants of the two compressional waves. A derivation of the complete system is proposed in the next section.

x z L 0 ∞ ∞ ∞ y Porous X 1 X 2 FIG. 2.
One-dimensional porous modeling.

B. Poroelastic model: a two waves formalism

Compared to classical Biot equations 1,2 , the equations of motion proposed in this paper (Eq. (17,18)) involve the bulk modulus of the frame in vacuo P . The aim of this section is to derive an alternative and a more useful expression of the physical parameters of the Biot waves. This will be of interest for obtaining the F SI.

Using the vector [w] = [u s u f ] T , Eq. ( 17) and Eq. ( 18) can be reformulated as

-ω 2 [ρ][w] = [M ]∇ 2 [w] , (20) 
with

[ρ] =    ρ12 Γ/φ ρ22 γ/φ ρ12 ρ22    and [M ] =    P 0 Q R    . (21) 
Solution of the eigenvalue problem, -

δ 2 i [w i ] = ∇ 2 [w i ],
gives the squared complex wave numbers δ 2 i of the two compressional waves (i = 1, 2)

δ 2 i = 1 2 (Aδ 2 c + δ 2 f ) + (-1) i 2 (Aδ 2 c + δ 2 f ) 2 -4Bδ 2 c δ 2 f , (22) 
where

A = 1 - Qρ 22 γ Rρ 12 Γ and B = 1 - γ Γ . ( 23 
)
The wave numbers of the compressional Biot waves δ i are written in terms of two characteristic wave numbers: δ f the wave number of the rigid frame model described in the next section (see Eq. ( 30)) and δ c the wave number of a wave propagating in a medium which has the bulk modulus of the frame in vacuum and the density of the frame in fluid (it takes into account the inertial and viscous couplings):

δ c = ω ρ12 Γ φ P = ω ρc P , (24) 
with

ρc = ρ 1 -ρ12 /φ . (25) 
Note that the expressions of the wave numbers δ i (Eq. ( 22)) are equivalent to the classical expressions which can be found in reference 2 (page 130).

The two eigenvectors can be written

[u 1 ] = [u s 1 u f 1 ] T , [u 2 ] = [u s 2 u f 2 ] T . Each component of the vectors [u i ] (i = 1, 2)
, corresponds to the displacement of the solid phase u s i and the fluid phase u f i induced by the propagation of the Biot wave i. Using Eq. ( 18), the ratio of the displacement of the frame over the displacement of the air for the two compressional waves is given by

µ i = u f i u s i = ρ12 Γ ρ22 γ δ 2 i δ 2 c -1 . (26) 
This ratio indicates in which medium the waves mainly propagate. If it is less than 1, the wave is mainly supported by the frame and is referred to as the "frame-borne wave". On the contrary, if the ratio is much greater than 1, the corresponding wave is mainly supported by the saturating fluid and is referred to as the "airborne wave". By considering the whole set of porous materials used in this study and presented in section III, one notices that the subscript i = 1 corresponds to the airborne wave and the subscript i = 2 corresponds to the frame-borne wave.

In the considered geometry (see Fig. 2), the displacement of each phase is due to the propagation of two compressional waves travelling in both directions, and can be written in the form

u s (x) = X 1 + X 2 , (27) 
u f (x) = µ 1 X 1 + µ 2 X 2 , (28) 
where

X i = S i cos(δ i x) + D i sin(δ i x) is the contribution of each compressional wave i = 1, 2,
S i and D i being set by the boundary conditions.

C. Equivalent fluid models: a one wave formalism

In this section, after a brief description of the classical rigid frame model, the limp model is presented. Both models are derived from the Biot theory presented in the previous section.

The rigid frame model assumes that the displacement u s is zero. This assumption applied in Eq. ( 17) gives a propagation equation on u f ,

Kf ∇ 2 u f + ω 2 ρ22 φ u f = 0 . ( 29 
)
The compressional wave, solution of the propagation equation, is characterized by the wave number δ f ,

δ f = ω ρf Kf , (30) 
where ρf = ρ22 /φ.

The limp model is based on the assumption that the frame has no bulk stiffness: P = 0.

It is likely associated to "soft" materials like cotton and glass wool. Hence, by considering this assumption in Eq. ( 18), one gets a simple relation between the displacements of both solid and fluid phases:

u s = - ρ22 ρ12 γ Γ u f . (31) 
Then, substituting the solid displacement in Eq. ( 17) by Eq. ( 31) gives the propagation

equation on u f Kf ∇ 2 u f + ω 2 ρlimp u f = 0 , (32) 
where

ρlimp = B A ρf , (33) 
with A and B the two coefficients defined in Eq. ( 23).

The compressional wave, solution of the propagation equation, is characterized by the wave number δ limp = ω ρlimp / Kf . According to the expression of the density ρlimp , the wave number of the limp model can be expressed in terms of the wave number of the rigid frame model as:

δ 2 limp = B A δ 2 f . (34) 
As in the rigid frame model, the bulk modulus of the limp model is the modified bulk modulus of the saturating fluid Kf . However, the limp model takes into account the effect of the solid phase displacement by its modified effective density ρlimp which transcribes the inertia of the solid phase and its interaction with the fluid phase. This property enables use of the limp model for porous material mounted on a vibrating structure as long as the frame-borne wave has no influence on the vibroacoustic behaviour of the system. In this way, it is less restrictive than the rigid frame model.

III. FRAME STIFFNESS INFLUENCE

The aim of this section is to propose a parameter based on the properties of the porous material which quantifies the influence of the frame stiffness on the porous behaviour. This parameter is called F SI for "Frame Stiffness Influence".

A. F SI development

The use of the limp model is possible when the contribution of the frame-borne wave is negligible in the considered application. This approximation implies in the expressions of the solid and fluid displacements (Eq. (27,28)) that:

• (i) the contribution of the airborne wave X 1 is great compared to the contribution of the frame-borne wave X 2 ; this condition depends mainly on the boundary conditions : two configurations will be studied in section IV to set critical values of the F SI parameter,

• (ii) considering the fluid motion (Eq. ( 28)), the displacement ratio µ 1 associated to the airborne wave is great compared to the displacement ratio µ 2 associated to the frameborne wave: µ 2 /µ 1 ≪ 1; this condition is independent from the boundary conditions and will be used to build the F SI parameter.

According to equation ( 26), the ratio µ 2 /µ 1 can be written in terms of the wave numbers of the Biot waves δ i (Eq. ( 22)) and the characteristic wave propagating mostly in the frame δ c (Eq. ( 24)) :

µ 2 µ 1 = (δ 2 2 /δ 2 c ) -1 (δ 2 1 /δ 2 c ) -1 . ( 35 
)
From the study of the behavior of 259 porous materials presented in Sec.IV.B, the condition µ 2 /µ 1 ≪ 1 is met when the following conditions are observed:

• r 1 = δ 2 1 /δ 2 c tends to 0: this occurs when the wave number δ 1 of the air-borne wave is small compared to the wave number δ c .

• r 2 = δ 2 2 /δ 2 c tends to 1: this occurs when the wave number δ 2 of the frame-borne wave is close to the wave number δ c .

Both r 1 and r 2 ratios exhibit an asymptotic behavior as the frame stiffness becomes smaller: their convergence is controlled by a common parameter presented in the next section.

B. A simplified parameter

Let us first consider the asymptotic behavior of the ratio r 1 . Substituting δ 1 in the expression of r 1 for Eq. ( 22) gives

r 1 = δ 2 1 δ 2 c = 1 2 (δ 2 f /δ 2 c + A) 1 - √ 1 -ε , (36) 
with

ε = 4Bδ 2 f /δ 2 c (δ 2 f /δ 2 c + A) 2 . ( 37 
)
This expression shows that r 1 may tend to zero when ε tends to zero. Hence, by using the first-order Taylor series expansion of the square root function

√ 1 -ε = 1 -ε/2, it comes r 1 = (Bδ 2 f )/(Aδ 2 c ) 1 + δ 2 f /(Aδ 2 c ) . ( 38 
)
By introducing the wave number of the limp model using Eq. (34), one gets

r 1 = δ 2 limp /δ 2 c 1 + δ 2 limp /(Bδ 2 c ) . (39) 
Thus, r 1 tends to zero when the wave number ratio δ 2 limp /δ 2 c tends to zero or when the term δ 2 limp /(Bδ 2 c ) is much greater than 1. The first condition is used as a parameter characterizing the influence of the frame, denoted the "Frame Stiffness Influence" (F SI)

F SI = δ 2 limp δ 2 c = ρlimp ρc P Kf , (40) 
with ρlimp , ρc , Kf and P given in Eq. ( 33), ( 25), ( 11) and ( 10) respectively. As the Beranek criterion 7 , the characteristic parameter F SI is expressed according to the ratio between the bulk moduli of the two phases. However, in the expression of F SI, each bulk modulus is divided by the density of their corresponding characteristic wave. Thus, Eq. (40) shows that F SI is frequency dependent and it decreases with the bulk modulus of the frame in vaccuo P . Physically, it can be noticed that F SI is small when δ c is great compared to δ limp , meaning that the interaction between the two associated waves is weak.

In the same way, using Eq. ( 22) and applying the first-order Taylor series expansion of the square root function, the ratio r 2 can be expressed in terms of the parameter F SI as:

r 2 = A (1 + F SI/B) - F SI 1 + F SI/B . (41) 
According to Eq. (41), when the parameter F SI tends to zero, r 2 tends to the value of the coefficient A which is close to 1 for all kinds of porous materials. Hence, the parameter F SI allows to describe the asymptotic behavior of both r 1 and r 2 and thus the behavior of the ratio µ 2 /µ 1 . In the following, it is used to identify the porous materials according to the influence of their frame stiffness.

Fig. 3 presents the F SI for three characteristic materials (see section IV.B and TAB. I).

It is shown that the parameter F SI is frequency dependent and that the material A which has the lower bulk modulus has the smaller F SI. 

A. The characteristic configurations

Fig. 1 presents the two configurations used to evaluate the difference between the Biot and the limp models. The chosen configurations are characteristic of the applications of the porous materials in industrial fields.

In configuration (a), the porous layer is attached to a rigid and motionless backing at

x = L and is hit by an acoustic plane wave at x = 0. The normal-incidence absorption coefficient α of the porous material is derived from the complex reflection coefficient R x :

α = 1 -|R x | 2 , R x = Z n -ρ f c f Z n + ρ f c f , (42) 
with c f the speed of sound in air and Z n the normal-incidence surface impedance. This impedance is given by the pressure to the normal velocity ratio in the free air close to the front face of the material; Z n = p(0)/v(0). Both pressure and velocity are determined using the appropriate boundary conditions: continuity of the normal stress in the solid and fluid phases with the external pressure at the fluid-porous interface x = 0

σ s x (0) = -(1 -φ)p(0) , (43) 
σ f x (0) = -p(0) , (44) 
and continuity of the total flow

jω[(1 -φ)u s (0) + φu f (0)] = v(0) , (45) 
with u s and u f given Eqs. (27,28). On the surface of the porous layer in contact with the backing (x = L), the displacement of the air and the frame are equal to zero

u s (L) = u f (L) = 0 . ( 46 
)
An analytical formulation of α can be found in reference 2 (page 21 and 137). This coefficient is usually measured in an impedance tube [START_REF] Seybert | Experimental determination of acoustic properties using a two-microphone random-excitation technique[END_REF] and is used in building or automotive applications [START_REF] Pilon | Behavioral criterion quantifying the edgeconstrained effects on foams in the standing wave tube[END_REF] .

In configuration (b), the porous layer is excited by a vibrating plate at x = L and radiates in a infinite half-space at x = 0. This configuration corresponds to trim panels, cars roofs or airplane floors. The radiation efficiency factor σ R 17 , defined as the ratio of the acoustic power radiated Π a over the vibratory power of the piston Π v , is used as vibroacoustic response :

σ R = Π a Π v = p(0)v * (0) ρ f c f v 2 w . (47) 
A vibrating surface area of 1 m 2 is considered here. Boundary conditions associated to this configuration are [START_REF] Doutres | Porous layer impedance applied to a moving wall: Application to the radiation of a covered piston[END_REF] : continuity of stress and total flow at x = 0 and Eqs. ( 43)-(45) are used.

At x = L, the velocity of the fluid and the velocity of the frame are both equal to the wall velocity

jωu s (L) = jωu f (L) = v w . (48) 
For each configuration, the vibroacoustic response is derived using the Transfer Matrix Method (TMM) [START_REF] Allard | Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials[END_REF][START_REF] Brouard | A general method of modeling sound propagation in layered media[END_REF] . This method assumes the multilayer has infinite lateral dimensions and uses a representation of plane wave propagation in different media in terms of transfer matrices. To ensure a one-dimensional representation, the multilayer is excited by plane waves with normal incidence. The porous layer is either simulated using the Biot model presented in section II.B or the limp model presented in section II.C.

Note that the two characteristic configurations mainly differ by the kind of excitation applied to the frame: the frame will be less excited by an air domain than by a solid layer.

Consequently, the limp model has a greater chance of being suitable for the configuration (a) than for the configuration (b).

B. Material properties

In order to study the behaviour of a wide variety of porous materials, a set of 256 simulated materials and 3 real materials is used. The properties of the real materials presented in Table I have been measured at our laboratory. The viscoelastic characteristics of the porous frames, Youngs modulus E and loss factor η, were measured at low frequency using the quasi-static method [START_REF] Dauchez | On measurement of mechanical properties of sound absorbing materials[END_REF][START_REF] Etchessahar | Frequency dependence of elastic properties of acoustic foams[END_REF] .

Material A is a low density glass wool material with a very high airflow resistivity. This material is found in aerospace applications for thermal and sound insulation. The 256 simulated materials are obtained by setting a random value for the main properties of a porous material: E and η respectively the Young modulus and the loss factor of the frame in vacuum, ρ 1 the density of the porous material, σ the airflow resistivity and α ∞ the tortuosity. The range of values for the properties of the 256 porous materials are presented in Table II. The viscous characteristic length Λ is derived from the shape factor given by Eq. (7). For most of the sound absorbing materials, the shape factor lies between 0.1 and 10 (ref. [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF] ) and it is chosen here equal to 1. The thermal characteristic length Λ ′ is three times the viscous characteristic length Λ. For all the simulated materials, the porosity is set to 0.97 and the Poisson ratio ν to 0.3. The set of the randomly simulated materials is built to represent the variety of acoustical materials found in industrial applications.

V. DETERMINATION OF CRITICAL FSI VALUES

In section III.B the parameter F SI based on the physical properties of the material has been introduced. The next step is to identify, for each configuration, the critical values for the two configurations and thicknesses from 1 to 10 cm are finally presented.

A. Analysis on materials A, B and C

Three characteristic frequency ranges

Because the influence of the frame is frequency dependent, the study of the critical values of F SI will be carried out in three characteristic frequency bands centered around the first λ/4 resonance frequency of the frame-borne wave, f r . This frequency can be estimated by simply considering the properties of the frame in vacuo 22 :

f r ≈ 1 4L P ρ 1 = 1 4L E (1-ν) (1+ν)(1-2ν) ρ 1 , (49) 
Frequency (Hz)

Frequency (Hz) Frequency (Hz) where L is the thickness of the porous layer. In the vicinity of f r , the frame stiffness can have a great influence on both the absorption coefficient [START_REF] Pilon | Behavioral criterion quantifying the edgeconstrained effects on foams in the standing wave tube[END_REF][START_REF] Allard | Effects of a resonance of the frame on the surface impedance of glass wool of high density and stiffness[END_REF] and the radiation efficiency [START_REF] Doutres | Porous layer impedance applied to a moving wall: Application to the radiation of a covered piston[END_REF] . This is illustrated in Fig. 4 (grey zones) where the Biot and the limp simulations of both configurations are presented for materials A, B and C of thickness 2 cm. In the case of the absorption configuration, a decrease of the absorption coefficient is observed at the frequency f r around 1000 Hz for material C (see Fig. 4(c)). In the case of the radiation configuration, an increase of the radiation efficiency is observed around 200 Hz for material B (see Fig. 4(e)) and 1000 Hz for material C (see Fig. 4(f)). Higher orders modes (3λ/4,...)

have also an influence in the case of the radiation of material C (Fig. 4(f)).

In the following, three characteristic zones are chosen according to the frequency f r (Eq. ( 49 

LF MF HF

Confidence rate (%) present the same results in the case of the radiation configuration.

The first noticeable tendency is that the value of the difference between the limp and the Biot models increases when the value of F SI increases. This is in agreement with the parameter behaviour which increases with the bulk modulus of the frame (see III.B). As stated previously, the critical value of F SI is set when the first parameterized curve exceeds the maximum accepted difference. However, this method can be inappropriate in this case because the limit can depend slightly on the random set of simulated materials. Thus, a simple statistic indicator called the "confidence rate" is used to set the critical values. The F SI range is first divided into 10 bands from 10 -4 to 10 0 in a log scale. In each F SI band, the confidence rate gives the number of points below the acceptable limit (0.1 or 3 dB) over the number of points present in this F SI range. This rate, given in percent (solid grey line in Fig. 6), indicates the reliability of using the limp model according to the value of F SI.

The confidence rate of 95% is chosen as a threshold to set the critical value of F SI, called F SI 95 . For a F SI larger than F SI 95 , it is considered that the vibroacoustic response may become notably sensitive to the frame stiffness for most of the porous materials and the Biot model should be preferred. Note that the number of F SI bands used to derive the confidence rate is sufficiently important so that the critical value F SI 95 does not depend on this number.

In the case of the absorption coefficient in the medium frequency range (see Fig. 

C. Critical values as a function of the thickness

The study of the critical values of F SI is carried out for thicknesses from 1 to 10 cm. Fig. 8 presents, in the three frequency domains, the evolution of the critical values of F SI as a function of the layer thickness for both configurations.

In the low frequency range (Fig. 8(a,d)), most of the configurations do not exhibit a critical F SI. In this frequency range, the wavelength of the frame-borne wave is large compared to the thickness of the layer and thus the frame thickness tends to be constant.

In the medium frequency range (Fig. 8(b,e)), centered around the quarter wavelength resonance, it is shown that the critical values of F SI slightly decrease when the porous thickness increases. This tendency is more pronounced in the high frequency range as shown 

A. The evaluation procedure and application

The procedure for determining the frequency ranges in which the limp model is valid is as follows:

• the properties of the porous materials have to be measured (see TAB. I for materials A, B and C),

• the F SI is derived using Eq. (40); the various parameters ( P , ρc and ρlimp ) are evaluated using Eq.( 10 This is confirmed on Fig. 4(c,f). For the radiation configuration, the use of the Biot model is recommended up to 8 kHz (see Fig. 9(f)). For higher frequencies, the limp model can be used. This prediction is validated in Fig. 4(f) where the difference between the two simulations is great around the 3λ/4 frame resonance (from 2 kHz to 5 kHz) and does not exceed 3 dB above 8 kHz.

B. Comparison with other criteria

According to the Beranek criterion 7 , only the material A can be simulated with the limp model (for material A, Kf / P = 70 ≫ 20, see Table I). The F SI prediction for this material agrees with Beranek prediction: the absorption coefficient and the radiation efficiency can be simulated with the limp model in the whole frequency range. For the two other materials, the criterion proposed by Beranek is too restrictive: the use of the limp model is banned for both materials B and C ( Kf / P = 6 for material B and 0.4 for material C).

In the particular case of the absorption configuration, the material is generally modeled using the rigid frame assumption (see sec. II.C). To insure the validity of this assumption, one can use a frequency criterion proposed by Biot 1 . This criterion gives a high critical frequency limit above which the viscous forces only have a noticeable effect in a layer of air in contact with the frame, of equal thickness to the viscous skin depth: the frame cannot be excited by an acoustical wave and can be considered rigid. This frequency is expressed as but, since the stiffness has no influence (predictable with F SI), the "equivalent fluid" limp model can nevertheless be used.

Pilon et al. [START_REF] Pilon | Behavioral criterion quantifying the edgeconstrained effects on foams in the standing wave tube[END_REF] proposed a criterion to study the influence of the mounting conditions on the measurement of the sound absorption coefficient in a duct. This criterion, called F AE and defined as F AE = σE/ρ 2 1 , gives informations about the influence of the frame around its frequency resonance f r . For material C, the F AE is equal to 5.7 MW/kg and greatly superior to the critical value (1 MW/kg) which indicates that the acoustic behaviour of the foam is very sensitive to the frame vibration in the vicinity of f r . The prediction is in good agreement with the F SI criterion.

VII. CONCLUSION

In this paper, a criterion identifying which porous materials can be modeled with the one-wave limp model instead of the poroelastic Biot model has been investigated. The identification process relies on a new parameter derived from the properties of the material:

the Frame Stiffness Influence (F SI). This parameter, based on the compressional wave numbers, expresses the influence of the frame-borne wave on the fluid phase displacement.

The method consists in evaluating the F SI for a given material and comparing it with critical values determined for two characteristic configurations: absorption of a porous layer bonded on a rigid backing and radiation of a vibrating plate covered by a porous layer.

It is shown that the frequency bands predicted to be simulated with the limp or the Biot model using this method are in close agreement with one-dimensional simulations. Even if the application cases are one-dimensional, they involve both Biot compressional waves. It seems realistic to apply this criterion to 3D cases where the shear wave is not mainly excited, which is the case for a wide variety of industrial applications. Compared with other criteria, the F SI criterion provides a more accurate information in term of frequency and confirms that the limp model is less restrictive than the rigid frame one.

Fig. 1 )FIG. 1 .

 11 Fig. 1): (i) sound absorption of a porous layer backed by a rigid wall and (ii) sound radiation of a porous layer backed by a vibrating wall.The first part of the paper presents the Biot and the limp models. The F SI parameter which characterizes the influence of the frame is then introduced and the method to determine the critical values of F SI is detailed. Critical values are given in Fig.8for two

  ρ 12 is the added mass due to tortuosity α ∞ , ρ 1 the mass density of the porous material, ρ f the mass density of the interstitial fluid and φ the porosity of the poroelastic material. The coefficient b is related to the viscous and inertial coupling between the two phases. This parameter was first assumed real and constant by Biot 1 . Johnson et al. 13 improved the model by introducing a frequency dependent complex amplitude to account for the viscous effects. In the present work it is given by b

FIG. 3 .

 3 FIG. 3. Evolution of the parameter F SI as a function of the frequency: (-) material A, (--) material B, (-. -) material C, (see TAB. I).

  Material B is a high density fibrous material and material C is a plastic foam with a stiff skeleton and a high airflow resistivity. Both materials B and C are found in automotive applications, for roofs and floors treatment. According to the Beranek criterion (see last line in TAB. I), only the material A can be considered as a limp material (| Kf / P | = 70 ≫ 20).

10 FIG. 4 .

 104 FIG. 4. Vibroacoustic response of the two configurations including the three real materials A, B and C of thickness 2 cm: (first line) absorption coefficient α, (second line) radiation efficiency σ R : (-) Biot model, ( ) limp model.

  )): [1, f r /2] the low frequency range (LF), [f r /2, 2f r ] the mid frequency range (MF) and [2f r , 10 4 ] the high frequency range (HF).

5 FIG. 5 .

 55 FIG. 5. Difference between the Biot and limp models on the absorption coefficient α of 2 cm thick materials A ( * ), B (•) and C (×), functions of their F SI parameter in the three frequency domains: (a) low frequency band, (b) medium frequency band, (c) high frequency band.

16 FIG. 6 .

 166 FIG. 6. Evolution of the difference between the Biot and limp models as a function of F SI for the two configurations including the 256 simulated materials of thickness 2 cm: (a)-(c) absorption coefficient, (d)-(f) radiation efficiency of a covered plate; in the three frequency ranges: (first column) Low frequency band LF, (second column) Medium frequency band MF, (third column) High frequency band HF.

FIG. 7 .

 7 FIG. 7. Critical values of F SI in the three frequency ranges for the two configurations including a porous layer of thickness 2 cm: (a) absorption coefficient, (b) radiation efficiency of a covered plate; white area: the F SI is below the critical value F SI 95 , light grey area: the F SI is above the critical value F SI 95 .

  6(b)), the critical value is F SI 95 = 0.16. No critical values are set in the low and high frequency ranges: the limp model can be used to predict the absorption coefficient for all the acoustic materials. These results obtained for a thickness of 2 cm are summarized in an abacus presented in Fig. 7(a). In this figure, a white cell corresponds to the F SI values for which the limp model can be used. A grey cell corresponds to the F SI values for which the Biot model should be preferred. Let us consider now the radiation configuration. Figs. 6(d)-(f) present the difference between the two models as a function of F SI, and the obtained critical F SI are summarized in Fig. 7(b). As shown Fig. 6(d), no critical F SI values are set in the low frequency range:the radiation efficiency of a covered plate can be predicted using the limp model for all the acoustic materials for frequencies at less two times below the first resonance frequency of the frame f r . Critical values of F SI are set in the medium and the high frequency ranges as seen in Fig.6(e) and (f). The difference between the Biot and the limp models can be great in the high frequency range because higher order resonances (3λ/4, 5λ/4,...) can be excited in the frame thickness and have a noticeable influence on the radiation efficiency.

FIG. 8 .

 8 FIG. 8. Evolution of the F SI critical values as function of the thickness for the two configurations ((a,b,c): absorption coefficient, (d,e,f): radiation efficiency) in the three frequency ranges: (a,d): Low frequency band LF, (b,e): Medium frequency band MF, (c,f): High frequency band HF. White zone: limp model valid, Grayed zone: limp model not valid.
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 8 Fig.8 (c,f). For example, the absorption coefficient of a material having a F SI of 10 0 can be simulated with the limp model only for thicknesses up to 4 cm (see Fig.8(c)). This shows that the difference between the Biot and the limp models increases with the thickness.

FIG. 9 .

 9 FIG. 9. (a)-(c) F SI curves and critical values obtained in the case the absorption configuration for a porous layer 2 cm thick: (a) material A, (b) material B, (c) material C ; (d)-(f) F SI compared to the critical values for the two characteristic configurations in the three frequency domains: (d) material A, (e) material B and (f) material C.

  ), Eq.(25) and Eq.(33); F SI curves are drawn for materials A, B and C in Fig.9(a), (b) and (c) respectively,• the frequency bands characteristic of the porous behavior are estimated from the center frequency of the medium frequency band f r (Eq. (49)); for a 2 cm thick layer, the frame resonance is f rA ≈ 113 Hz for material A, f rB ≈ 214 Hz for material B and f rC ≈ 990 Hz for material C,• the critical values of F SI are chosen in Fig.8according to the studied configuration, the thickness of the porous layer and the frequency band. The data corresponding to the absorption configuration with a layer having a thickness of 2 cm are added on the F SI curves presented in Fig.9(a)-(c).The comparison between the F SI curve and the critical value F SI 95 enables identification of the frequency bands where the limp model can be used. The results of the comparison for the two configurations are summarized in Fig.9(d)-(f). It is shown that materials A and B can be simulated using the limp model for both the absorption and the radiation configurations over the whole frequency range (F SI < F SI 95 ). These predictions agree with the simulations presented in Fig.4(a,b,d,e). Note that the increase of the radiation efficiency of material B (see Fig.4(e)) induced by the frame resonance does not exceed the maximum accepted difference of 3 dB. For material C, it is predicted that the Biot model should be used in the medium frequency range for both configurations (F SI > F SI 95 ).

  the ratio of the airflow resistivity of the porous material over the density of the interstitial fluid: f Biot = σ/2πρ f . Applied to materials A, B and C, this criterion allows the use of the rigid frame model above 13 881 Hz for material A, 3 041 Hz for material B and 7 535 Hz for material C. As stated previously, the parameter F SI allows the use of the limp model in the whole frequency range for both fibrous materials A and B, and recommends the use of the Biot model in the vicinity of the frame resonance for the material C. Hence, in this case, the frame can be excited by the motion of the air (predictable with the criterion f Biot )

TABLE I .

 I Measured properties of materials A, B and C.

	Porous	A	B	C
	Air flow resistivity: σ (kN s/m 4 )	105	23	57
	Porosity: φ	0.95	0.95	0.97
	Tortuosity: α ∞	1	1	1.54
	Viscous length: Λ (µm)	35.1	54.1	24.6
	Thermal length: Λ ′ (µm)	105.3	162.3	73.8
	Frame density: ρ 1 (kg/m 3 )	17	58	46
	Young's Modulus at 5 Hz: E (kPa)	1.4	17	214
	Structural loss factor at 5 Hz: η	0.1	0.1	0.115
	Poisson's ratio: ν	0	0	0.3
	Beranek criterion at 5 Hz: | Kf / P |	70	6	0.4

TABLE II .

 II Range of values for the properties of the 256 simulated materials.

	Air flow resistivity: σ (kN s/m 4 )	1-100
	Porosity: φ	0.97
	Tortuosity: α ∞	1-2
	Shape factor: M	1
	Viscous length: Λ (µm)	8α ∞ µ ′ /σφM
	Thermal length: Λ ′ (µm)	3Λ
	Frame density: ρ 1 (kg/m 3 )	10-90
	Young's Modulus at 5 Hz: E (kPa)	3-200
	Structural loss factor at 5 Hz: η	0.01-0.2
	Poisson's ratio: ν	0.3

of F SI under which the limp model can be used instead of the Biot model. The method to determine a critical value is demonstrated in the case of the absorption coefficient of materials A, B and C with a thickness of 2 cm. Then, in order to get a critical value independent of the chosen material, the method is generalized with a set of 256 simulated materials which properties are randomly determined among limits given in table II. Results
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Estimation of the difference between the models

The difference between the limp and the Biot models is given in third octave bands by the absolute value of the difference between the two vibroacoustic responses V (V being either α or σ R ): ∆V = |V Biot -V Limp |. The frequency band 1 Hz to 10 000 Hz is divided in 41 third octave bands. The maximum accepted difference between the two models is set to 0.1 for the absorption coefficient and to 3 dB for the radiation efficiency. These values correspond to a classical industrial demand.

Method to determine the F SI critical values

The objective of this section is to determine, according to the configuration and the frequency domain, the maximum value of the F SI under which the limp model can be used. This maximum value is called "critical value".

The method to obtain a critical value is presented for the absorption configuration with materials A, B and C having a thickness of 2 cm. The difference between the two simulations |α Biot -α Limp | is presented in Fig. 5 as a function of F SI in the three frequency ranges for each material. The higher value of F SI above which the maximum acceptable difference between the two models (here 0.1) is exceeded, is found in the medium frequency range at F SI = 0.5 (vertical dotted line on Fig. 5(b)): this value is set as critical value. No critical values are found in the low and the high frequency ranges.

B. Generalization using 256 simulated porous materials

To establish critical values of F SI which are independent of the chosen material, the preceding study is generalized by using the 256 simulated materials (see TAB. II). Figs. 6(a)-(c