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Abstract

Modeling a porous layer mounted on a vibrating structure using acous-

tic impedance is investigated in this paper. It is shown that the use of

surface impedance usually measured with the impedance tube method

can provide an inaccurate estimation of the acoustic pressure radiated

by the covered structure. The paper focuses on the derivation of an

impedance, denoted the ”transfer impedance”, which describes accu-

rately the dynamic movement of the porous layer. Biot’s theory is used

in the model to account for deformations in the thickness of the layer.

Experimental validation is performed using a circular piston covered

by a foam or a fibrous layer, radiating in an infinite half-space. The ra-

diation model including the transfer impedance shows close agreement

with experimental data.

PACS numbers: 43.50.Gf, 43.40.Rj, 43.20.Rz
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I. INTRODUCTION

The reduction of the sound radiated by vibrating structures is usually performed using

covering materials. If the structure is immersed in a heavy acoustic fluid, as in marine

applications, the covering decouples the surrounding fluid from the vibrations of the structure

due to deformation in the thickness1–3. In the case of light surrounding fluid, as in building

or transport applications (car, aircraft, train), porous materials such as polymer foams

and fibrous materials are widely used because they provide sound absorption and radiation

attenuation due to interaction between the porous frame and the saturating fluid4.

The behavior of a layer attached to a vibrating structure can be described by using a

simple model based on an impedance formulation. This model, known as ”locally reacting”

assumes that the motion at a point of the covering surface is independent of the motion of

any other point of the surface area. When considering immersion in an acoustically-heavy

fluid5,6, this impedance is usually written in the form

Zt =
p

vp − v
, (1)

where p is the pressure exerted by the fluid on the fluid-covering interface, v the velocity of

the same covering surface and vp is the velocity of the base plate (equal to the velocity on

the other covering surface). In these studies, the covering is assumed to behave like massless

distributed springs and the impedance is derived only by means of its thickness and bulk

modulus. This simple model does not account for wave effects in the layer; however, it

provides a good description of the main vibratory phenomena.

For acoustic radiation problems relating to vibrating structures immersed in light fluid,

the impedance formulation is frequently used because of its apparent simplicity. However,

according to the authors’ knowledge, a clear ambiguity appears regarding the definition of

the impedance to be applied to the moving structure. For example, in their book, Morse

and Ingard7 give an expression for the far field radiated pressure of a nonrigid boundary

∗Electronic address: olivier.doutres@univ-lemans.fr
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plane. The active and passive regions of the boundary plane are characterized by the same

acoustic impedance which is defined as the structure reaction to an incoming pressure wave.

This impedance is usually called the surface impedance and is given in the following form

Zs =
p

v
, (2)

where p and v are respectively the acoustic pressure and the particle velocity at the nonrigid

boundary surface. Mangulis9,10 has already pointed out that the active and passive regions

of a nonrigid plane should not be characterized by the same impedance. The case of a circu-

lar piston set in an infinite baffle was investigated, considering the characteristic impedances

as vibratory impedances defined in terms of their mass per unit area. The same ambiguity

in the definition of the acoustic impedance exists for applications dealing with porous cover-

ings. Suzuki et al.11 investigated the effect of porous coverings on the pressure radiated by

vibrating structures in a vehicle cabin in terms of an acoustic impedance as in the form of

Eq. (2). In the case of porous coverings, p and v of Eq. (2) are the pressure and the normal

component of velocity in the free air close to the front face of the material. This impedance

applied to a porous layer is generally experimental data which can be obtain using a com-

mon method such as an impedance tube8. However, by using this impedance, the moving

boundary condition on the vibrating surface is not taken into account. In the same way,

Piot et al.12 modeled the behavior of an absorbent material in dynamic conditions using the

surface impedance Zs. More recently, Shao et al.13 used a surface impedance independent

of the frequency to account for absorbing materials mounted on vibrating cylindrical ducts,

but, as in the previous models, the moving boundary condition is not clearly demonstrated

in that case.

The problem considered in this paper focuses on the ambiguity of acoustic impedance

applied to a porous material attached to a moving structure. An impedance as in Eq. (1),

usually used for heavy fluid configurations, is implemented in the case of a covered bound-

ary moving in a light acoustic fluid: the moving behavior of the covering is taken into

account. The first part of the paper presents the acoustic boundary conditions linked to the
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impedances Zs and Zt. Then, both impedances are derived for two kinds of porous material

commonly encountered in industrial applications. Both materials differ by their mechanical

properties: one is a relatively rigid foam layer and the other, a limp fibrous layer. A one-

dimensional model based on Biot’s theory14 is used to take into account wave propagation

in the solid and fluid phases of the porous media. Using Biot’s theory is of great importance

for the moving boundary configuration because the frame of the porous layer is directly

excited by the vibrating structure. In order to validate the porous modeling using Zt and

illustrate the consequences of using Zs instead of Zt in an acoustic problem with moving

covered boundaries, the derived impedances are applied to the radiation problem of a piston

covered with the porous layers and set in an infinite baffle. Finally, these simulations are

compared to acoustic radiation measurements.

II. IMPEDANCE LINKED TO COVERED BOUNDARIES

A. Definition of the boundary conditions

Let us consider an acoustic domain Ω limited by the nonrigid boundary Γ = ∂Ω as

illustrated in Fig. 1. The normal to the boundary Γ, outwardly directed, is denoted n. The

n

Γ

Γ

Ω

Porous

layer Wall

FIG. 1. System consisting of an acoustic domain Ω limited by a nonrigid boundary Γ.

harmonic pressure field p is governed by the homogeneous linear wave equation (the time

factor ejωt is omitted throughout this paper),

∇2p + k2p = 0 in Ω, (3)
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where the wave number is k = ω/c0, with ω as the angular frequency and c0 the speed of

sound in the medium. In the case of an acoustic problem involving a porous covering, the

boundary condition can be expressed in terms of a harmonic acoustic impedance. If the

backing is a rigid and impervious wall (see Fig. 2 (a)), the impedance applied to Γ, denoted

in this paper as the ”surface impedance” Zs, is usually given as in Eq. (2). This impedance

expresses the coupling between the scalar pressure and the z component of particle velocity in

the free air close to the front face of the porous layer, respectively p(0) and v(0). Substituting

the normal particle velocity v in equation (2) for the one-dimensional Euler equation

v = −
1

jωρ0

∂p

∂z
, (4)

gives the associated boundary condition

∂p

∂z
+ jkβs p = 0 on Γ, (5)

where βs = ρ0c0/Zs, with ρ0 as the acoustic fluid density. This boundary condition is known

as the homogeneous mixed Dirichlet-Neumann boundary condition or Robin boundary con-

dition. The acoustic impedance Zs to be implemented in this boundary condition is easily

measured, using the impedance tube method, for example. In addition, this impedance is

mainly used to derive the absorption coefficient of a porous layer backed by a rigid wall.

Rigid

wall

0z

v(0) Moving

wall

0z

v(0) vp

Coating

layer

Coating

layer

n

Γ

n

Γ

-L -L

(a) (b)

FIG. 2. Boundary condition: (a) static covered wall, (b) moving covered wall.

Let us now consider the covered wall moved by a harmonic velocity of magnitude vp (see

Fig. 2 (b)). As usually encountered in literature dealing with covered plates immersed in
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heavy fluid, the impedance applied to the boundary can be written in terms of the relative

velocity between the velocity of the wall vp and the normal component of the fluid velocity

at the fluid-porous interface as written in Eq. (1). This formulation involves a transfer of

energy from the moving wall to the acoustic medium through the covering and will thus be

denoted in this paper as the ”transfer impedance”.

By substituting the normal particle velocity v in Eq. (1) for Eq. (4), the associated

boundary condition is written as an inhomogeneous mixed boundary condition

−
∂p

∂z
+ jkβt p = jωρ0vp on Γ, (6)

where βt = ρ0c0/Zt. The source component on the right hand side of Eq. (6) appears because

the impedance is expressed in terms of the wall velocity vp. As a consequence, it may be

difficult to measure the impedance, although it is usually considered as experimental data.

However, in most of the applications met in the literature which involve porous coverings,

the acoustic impedance Zs characteristic of Eq. (5) is also used in Eq. (6) instead of Zt.

This may be explained by the fact that only Zs is easily obtained by experiment. However,

substituting Zt for Zs may give an inaccurate estimation of the acoustic pressure generated

in the domain Ω. This is illustrated in the following, first, by deriving both impedances

with a one-dimensional model based on Biot’s theory, and then, by implementing these

impedances in a radiation problem of a covered piston.

B. Derivation of the acoustic impedance for a locally reacting porous material

To derive the transfer impedance Zt (Eq. 1), it is necessary to calculate the acoustic

pressure and porous surface particle velocity induced by the wall movement vp. As a result

of the ”locally reacting” assumption, a simple one-dimensional model may be used. It

assumes that only plane waves propagate in the z direction. It is interesting to note that

this model is equivalent to the Transfer Matrix Method4,15(TMM) where the multilayer was

excited by plane waves with normal incidence.

The theoretical one-dimensional model of the porous layer is based on Biot’s theory4,14

7



to take into account vibration of both solid and fluid phases induced by the wall vibration.

According to Biot’s theory two longitudinal waves can propagate at the same time in both

phases. The one mainly supported by the frame is called the frame-borne wave and the one

mainly supported by the saturating fluid is called the airborne wave4. A rotational wave

may also be supported by the frame but it is not excited in the case of a one-dimensional

problem. The motion of the poroelastic media is described by the macroscopic displacement

of the solid and fluid phases represented by the scalars us and uf respectively. Four waves

contribute to the displacement of one fluid or solid particle: two waves propagating in the z

direction and two waves propagating in the −z direction (see Fig. 2(b)). Since the transfer

impedance will be applied to a piston radiating in an infinite half space, we consider only one

acoustic wave propagating from the porous interface to the semi-infinite acoustic domain.

This assumption allows us to use the simple relation between acoustic pressure and particle

velocity on the porous surface: p(0)/v(0) = Z0, where Z0 is the characteristic impedance of

the acoustic fluid.

The boundary conditions at the fluid-porous interface (z = 0) are: continuity of the

normal stress in the solid and fluid phases with the external pressure

σs
z(0) = −(1 − φ)p(0), (7)

σf(0) = −φp(0), (8)

where φ is the porosity of the porous material, and continuity of the total flow

jω
[

(1 − φ)us(0) + φuf(0)
]

= v(0). (9)

At z = −L the velocity of the fluid and the velocity of the frame are both equal to the

wall velocity

jω us(−L) = jω uf(−L) = vp. (10)

From equations (7-10), it is possible to calculate amplitude of the five waves and derive the

transfer impedance.

8



The surface impedance Zs is derived using the same formalism with the appropriate

boundary conditions. In this configuration, an acoustic plane wave hit the porous layer

at z = 0 and Eq. (7-9) are used to express the continuity of stress and total flow at this

interface. On the surface of the porous layer in contact with the backing, the displacement

of the air and the frame are equal to zero,

us(−L) = uf(−L) = 0. (11)

The impedances Zs and Zt are derived for two kinds of porous materials, the character-

istics of which are listed Table I.

TABLE I. Properties of the porous materials.

Porous A B

Thickness: L (mm) 18.9 29

Air flow resistivity: σ (N s/m4) 57 000 105 000

Porosity: φ 0.97 0.95

Tortuosity: α∞ 1.54 1

Viscous length: Λ (µm) 24.6 35.1

Thermal length: Λ′ (µm) 73.8 105.3

Skeleton density: ρ1 (kg/m3) 46 17

Young’s Modulus at 5 Hz: E (kPa) 214 1.4

Structural loss factor at 5 Hz: η 0.115 0.1

Poisson’s ratio: ν 0.3 0

Material A is a foam layer with a stiff skeleton and material B is a light fibrous layer with

a very soft skeleton, both fairly resistive to airflow. Fig. 3 and Fig. 4 show the simulation

of the transfer impedance Zt and the surface impedance Zs for both materials.

When the wall is covered with material A (Fig. 3), it appears that the impedances Zt and

Zs are similar as far as 500 Hz. Above this frequency, the real part of the transfer impedance
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FIG. 3. Material A: real and imaginary part of the (- -) surface impedance Zs and (—)
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FIG. 4. Material B: real and imaginary part of the (- -) surface impedance Zs and (—)

transfer impedance Zt.

becomes negative. Now, if the wall is covered with material B (Fig. 4), the imaginary part

of both impedances is seen to be similar in the entire frequency range. However, the real

parts are completely different, the real part of the transfer impedance being negative in the

whole frequency range.
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C. Discussion

For a better understanding, the vibratory behavior of the porous layers (A and B) is

investigated for both kinds of excitation (depicted in Fig. 2).

Let us first consider the case of material A attached to the moving wall. Fig. 5(a) (solid

curve) shows the velocity ratio between the frame velocity at the air-porous interface and

the wall velocity vp at z = −L. In the low frequency range, the velocity ratio is equal to one

(0 dB), i.e. the material follows the wall movement and its thickness remains constant. At

higher frequencies (up to 500 Hz), the thickness of the porous layer does not remain constant

during excitation and the velocity ratio reaches a maximum around 1100 Hz. Fig. 6(a)

shows that this maximum appears around the first quarter-wavelength resonance frequency

fr corresponding to the frame-borne wave: the Biot frame-borne wavelength is four times

the layer thickness L. This resonance frequency may be approached by simply considering

the properties of the frame in vacuo16:

fr ≈
1

4L

√

E (1−ν)
(1+ν)(1−2ν)

ρ1
, (12)

where L is the thickness, E, ν and ρ1 are respectively the Young modulus, the Poisson

ratio and the density. For the given parameters (see Table. I), fr is evaluated at 1047

Hz for material A and it is observed at around 1100 Hz in Fig. 6(a). Considering next

the static wall configuration, Fig. 5(a) (dashed curve) shows the ratio between the frame

velocity at the air-porous interface and the velocity of the acoustic fluid v(0) at z = 0.

The low velocity ratio amplitude in the entire frequency band shows that the frame of the

layer can be considered motionless, even at the resonance frequency of the frame. From

the observations carried out in the low frequency range, it is possible to conclude that the

acoustic behavior of material A, which is due to the fluid movement in the pores, is similar

for both configurations because there is negligible deformation in the thickness of the layer.

The frame’s thickness tends to be constant at low frequencies because the wavelength of the

frame-borne wave is long compared to the thickness of the layer as seen in Fig. 6(a). This

explains the similarities observed below 500 Hz between the impedances Zs and Zt. However,
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at higher frequencies, the vibratory behavior of the porous frame exerts a greater influence

on the acoustical behavior of the layer and it is different for both configurations: the frame

of the layer is excited much more by mechanical loading than by acoustical loading.

Let us now consider now the configuration in which the wall is covered with material B.

If the source is the wall vibration (Fig. 5(b) solid curve), it is seen that the frame follows

the wall movement at low frequencies. In the mid frequency range, a slight increase in the

velocity ratio is observed, related in this case to the first λ/4 resonance of the airborne wave
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(see Fig. 6(b)). At higher frequencies, the velocity ratio decreases until it reaches −20 dB

at 2400 Hz which means that the frame tends to become motionless at the surface of the

layer. Thus, material B allows a better decoupling between the vibration of the wall and the

external media than material A because the relative velocity between both phases is greater.

In the still wall configuration (Fig. 5(b) dashed curve) at low frequencies, it is seen that the

ratio of the velocity of the frame at the air-porous interface to the velocity of fluid particle

is close to 0 dB. This means that the airflow drags the fibers and induces a deformation in

the thickness of the fibrous layer. At higher frequencies, the velocity ratio decreases and the

frame also tends to become motionless, but at a slower rate than in case of the moving wall.

To sum up, the surface impedance Zs is close to the transfer impedance Zt in a restrictive

frequency range where the frame can be considered ”rigid” for both static and moving

backing configurations. This occurs when the frame-borne wavelength is greater than the

porous layer thickness. In this paper, this only applies to material A below 500 Hz.

III. ACOUSTIC RADIATION OF A COVERED PISTON

In order to compare simulations with experimental results, the acoustic radiation of a

circular piston covered with a porous layer and set in an infinite baffle is investigated. The

aim is to illustrate the consequences of using the surface impedance Zs instead of the transfer

impedance Zt in an inhomogeneous mixed boundary condition.

A. Theory

The radiation efficiency factor σR is used to characterize the acoustical effect of the

covering. It is defined as the ratio of the radiated acoustic power, denoted as W , over the

vibratory power

σR =
W

ρ0c0 SP
|vp|2

2

, (13)

where SP is the piston surface, ρ0 and c0 are the ambient density and velocity of sound in

air, and vp is the amplitude of the piston velocity. The radiated acoustic power W can be
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derived by integrating the farfield acoustic intensity I(~r) expressed in spherical coordinates

(r, θ, ϕ) over a hemisphere of radius r,

W =

∫ 2π

0

∫ π/2

0

I(~r)r2 sin θdθdϕ. (14)

Calculus of the intensity uses the asymptotic form of the far field pressure p(~r) as:

I =
|p(~r)|2

2 ρ0c0

. (15)

Mangulis9,10 and Feit et al.17 have investigated the pressure radiated from a rigid piston

set in a nonrigid baffle. A similar approach is presented in the following. However, since

we are interested in the influence of the covering applied to a moving structure, the baffle is

taken as being perfectly reflecting.

Let us consider a circular piston in the infinite rigid baffle at z = 0 (see Fig. 7). The

surface of the piston is denoted by SP , and the surface of the baffle by SB. In the acoustic

domain, the pressure p is a solution of the harmonic Helmholtz equation (Eq. 3). The

boundary conditions are: Sommerfeld condition

lim
r→∞

r

(

∂p

∂r
+ jkp

)

= 0, (16)
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homogeneous Neumann condition on SB

∂p

∂z
= 0, (17)

and inhomogeneous mixed condition on SP

−
∂p

∂z
+ jkβt p = jωρ0vp, (18)

where βt = ρ0c0/Zt and Zt is the transfer impedance of Eq. (1) expressed on the surface of

the covering.

The pressure field is derived using the surface integral equation. The Green function (at

z = 0) chosen to satisfy the Sommerfeld boundary condition and the boundary condition

∂G

∂z
= 0 (19)

on both SB and SP is

G(~r, ~r0) =
e−jk|~r−~r0|

2π|~r − ~r0|
. (20)

Next, the solution of Eq. (3) subjected to the specified boundary conditions is given by

p(~r) = jωρ0

∫

SP

v(~r0)G(~r, ~r0)dSP, (21)

where v is the fluid velocity at the fluid-porous interface. This velocity v can be expressed in

terms of the piston velocity vp using the boundary condition of Eq. (18). Firstly, the normal

derivative of the acoustic pressure is replaced by the particle velocity using Eq. (4):

jωρ0v + jkβt p = jωρ0vp. (22)

Then, a radiation condition at the fluid-porous interface is used to write the acoustic pressure

in terms of the particle velocity, Zrad = p/v. Note that, since the plane wave approximation

is used in the porous model to describe wave propagation (see Sec. II.B), the acoustic

pressure is related to fluid velocity by the impedance of the acoustic fluid Z0. Furthermore,

by definition, piston velocity vp is uniform on Sp.

Eq. (21) can then be rewritten in the following form:

p(~r) = jωρ0
Zt

Zt + Zrad

∫

SP

vp G(~r, ~r0)dSP. (23)
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This gives the relation between the farfield pressure radiated by the bare system p′(~r) and

by the covered system p(~r),

p(~r) =
Zt

Zt + Zrad

p′(~r) (24)

where p′(~r) is given by Morse and Ingard7 for a circular piston of radius a

p′(~r) = jkρ0c0 vp
e−jkr

2π r
πa2 2J1(ka sin θ)

ka sin θ
. (25)

The multiplicative term of Eq. (24) has no influence on the farfield directivity pattern. It

acts mainly as an harmonic magnitude correction due to the presence of the covering.

B. Experimental validation

Radiation efficiency measurements of a piston with and without covering were performed.

The flat piston was set in a rigid baffle (see Fig. 8) and radiated in an anechöıc room. The

excitation was performed using a shaker driven with a white noise signal. The piston is

honeycomb plate with a radius of 75 mm. Because this structure is extremely stiff and

light, its first natural frequency resonance are shifted above 2500 Hz. Two types of covering

materials were tested: a stiff foam layer 18.9 mm thick and a very soft fibrous layer 29 mm

thick. The properties of these materials are given in Table. I (see Sec. II.B). The viscoelastic

characteristics of the porous frames, Young’s modulus E and loss factor η, were measured

at low frequency using the quasi-static method18,19.

Shaker

PistonRigid baffle

Porous layer

Force 
sensor

Laser
Intensity

probe

FIG. 8. Experimental set-up schema to measure structure radiation efficiency.
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The vibratory power of the plate was determined from the quadratic normal velocity

measured at the piston surface by a laser vibrometer. The acoustic radiated power was

determined from intensity measurements on porous surface using an intensity probe made

from two 1/2 inch microphones 12 mm apart. The lateral dimensions of the piston are large

enough in relation to the thickness of the porous layer for the effect of the edges to be ignored.

Figure 9(a) shows the radiation efficiency measurement of the bare piston and the ra-

diation efficiency measurement of the piston covered with material A. Three distinct zones

are observed. In the low frequency range, the porous layer has little or no effect on the

radiation efficiency. In the mid frequency range, an amplification of the acoustic radiation

is observed around the first resonance frequency of the frame fr (Eq. 12). This phenomenon

which deteriorates the insulation efficiency of the covering has already been observed by

Harrison et al20 in the case of vibration reduction using insulating mounts. Above 2000 Hz,

the radiation efficiency decreases due to losses and frame decoupling.
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FIG. 9. Acoustic radiation efficiency of a bare and covered (material A) circular piston set

in a rigid baffle: (a) experiment; (b) simulation.

Figure 9(b) shows the simulated data when both the transfer impedance Zt, which
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FIG. 10. Acoustic radiation efficiency of a bare and covered (material B) circular piston set

in a rigid baffle: (a) experiment; (b) simulation.

describes properly the moving boundary condition, and the surface impedance Zs (see

Sec. II.A) are applied in the inhomogeneous mixed boundary condition (Eq. 18). There

is seen to be close agreement between the model including transfer impedance Zt (solid line)

and the measurements over the entire frequency range considered, i.e. the radiation peak is

predicted and a decrease is observed at higher frequencies. Note that the predicted radiation

peak due to the frame resonance is sharper than the experimental one because the porous

model only accounts for dissipations in one direction in the thickness of the porous layer.

Furthermore, constant viscoelastic properties E and η measured at 5 Hz are used in the

model, but are expected to increase at higher frequency18,21,22. Thus, with more appropriate

values of viscoelastic parameters, the simulated peak would be higher in frequency and lower

in amplitude.

Figure 10(a) shows the radiation efficiency measurement of the piston covered with

material B. It is seen that the same phenomena observed experimentally with material A

occur with material B. An increase in radiation occurs around 800 Hz due, in this case,

to the λ/4 airborne wave resonance in the thickness of the layer. At higher frequencies,

18



the radiation efficiency strongly decreases compared to the radiation of the bare piston.

The soft material B allows a better decoupling between the piston and the external media

than material A. Note that only the model including the impedance Zt closely agrees with

experimental data (see Fig. 10(b)).

In the frequency range where the covering has a significant effect, using Zs instead of Zt

is improper: the radiation peak is not predicted and the high frequency drop does not agree

with the experimental data.

IV. CONCLUSION

In this paper, the impedance to be applied to a moving structure covered with a porous

layer has been investigated. The well known surface impedance Zs which can easily be

measured in an impedance tube is often applied to vibrating structures to account for the

covering effects. However, it is shown that the impedance must be expressed in terms of

the base movement to account for the real behavior of the layer. This impedance, called

”transfer impedance” and denoted as Zt, is derived using Biot’s theory and compared to the

surface impedance. It is shown that these impedances are similar as long as the longitudinal

wave lengths are large compared to the layer thickness. In the case of a covered piston set

in a infinite rigid baffle, the acoustic radiation peak and the decrease at higher frequencies

due to the presence of the porous layer can only be predicted using the transfer impedance:

the surface impedance measured in an impedance tube is not suitable in this case.
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