A note on certain Kronecker coefficients

Laurent Manivel

To cite this version:

Laurent Manivel. A note on certain Kronecker coefficients. Proceedings of the American Mathematical Society, 2010, 138 (1), pp.1-7. hal-00323509

HAL Id: hal-00323509

https://hal.science/hal-00323509

Submitted on 22 Sep 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A NOTE ON CERTAIN KRONECKER COEFFICIENTS

L. MANIVEL

Abstract

We prove an explicit formula for the tensor product with itself of an irreducible complex representation of the symmetric group defined by a rectangle of height two. We also describe part of the decomposition for the tensor product of representations defined by rectangles of heights two and four. Our results are deduced, through Schur-Weyl duality, from the observation that certain actions on triple tensor products of vector spaces, are multiplicity free.

1. Introduction

Irreducible complex representations of the symmetric group \mathcal{S}_{n} are well known to be indexed by partitions of n in a natural way (see e.g. Md, I.7). We will denote by [λ] the representation associated to the partition λ. A major unsolved problem is to find a general rule for the tensor product $[\lambda] \otimes[\mu]$ of two such representations. Equivalently, one would like a general rule for the computation of the Kronecker coefficients, which are defined as the multiplicities appearing in the formula

$$
[\lambda] \otimes[\mu]=\bigoplus_{\nu} k_{\lambda \mu \nu}[\nu] .
$$

In the setting of algebraic complexity theory, a specific instance of this general problem has been put to the fore: can one compute the tensor product with itself, of an irreducible complex representation of the symmetric group defined by a rectangle partition? (see [BKMLW] for an overview). If the rectangle has height one this is pretty obvious, since the corresponding representation is the trivial one. In this note we give an answer for the next case, that of a rectangle of height two. (Note that a rectangle of width two would lead exactly to the same answer, since one can pass from a partition to the dual one, in terms of representations of the symmetric group, simply by the product with the sign representation.)

Our main result is the following, where the length $\ell(\lambda)$ of a partition λ is the number of its non zero parts :

Theorem 1. For any integer n, the tensor product $[n, n] \otimes[n, n]$ is multiplicity free. Its decomposition is

$$
[n, n] \otimes[n, n]=\bigoplus_{\substack{\lambda \operatorname{even},|\lambda|=2 n \\ \ell(\lambda) \leq 4}}[\lambda] \oplus \bigoplus_{\substack{\mu \text { odd, }|\mu|=2 n \\ \ell(\mu)=4}}[\mu] .
$$

It would be interesting to understand the splitting of $[n, n] \otimes[n, n]$ into its symmetric and skew-symmetric parts.

To state our second result, we introduce the following notation:

$$
[\lambda] \otimes_{\ell}[\mu]=\bigoplus_{\ell(\nu) \leq \ell} k_{\lambda \mu \nu}[\nu]
$$

Theorem 2. For any integer n, the partial tensor product $[2 n, 2 n] \otimes_{3}[n, n, n, n]$ is multiplicity free. Its decomposition is

$$
[2 n, 2 n] \otimes_{3}[n, n, n, n]=\bigoplus_{\substack{\mid \lambda=2 n \\ \lambda_{2}+\lambda_{3}-\lambda_{1} \geq 0 \text { and even }}}[2 \lambda] .
$$

2. Schur-Weyl duality and multiplicity free actions

In order to prove the previous two theorems we will restate them in terms of representations of general linear groups, in a quite standard way. Recall the statement of the Schur-Weyl duality between representations of symmetric groups and of general linear groups: let V be any finite dimensional complex vector space, and n any integer. Then the $\mathcal{S}_{n} \times G L(V)$-module $V^{\otimes n}$ decomposes as

$$
V^{\otimes n}=\bigoplus_{|\lambda|=n}[\lambda] \otimes S_{\lambda} V,
$$

where $S_{\lambda} V$ denotes the Schur module of weight λ, which is an irreducible polynomial representation of $G L(V)$. A straightforward consequence is that, for three vector spaces U, V, W and three partitions λ, μ, ν of the same integer n, the multiplicity of $S_{\lambda} U \otimes S_{\mu} V \otimes$ $S_{\nu} W$ inside $S^{n}(U \otimes V \otimes W)$ is equal to the Kronecker coefficient $k_{\lambda \mu \nu}$. In particular, if U and V have respective dimensions $d u$ and $d v$, with $(u, v)=1$, we deduce that

$$
\operatorname{Sym}(U \otimes V \otimes W)^{S L(U) \times S L(V)}=\bigoplus_{n \geq 0} \bigoplus_{|\lambda|=n u v} k_{(n v)^{u},(n u)^{v}, \lambda} S_{\lambda} W .
$$

Here $(n v)^{u}$ denotes the rectangular partition with u parts all equal to $n v$, so that the corresponding Schur module of U consists of $S L(U)$-invariants. This shows that Kronecker coefficients involving rectangular partitions are closely related to invariant theory. Indeed our two theorems above will be translated into the statements that two invariant algebras $\operatorname{Sym}(U \otimes V \otimes W)^{S L(U) \times S L(V) \times N}$ are polynomial algebras, where N is a group of strictly upper triangular matrices in $S L(W)$.

Note that the complete invariant algebra $\operatorname{Sym}(U \otimes V \otimes W)^{S L(U) \times S L(V) \times S L(W)}$ is then also a polynomial algebra. This happens when the dimensions of the three spaces are either $(n, 2,2),(2,3,3),(2,3,4)$ or $(2,3,5)$. In the terminology of Ka], these cases correspond to θ-groups defined by the triple nodes of the Dynkin diagrams of type D_{n+2}, E_{6}, E_{7} and E_{8}. The two cases we examine in this note are thus related to D_{6} and E_{7}, respectively.

As is well known, multiplicity free actions of reductive groups can be detected by the existence of an open orbit for a Borel subgroup. We use this principle in the following setting: let G and H be two reductive groups with finite dimensional representations V and W. Let B denote a Borel subgroup of H and N its unipotent radical. Suppose that $G \times B$ acts on $V \otimes W$ with an open orbit \mathcal{O}. Let X_{1}, \ldots, X_{r} denote the boundary components of \mathcal{O}, that is, the irreducible hypersurfaces in its complement. Applying [B], Proposition 3 of Chapter 3, we are lead to the following conclusions:

- X_{1}, \ldots, X_{r} have equations f_{1}, \ldots, f_{r} which are semi-invariants of B with linearly independant weights μ_{1}, \ldots, μ_{r}; in particular r cannot exceed the rank of H;
- the algebra $\mathbb{C}[V \otimes W]^{G \times N}$ is a polynomial algebra over f_{1}, \ldots, f_{r}.

That f_{1}, \ldots, f_{r} are semi-invariants of B of weights μ_{1}, \ldots, μ_{r} means that $f_{i}(b x)=\mu_{i}(b) f_{i}(x)$ for all $x \in V \otimes W$ and $b \in B$. Moreover, as an H-module, the algebra of G-invariant
functions on $V \otimes W$ is multiplicity-free:

$$
\mathbb{C}[V \otimes W]^{G}=\bigoplus_{\mu \in \mathbb{Z}_{+} \mu_{1}+\cdots+\mathbb{Z}_{+} \mu_{r}} W_{\mu},
$$

if W_{μ} denotes the irreducible H-module of highest weight μ. Indeed, such a component of $\mathbb{C}[V \otimes W]^{G}$ can be detected by its one-dimensional subspace of N-invariants.

In order to prove our two theorems, we will therefore just need to prove that the corresponding actions have open orbits, and to identify the boundary components.

3. Proof of Theorem 1

Let U and V be two-dimensional vector spaces.
Lemma 1. Consider the action of $S L(U) \times S L(V)$ on the flag variety $\mathcal{F}(U \otimes V)$. The generic isotropy group of this action is a product of \mathbb{Z}_{2} by a quaternion group.
Proof. Consider a general flag $W_{1} \subset W_{2} \subset W_{3} \subset U \otimes V$. The projective line $\mathbb{P} W_{2} \subset$ $\mathbb{P}(U \times V)$ meets the quadric $Q=\mathbb{P} U \times \mathbb{P} V$ in two general points, which means that W_{2} has a basis of the form $u_{0} \otimes v_{0}, u_{1} \otimes v_{1}$, where u_{0}, u_{1} is a basis of U and v_{0}, v_{1} is a basis of V. Multiplying if necessary, one of these vectors by a scalar, we may suppose that W_{1} is the line in W_{2} generated by $u_{0} \otimes v_{0}+u_{1} \otimes v_{1}$. Finally, W_{3} is the kernel of a general linear form ϕ vanishing on W_{2}. Since in terms of the dual basis, $W_{2}^{\perp}=\left\langle u_{0}^{\vee} \otimes v_{1}^{\vee}, u_{1}^{\vee} \otimes v_{0}^{\vee}\right\rangle$, we can suppose that $\phi=u_{0}^{\vee} \otimes v_{1}^{\vee}-u_{1}^{\vee} \otimes v_{0}^{\vee}$. This means that W_{3} is generated by W_{2} and $u_{0} \otimes v_{1}+u_{1} \otimes v_{0}$.
Now it is straightforward to compute the stabilizer of our flag explicitely, and to identify it with the product of \mathbb{Z}_{2} by a quaternion group.

In fact the only important thing to us is that this stabilizer is finite, because of the following corollary. Let W be a four-dimensional vector space, and B a Borel subgroup in $G L(W)$.
Corollary 1. The group $S L(U) \times S L(V) \times B$ has an open orbit in $U \otimes V \otimes W$.
Proof. Consider a tensor $T \in U \otimes V \otimes W$ as a morphism $\phi_{T}: W^{\vee} \rightarrow U \otimes V$. For a generic T this morphism is injective and maps the flag defining B (or rather the orthogonal flag) to a generic flag in $U \otimes V$. By Lemma $1, S L(U) \times S L(V)$ has an open orbit in the flag variety $\mathcal{F}(U \otimes V)$. And once the image flag is fixed, it is clear that B acts transitively on the set of compatible injections.

As we explained above, the next step is to describe the boundary components of the open orbit. Let us denote by $F=\left(W_{1} \subset W_{2} \subset W_{3} \subset W\right)$ the flag whose stabilizer is the Borel subgroup B of $G L(W)$, and the orthogonal flag in W^{\vee} by F^{\perp}.

As in the proof of the Lemma we denote by $\phi_{T}: W^{\vee} \rightarrow U \otimes V$ the morphism defined by the tensor $T \in U \otimes V \otimes W$. We can describe the boundary components of the open orbit in $U \otimes V \otimes W$ by the following codimension one conditions:
(1) ϕ_{T} is not an isomorphism. The corresponding boundary component X_{1} is the complement of the $S L(U) \times S L(V) \times G L(W)$-orbit. It is just the quartic hypersurface of equation $f_{1}=\operatorname{det} \phi_{T}$. This equation is a weight vector in $S_{22} U^{\vee} \otimes S_{22} V^{\vee} \otimes \wedge^{4} W^{\vee}=$ $\wedge^{4}(U \otimes V)^{\vee} \otimes \wedge^{4} W^{\vee} \subset S^{4}(U \otimes V \otimes W)^{\vee}$. This means that the weight μ_{1} of f_{1} is, written as a sequence of three partitions, $\mu_{1}=(22,22,1111)$.
(2) $\phi_{T}\left(\mathbb{P} W_{3}^{\perp}\right)$ belongs to the quadric Q. The corresponding boundary component X_{2} is defined by the condition that $q\left(\phi_{T}\left(w^{\vee}\right)\right)=0$, if w^{\vee} generates W_{3}^{\perp} and q
denotes an equation of Q. Thus an equation f_{2} of X_{2} is a highest weight vector in $\wedge^{2} U^{\vee} \otimes \wedge^{2} V^{\vee} \otimes S_{2} W^{\vee}$. It has degree two and weight $\mu_{2}=(11,11,2)$.
(3) $\phi_{T}\left(\mathbb{P} W_{2}^{\perp}\right)$ is a tangent line to Q. This is the case if and only if $\phi_{T}\left(W_{2}^{\perp}\right)$ is generated by vectors of the form $u_{0} \otimes v_{0}$ and $u_{0} \otimes v_{1}+u_{1} \otimes v_{0}$. Considered as a line ℓ in $\wedge^{2} W^{\vee}$, this means that W_{2}^{\perp} is mapped by ϕ_{T} to the line generated by $u_{0}^{2} \otimes\left(v_{0} \wedge\right.$ $\left.v_{1}\right) \oplus\left(u_{0} \wedge u_{1}\right) \otimes v_{0}^{2}$ in $\wedge^{2}(U \otimes V)=S^{2} U \otimes \wedge^{2} V \oplus \wedge^{2} U \otimes S^{2} V$. Since the map $S^{2}\left(S^{2} U\right) \rightarrow S_{22} U$ kills any tensor of the form $\left(u^{2}\right)^{2}$, we deduce that ϕ_{T} maps ℓ^{2} to zero in $S_{22} U \otimes S_{22} V$. This implies that an equation f_{3} of the corresponding boundary component X_{3} is a highest weight vector in $S_{22} U^{\vee} \otimes S_{22} V^{\vee} \otimes S_{22} W^{\vee}$. It has degree four and its weight is $\mu_{3}=(22,22,22)$.
(4) $\phi\left(\mathbb{P} W_{1}^{\perp}\right)$ is a tangent plane to Q. This is similar to the case of X_{2}, up to duality. A hyperplane H in $U \otimes V$ defines a line in $\wedge^{3}(U \otimes V)=U \otimes V \otimes\left(\wedge^{2} U \otimes \wedge^{2} V\right)$, hence a line ℓ in $U \otimes V$ (the orthogonal line with respect to the polarity defined by Q). This hyperplane is tangent to the quadric Q if and only if ℓ is contained in Q. This means that X_{4} is defined by the condition that the composition

$$
S^{2}\left(\wedge^{3} W^{\vee}\right) \rightarrow S^{2}\left(\wedge^{3}(U \otimes V)\right)=S^{2}(U \otimes V) \otimes\left(\wedge^{2} U \otimes \wedge^{2} V\right)^{2} \rightarrow\left(\wedge^{2} U \otimes \wedge^{2} V\right)^{3}
$$

vanishes. Hence an equation f_{4} of X_{4} is a highest weight vector in $S_{33} U^{\vee} \otimes S_{33} V^{\vee} \otimes$ $S_{222} W^{\vee}$. It has degree six and weight $\mu_{4}=(33,33,222)$.
The four weights of $f_{1}, f_{2}, f_{3}, f_{4}$ are linearly independent. Since the rank of $G L(W)$ is four, we must have found all the boundary components and we can conclude that

$$
\mathbb{C}[U \otimes V \otimes W]^{S L(U) \times S L(V) \times N}=\mathbb{C}\left[f_{1}, f_{2}, f_{3}, f_{4}\right],
$$

where N denotes the unipotent radical of B. This implies that $\mathbb{C}[U \otimes V \otimes W]$ contains a copy of $S_{n, n} U^{\vee} \otimes S_{n, n} V^{\vee} \otimes S_{\lambda} W^{\vee}$ if and only if λ is a non negative linear combination of the components of $\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4} on W, that is, the weights (1111), (2), (22) and (222). Moreover, in that case the multiplicity is equal to one.

Rephrasing this result via Schur-Weyl duality we get the statement of Theorem 1.

4. Proof of Theorem 2

For the proof of the next Lemma we need to recall briefly the principle of castling transforms, introduced by Sato and Kimura [SK]. Consider a G-module M of dimension m, and a vector space N of dimension n. Suppose that $m>n$. A tensor T in $M \otimes N$ can be identified to a linear map $\phi_{T}: N^{\vee} \rightarrow M$. If ϕ_{T} is injective, in particular for a generic T, the stabilizer of T in $G \times G L(N)$ is canonically isomorphic to the stabilizer in G of the image of ϕ_{T}, considered as a point of the Grassmannian $G(n, M)$. But this Grassmannian is isomorphic with $G\left(n-m, M^{\vee}\right)$, and the generic stabilizer of the action of $G \times G L(N)$ on $M \otimes N$ is therefore isomorphic with the generic stabilizer of the action of $G \times G L(P)$ on $M^{\vee} \otimes P$, for P a vector space of dimension $m-n$. Replacing $M \otimes N$ by $M^{\vee} \otimes P$ is precisely what Sato and Kimura call a castling transform. In case $M \otimes N$ is prehomogeneous and $m<2 n, M^{\vee} \otimes P$ is also prehomogeneous but of smaller dimension.

Let U, V, W be complex vector spaces of respective dimension two, four and three. Let B be a Borel subgroup of $G L(W)$.
Lemma 2. The group $S L(U) \times S L(V) \times B$ has an open orbit in $U \otimes V \otimes W$.
Proof. We claim that the generic isotropy group of the action of $S L(U) \times S L(V) \times G L(W)$ on $U \otimes V \otimes W$ is a copy of $S L_{2}$, up to a finite group. To check this, we oberve that $U \otimes V \otimes W$ is, according to the terminology of Sato and Kimura, a non-reduced prehomogeneous
vector space, which means that it is related to smaller prehomogeneous spaces of the same type by certain castling transforms.

In order to apply this process to the case we are interested in, we first observe that the generic stabilizers of $S L(U) \times S L(V) \times G L(W)$ and $S L(U) \times G L(V) \times S L(W)$ on $U \otimes V \otimes W$ are equal, up to a finite group. Applying a castling transform with $G=S L(U) \times S L(W)$ acting on $U \otimes W$, we deduce that this generic stabilizer is the same as the generic stabilizer of the action of $S L(U) \times G L(Q) \times S L(W)$ on $U^{\vee} \otimes Q \otimes W^{\vee}$, where Q has dimension $2 \times 3-4=2$. Up to a finite group, this is also the generic stabilizer of the action of $S L(U) \times S L(Q) \times G L(W)$, and after a new castling trasform, we deduce that this is also the generic stabilizer of the action of $S L(U) \times S L(Q) \times G L(R)$ on $U \otimes Q^{\vee} \otimes R$, where now R has dimension $2 \times 2-3=1$. Let us identify U and Q, which are both two-dimensional. Then it is easy to see that the identity map $I \in U \otimes Q^{\vee}$ has generic stabilizer, so that this generic stabilizer is just a copy of $S L_{2}$ embedded diagonally in $S L(U) \times S L(Q)$.

We can keep track of this generic stabilizer along our two castling transforms. We start from the point in $U \otimes U^{\vee}=\operatorname{End}(U)$ defined by I. The corresponding point in $U^{\vee} \otimes U \otimes W^{\vee}$, where W is identified with the orthogonal to I in $\operatorname{End}(U)$ (the hyperplane $E n d_{0}(U)$ of traceless matrices), is just the graph of the embedding of $E n d_{0}(U)$ in $\operatorname{End}(U)$. Its isotropy is the image of $S L(U)$ in $S L\left(U^{\vee}\right) \otimes S L(U) \otimes S L\left(W^{\vee}\right)$ given by the natural action of $S L(U)$ on each of the three spaces. Now we make our second castling trasform to get a point in $U \otimes V \otimes W$, where V is now identified with the kernel of the natural evaluation map $E n d_{0}(U) \otimes U \rightarrow U$. The corresponding stabilizer is again a copy of $S L(U)$ embedded in $S L(U) \otimes S L(V) \otimes S L(W)$ through its natural action on U, V and W.

We can now check our claim: it can be translated into the assertion that the image of $S L(U)$ into $G L(W)$, where $W=\operatorname{End}_{0}(U)$, does not intersect a general Borel subgroup. But this is straightforward: such a Borel subgroup is defined by a line, generated by a generic traceless matrix m, and a hyperplane containing it, which can be defined as the orthogonal to a generic traceless matrix n orthogonal to m. For an element of $S L_{2}$, preserving m and n forces it to belong to the intersection of two tori, and this intersection is finite.

Now we identify in $U \otimes V \otimes W$ the boundary components of the open orbit of $S L(U) \times$ $S L(V) \times B$. They can be described in terms of the following codimension one conditions on a tensor $T \in U \otimes V \otimes W$, which will be best expressed in terms of certain auxiliary morphisms.
(1) First recall that $S L(U) \times S L(V) \times G L(W)$ has itself an open orbit whose complement is an irreducible hypersurface X_{1} of degree 12 Ka. An equation f_{1} of this hypersurface can be obtained as follows. Consider the morphism $\psi^{T}: U^{\vee} \otimes W^{\vee} \rightarrow V$ induced by T. Taking is second wedge power, we get an induced map

$$
\Psi^{T}: \wedge^{2} U^{\vee} \otimes S^{2} W^{\vee} \hookrightarrow \wedge^{2}\left(U^{\vee} \otimes W^{\vee}\right) \xrightarrow{\wedge^{2} \psi^{V}} \wedge^{2} V
$$

between two vector spaces of the same dimension, six. We can thus let $f_{1}=\operatorname{det} \Psi^{T}$, an invariant of degree 12 and weight $\mu_{1}=(66,3333,444)$.
(2) Restricting ψ^{T}, we can define a morphism

$$
\psi_{1}^{T}: U \otimes W_{1}^{\perp} \rightarrow V
$$

between two vector spaces of the same dimension, four. We can thus define another boundary component X_{2} by the condition that this is not an isomorphism. An equation of this hypersurface is $f_{2}=\operatorname{det} \psi_{1}^{T}$, a semi-invariant of degree 4 and weight $\mu_{2}=(22,1111,22)$.
(3) To describe our next boundary component, we need to recall that there exists an invariant non-degenerate skew-symmetric form of $S^{3} U$, or equivalently an equivariant morphism

$$
\omega: \wedge^{2}\left(S^{3} U\right) \rightarrow\left(\wedge^{2} U\right)^{3}
$$

Now consider the morphism

$$
\phi_{T}: \wedge^{3} W^{\vee} \longrightarrow S^{3} U \otimes \wedge^{3} V \simeq S^{3} U \otimes \wedge^{4} V \otimes V^{\vee}
$$

induced by T. (Note that $\wedge^{3} W$ and $\wedge^{4} V$ are both one dimensional.) Taking its square, we get a map
$\Phi_{T}: S^{2}\left(\wedge^{3} W^{\vee}\right) \rightarrow \wedge^{2}\left(S^{3} U\right) \otimes\left(\wedge^{4} V\right)^{2} \otimes \wedge^{2} V^{\vee} \rightarrow\left(\wedge^{2} U\right)^{3} \otimes\left(\wedge^{4} V\right)^{2} \otimes \wedge^{2} V^{\vee}$,
where the last arrow is induced by ω. The image of Φ_{T} defines, up to scalar, a skewsymmetric form ω_{T} on V. On the other hand, we can restrict the morphism Ψ^{T} to the line $\wedge^{2} U^{\vee} \otimes S^{2} W_{2}^{\perp} \subset \wedge^{2} U^{\vee} \otimes S^{2} W^{\vee}$. Its image is, up to scalar, an element of Ω_{T} of $\wedge^{2} V$. We can thus define a boundary component X_{3} by the condition that the natural pairing $\left\langle\omega_{T}, \Omega_{T}\right\rangle=0$. An equation f_{3} of this hypersurface has degree 8 and weight $\mu_{3}=(44,2222,422)$.
Since we have find three boundary components and $\operatorname{dim}(U \otimes V \otimes W)-\operatorname{dim}(S L(U) \times$ $S L(V) \times B)=3$, we must have found all the boundary components and we can conclude that

$$
\mathbb{C}[U \otimes V \otimes W]^{S L(U) \times S L(V) \times B}=\mathbb{C}\left[f_{1}, f_{2}, f_{3}\right]
$$

The weights of f_{1}, f_{2}, f_{3} are independent, as expected, and we deduce that $\mathbb{C}[U \otimes V \otimes W]$ contains a component $S_{n, n} U \otimes S_{n, n} V \otimes S_{\lambda} W$ if and only if $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is a non negative linear combination of the components of μ_{1}, μ_{2} and μ_{3} on W, that is, (422), (444) and (422). Because of the identity

$$
\lambda=\frac{\lambda_{1}-\lambda_{2}}{2}(422)+\frac{\lambda_{3}+\lambda_{2}-\lambda_{1}}{4}(444)+\frac{\lambda_{2}-\lambda_{3}}{2}(22),
$$

this is equivalent to the conditions that λ be even and that $\lambda_{3}-\lambda_{1}-\lambda_{2}$ be a non negative multiple of four. Moreover, in that case the multiplicity is equal to one. Rephrasing this result via Schur-Weyl duality we get the statement of Theorem 2.

References

[Br] Brion M.: Invariants et covariants des groupes algébriques réductifs, in Théorie des invariants et Géométrie des variétés quotients, Travaux en cours 61, Hermann 2000.
[BKMLW] Buergisser P., Kumar S., Landsberg J.M., Manivel L., Weyman J.: Remarks on the MulmuleySohoni approach to $V P \neq V N P$, in preparation.
[Ka] Kac V.G.: Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190-213.
[Mc] Macdonald I.G.: Symmetric functions and Hall polynomials, Second edition, Oxford University Press 1995.
[SK] Sato M., Kimura T.: A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155.

