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ABSTRACT
Integrating high spatial resolution of functional magnetic res-
onance imaging (fMRI) and high temporal resolution of elec-
troencephalogram (EEG) is promising in simultaneous EEG
and fMRI analysis, especially for epileptic patients. The
EEG recorded inside an MR scanner is interfered with MR
artifacts. In this article, we propose new artifact reduction
approaches and compare them with the conventional artifact
reduction methods. Our proposed approaches are based on
generalized eigenvalue decomposition (GEVD) and median
filtering. The proposed methods are applied on experimen-
tal simultaneous EEG and fMRI recordings of an epileptic
patient. The results show significant improvement over con-
ventional MR artifact reduction methods.

1. INTRODUCTION

Although simultaneous acquisition of EEG and fMRI may
be essential for exploring the dynamics and localization of
neural activity, several artifacts interfere the resulting EEG.
These artifacts include: 1) MR artifacts, 2) RF pulse artifacts,
and 3) Balistocardiogram (BCG) artifacts. The MR artifact
is caused by the switching of the magnetic filed gradients
used in the image acquisition, which induces unwanted volt-
ages on the EEG recordings. The RF pulse artifact is due
to the time varying electromagnetic field pulses (RF pulses)
used for excitation in MRI recordings [1]. Although, the RF
pulse has a very high frequency (in the order of 10 to 100
megahertz); but it is nonlinearly rectified to low frequencies
(below 100Hz), within the EEG bandwidth. BCG artifact is
caused by the micro motions of head EEG leads and wires
within the static magnetic field. These motions are related to
the pulsatile blood-flow in the head.

Different methods have been proposed for removing MR
artifacts. Sparse component decomposition on the wavelet
and discrete cosine basis [2], blind source extraction (BSE)
followed by averaging-and-subtraction [3], and adaptive fi-
nite impulse response (FIR) filtering [4], are among these
methods. Grouiller et al. [5] have compared some common
methods such as image artifact reduction (IAR) [6], indepen-
dent component analysis (ICA), fMRI artifact slice template
removal (FASTR) [7], and filtering in the frequency domain
using the Fourier transform on simulated and real data. IAR
[6] is a conventional method based on subtraction of the aver-
aging artifact waveform followed by adaptive noise cancella-
tion (ANC). FASTR is the combination of principal compo-
nent analysis (PCA) and IAR. Among the compared methods

of [5], IAR was shown to be the most effective method. This
method is widely used for MR artifact removal in the litera-
ture.

In this article, we propose new approaches for MR arti-
fact reduction. The proposed methods are based on general-
ized eigenvalue decomposition (GEVD) [8], [9], [10], [11],
and median filtering. In fact, EEG signals having MR ar-
tifacts have both stationary and non-stationary properties at
different time scales. MR artifacts include temporal struc-
tures that can be considered stationary. On the other hand,
due to the switching of the magnetic field gradient, EEG con-
taminated with MR artifact is non-stationary in the time do-
main. In this work, two representations of MR artifact us-
ing this prior information have been utilized in an iterative
GEVD scheme, together with a median and low-pass filter to
extract the MR artifact. The results of the proposed method
are compared with the IAR method over real simultaneous
EEG and fMRI of epileptic patients.

The organization of the paper is as follows. Section
2, explains the GEVD and its application in source separa-
tion. The proposed MR artifact reduction approaches are pre-
sented in Section 3. Section 4 is devoted to the experimental
results by reporting the results and quantitative comparison
of the conventional IAR method and the proposed methods.
Concluding remarks are presented in Section 5.

2. REVIEW OF GENERALIZED EIGENVALUE
DECOMPOSITION

We assume zero-mean N-dimensional non-stationary obser-
vations x(t) that are mutually dependent in different N chan-
nels1. We are interested in linear mixtures of the form
y(t) = wT x(t) that satisfy some measure of signal separa-
bility. For this, we define the following cost function:

J(w) .=
Eθ{y(θ)y(θ + τθ )}

Et{y2(t)}
(1)

where Et{·} represents averaging over t, and θ and τθ are
respectively the time intervals and the time-varying lags that
are found from our a priori knowledge of the signal’s struc-
ture and non-stationarity. By maximizing this cost function,
we are looking for the y(t) with bounded energy and with a
maximal lagged correlation over specific time intervals (θ )
and time-lags (τθ ).

1Such signals can for example be the output of a linear process of the
form x(t) = As(t)+n where A ∈ RN×M



Equation (1) can be rewritten as follows:

J(w) =
wT Bxw
wTCxw

(2)

where
Cx

.= Et{x(t)x(t)T} (3)

and
Bx

.= Eθ{x(θ)x(θ + τθ )T} (4)

The matrix Cx is the covariance matrix of x(t), which is
known to be symmetric and positive definite. On the other
hand, the matrix Bx is not generally symmetric and we need
to make it symmetric (Bx← (Bx +BT

x )/2) for further use 2.
Equation (2) is in the form of the Rayleight quotient [11],

and its maximum value is achieved through the joint diago-
nalization of the matrix pair (Bx,Cx):{

W T BxW = Λ

W TCxW = I (5)

where Λ is a diagonal matrix containing real generalized
eigenvalues on its diagonal (in descending order), and W =
[w1, ...wN ] is the matrix containing the corresponding gen-
eralized eigenvectors as its columns. The input signals may
next be decomposed as follows:

y(t) = W T x(t) (6)

where y(t) = [y1(t), ...,yN(t)]T has decorrelated components,
with the first component maximizing defined quotient in (2).

3. PROPOSED MR ARTIFACT REDUCTION
APPROACHES

In Fig.1, a typical segment of EEG contaminated with MR
artifacts of two channels is depicted. MR artifacts are MR
scanner dependent. MR artifact of the MR scanner used for
our data are repeated with a period of three seconds, with two
seconds of activation in each period (while magnetic field
gradient was on). A closer look at the MR artifacts of each
period, shows sharp regular peaks with dominant high ampli-
tudes that are repeated every 62-63 samples (indicated with
circles in Fig.1). Each peak is also surrounded by several
smaller peaks.

In the previous section, we noticed that the components
extracted by GEVD are ranked according to an order that de-
pends on the statistics carried by the matrix Bx. The spatial
whiteness of the extracted components is guaranteed by the
diagonalization of Cx. Here, our objective is to use the above
mentioned properties of the MR artifact structure to form the
matrix Bx, such that it contains the statistical properties of
these artifacts. Therefore, since the yi(t) calculated from (6)
are sorted in descending order of their corresponding eigen-
values, the MR artifacts are expected to be most concentrated
in the first few components. In the following, two models of
MR artifact (Bx) using this prior information are presented.
a. First Statistical Measure

2Note that here we are not concerned by the non-positive definiteness
of Bx; since it is verified experimentally that most of the eigenvalues have
positive values and negative eigenvalues have significantly smaller absolute
values than the positive ones.

In the first approach, we first detect the dominant MR peaks
from an arbitrary channel. Due to the stationarity of these
peaks, a robust method for detecting the peaks is a matched
filter that uses a typical MR artifact segment as its template
filter. A window is considered around each sharp peak of MR
artifact. The resulted windowed segment is assumed to be
stationary. Hence the average of the correlation matrices of
windowed segments of two proceeding peaks can be a good
model of statistical properties of MR artifact. In other words
since the MR artifacts of different channels are rather reg-
ular, the samples that are equally distanced from each peak
are highly correlated with one another. We can therefore,
calculate the correlation between the windows surrounding
each peak as a statistical property of the MR artifacts. Car-
rying out this procedure over the different channels, i.e., by
considering each time sample of the different channels as an
N-dimensional vector, we can redefine the matrix Bx defined
in (4) as follows:

Bx1 = Eθ{x(θ)x(θ +∆pi)T} (7)

where ∆pi = pi+1− pi and θ ∈ {MR artifact time interval}.
pi is the location of the i-th sharp peak of the MR artifact in
the original data.
b. Second Statistical Measure

In the first model, the covariance matrix Bx1 was calculated
by direct vector-by-vector multiplication of the samples of
short windows of x(θ). According to Fig. 1, each of these
windows, consists of a high-amplitude MR artifact peak and
a few smaller peaks around it. Therefore, in the statistical
measure Bx1, each sample will have a contribution as strong
as its energy. In other words, the smaller peaks around the
dominant peaks of MR artifacts will have less influence on
the statistics of Bx1 and the GEVD procedure will make less
effort to remove such peaks from the input signal. However,
the strong and weak MR artifacts are somehow equally de-
structive in EEG analysis. We can therefore attempt in equal-
izing the peaks before the calculation of our statistical mea-
sure. This idea leads us to the following definition of the MR
artifact covariance matrix:

Bx2 = Eθ{[F(θ)⊗x(θ)][F(θ)⊗x(θ)]T} (8)

where the operator ⊗ represents sample-by-sample multipli-
cation, and θ ∈ {MR artifact time interval}. F(θ) is a col-
umn of the matrix including weighting function in each row.
The ad hoc weighting function equalizes the peak amplitudes

Figure 1: Peak detec-
tion and windowing on
MR artifact of EEG sig-
nal. Peaks are shown
with circles.

Figure 2: Weighting effect on
windowed segments. From top
to bottom, the window func-
tion, a typical windowed seg-
ment before and after weight-
ing.



of the windowed segments. Fig. 2 shows from top to bottom
one row of F(θ), a typical windowed segment and the corre-
sponding weighted windowed segment, respectively. Bx2 is
the average of weighted windowed segments energies.

3.1 Nonlinear Median Filtering
The GEVD procedure provides a means of transforming the
input data, into components that are ranked according to their
similarity with the MR artifacts. However, due to the linear-
ity of the transformation (6), the performance of this primary
stage is limited and it can not fully separate the MR arti-
facts from other components (including the EEG) except if
the contaminated EEG signal perfectly satisfies a linear mix-
ture (x = As + n), with a moderately low noise and a suf-
ficient number of observation channels. Here the model of
contaminated EEG signal is rather complex as proved by our
obtained results of applying linear ICA. Here we propose the
GEVD followed by a nonlinear denoising procedure that is
applied to the first D (D < N) components of the GEVD
outputs while keeping the rest of (N −D) components un-
changed. This nonlinear denoising may indeed be applied
to the original channels too (without the GEVD procedure)
that is our third proposed approach (Fig. 3.c); but in this
case we would not benefit from the mutual information of
the different channels. In fact, since the GEVD procedure
concentrates the energy of the MR artifacts in the first few
components, the EEG (non-MR artifact) components are less
influenced by the nonlinear filtering when we apply this filter
at the output of the GEVD procedure.

In this study, a two-step moving window median (MWM)
filter was used for nonlinear filtering. A theoretical study of
the MWM filter and its extensions may be found in [12]. The
first median filter highly attenuates the sharp peaks, while the
second one (with a wider window length) reduces the remain-
ing peaks and smoothes the results. As a rule of thumb, the
median filter window lengths should be wider than the width
of the MR artifacts. Therefore, with proper choice of median
filter width, peaks such as the MR artifacts are less likely to
pass the MWM filter and by subtracting the output of the sec-
ond MWM filter from the input signal, we can assure that the
MR artifact peaks are effectively removed, while the EEG
components are least influenced. The MWM filter is further
followed by a low-pass filter, to suppress the possible out of
band components introduced by the nonlinear MWM filter
and higher frequencies that are not interested in EEG analy-
sis. After applying the filtering procedure denoted above
(Median-LPF) to the first D components of GEVD, the D fil-
tered and (N−D) unchanged components are back-projected
to the input space using the inverse of the decomposing ma-
trix W T (Fig. 3.a). The preprocessed data, denoted by X in
Fig. 3, is the matrix including preprocessed EEG channels
in each row. Preprocessed data is contaminated EEG with
MR artifact without dc and linear trend. To detrend, the best
straight-line fit is removed from each processed channel seg-
ment.

3.2 Iterative Denoising
Up to this point, we have improved the input signal quality
by applying GEVD (using either Bx1 or Bx2), the nonlinear
filtering procedure, and the back-projection. This procedure
may be repeated in several iterations, each time over the out-
put of the previous run. This leads to a deflation procedure

that removes one (or more) dimensions of the MR artifacts
in each iteration and is repeated until the residual signals are
‘sufficiently clean’. For this, we need some measure of sig-
nal cleanness that can be used as the stopping criterion of the
iterative procedure. Due to the switching magnetic field gra-
dient, we propose to use the ratio between the signal energy
of the MR artifact time intervals (θ ) over the rest of data, i.e.
when the magnetic field gradient is off (θ̃ )):

C = Ech
{Eθ{x̂2

ch(θ)}
E

θ̃
{x̂2

ch(θ̃)}
}

(9)

where x̂(t) is the cleaned data of each channel in each itera-
tion and Ech{·} is averaging over channels. The iterative pro-
cedure is stopped when the normalized difference of clean-
ing criteria between two iterations is less than a predefined
threshold.

We hereby refer to this algorithm as Iterative GEVD. The
overall flowchart of this algorithm is depicted in Fig. 3.a.
Following, the two statistical measures defined in (7) and (8),
the iterative procedure can either be based on Bx1, which we
call Iterative GEVD-Similarities (IGS), or on Bx2, which we
call Iterative GEVD-Weighted (IGW). The flowcharts of IGS
and IGW are depicted in Fig. 3.b.

4. EXPERIMENTAL RESULTS

4.1 Data
The recordings were made in the 3T scanner (3T Bruker
BioSpin, Bruker Medizintechnik GmbH, Ettlingen, Ger-
many) utilizing an MR compatible EEG amplifier (SD32,
Micromed, Treviso, Italy) with 17 c-shaped electrodes po-
sitioned according to the 10/20 system (O1 and O2 were not
used for subjects comfort). The reference electrode was at
Oz. A Gradient-Echo Echo Planar Imaging (GE-EPI) se-
quence used for MR image acquisition [5]. The sampling
rate of EEG acquisition was 1024Hz. An anti-aliasing hard-
ware low-pass filter with cut-off frequency of 286.8Hz was
applied. EEG signals were calibrated with a square wave of
100µV utilizing an external calibrator plugged on all inputs.
The epileptic patient was required to keep eyes closed and
relax during the experiment.

4.2 Results
Initially, the data were preprocessed for DC and trend re-
moval. The three proposed approaches were applied on the

Figure 3: Flowchart of proposed MR artifact reduction al-
gorithms. (a) Iterative GEVD; (b) IGS and IGW, and (c)
Median-low-pass filtering. D is the number of first few com-
ponents in which the MR artifact is most amplified.



Figure 4: Comparison of methods in reducing MR artifact
from EEG signal. From up to bottom, contaminated EEG
signal with MR artifact, the processed signal by IGS, IGW,
Med-LPF, and IAR.

preprocessed data. For the first two approaches (IGS and
IGW), as explained before, the sharp peaks of the MR ar-
tifacts were detected using a matched filter (Fig. 1). Next,
Cx, Bx1 and Bx2 were calculated according to the procedures
explained in previous sections. In the IGS method Bx1 and
Cx were jointly diagonalized, while in the IGW approach Bx2
and Cx were jointly diagonalized. In each iteration of the pro-
posed procedure, the first D = 3 of the N = 15 components
extracted by GEVD, were denoised by the nonlinear MWM
filter. The choice of D was based on empirical study of the
output of the GEVD stage; the final results are not very sen-
sitive to the value of D > 3. In the nonlinear filtering step,
the first and second MWM window lengths used in the de-
noising were 20 and 40 samples (about 20ms and 40ms), re-
spectively, since the typical width of sharp MR artifact peaks
are about 20ms. The low-pass filter following the MWM fil-
ter was a first-order filter with a cut-off frequency of 45Hz,
which is close to the effective bandwidth of the EEG. Next,
the filtered and unchanged components were back-projected
using the inverse of the decomposing matrix. This procedure
was repeated until the normalized difference of the clean-
ing criteria defined in (9) between two consecutive iterations
became less than 0.001. This limit was typically reached
around 16 iterations. In Fig. 4, a typical segment of contam-
inated EEG and the results of IGS and IGW are shown. For
comparison, the results of the Median-LPF and IAR [6, 5]
are added in Fig. 4.

4.3 Evaluation Methods
Fig. 4, compares the proposed methods with the IAR method
presented in [6, 5]. It is necessary to define an objective
criterion for comparing the methods quantitatively. Since
there is no ground truth, measuring the performance of each
method is challenging. A first idea is to compare the sig-
nal with a reference which could be the signal acquired out
of scanner or the time segment without MR artifact. The
EEG signal inside and outside of MR scanner of a patient
even with the same electrode locations are not necessarily
similar. The EEG itself is very non-stationary in the time
domain, especially for epileptic patients, since the IEDs (In-
terictal Epileptiform Discharges) appear spontaneously and
the shape of IEDs are different. Due to this problem, the
EEG contaminated with MR artifact and cleaned signal were
compared. Comparable methods in the time domain were

Figure 5: Comparison of the PSDs. From up to bottom, PSD
of contaminated EEG signal, outer scanner EEG signal, and
the processed signal by IGS, IGW, Med-LPF, and IAR.

evaluated. The cleaned data were segmented around each
peak of the MR artifact. The similarity between each two
proceeding segments or all the segments was calculated. In
other words, the periodicity of the cleaned data around each
peak was measured. The cleaned data preserves the period-
icity under each peak if the artifact removal method has not
reduced MR artifact perfectly. In another method, the sim-
ilarity between cleaned and original data under each sharp
peak was measured. The cleaned data has some overshoots
under each peak when the artifact removal method has not
worked efficiently. However, since these methods of evalu-
ation were not consistent for different MR artifact removal
approaches, we compared spectral indexes of the EEG that
are known to be more consistent. The following three crite-
ria were defined for this purpose:

F1 = 10log10Ech{Ei{P̂( f pi)}
Ei{P( f pi)}}

F2 = 10log10Ech{Ei{ P̂( f pi)
P( f pi)

}}

F3 = 10log10Ech{
Ei=17,34{P̂( f pi)}
Ei=17,34{P( f pi)}}

(10)

where Ech{·} and Ei{·} are averages over channels and orig-
inal data PSD peaks, respectively. P and P̂ are the power
spectral density (PSD) of the original and cleaned data, re-
spectively. f pi is an interval of 4Hz around the peak of the
original data PSD in frequencies higher than 14Hz. This
range is chosen since the interested spikes or IEDs appear
below 14Hz. Since the sampling rate is not a multiple of
the MR artifact frequencies, the energy of MR artifact fre-
quencies can be distributed among a few frequency bins of
the PSD. Therefore, an interval of 4Hz is considered around
each PSD peak.

F1 and F2 calculate the PSD attenuation (in dB) of
cleaned data around each peak of the original data PSD (first
row of Fig. 5). The method that most attenuates the PSD
peaks of the MR artifact is preferred. Since sharp peaks are
repeated in MR artifact every 62 or 63 samples and the sam-
pling rate is 1024Hz, peaks around 16-17 Hz and their har-
monics in the PSD of the original data is related to MR ar-
tifact. Therefore, F3 measures the attenuation around peaks
of 16Hz and 32Hz that are shown in Fig. 5. The peaks in
higher harmonics are not considered in F3, because frequen-
cies higher than 45Hz are not of interest in EEG analysis.
PSD of contaminated EEG, EEG signal out of MR scanner,
and the processed signal by IGS, IGW, Median-LPF, and IAR
are depicted respectively from up to bottom in Fig. 5. To
compute the PSD, the Discrete Fourier Transforms (DFT) of
0.5s windowed segments are calculated. To compare the re-
sults in high frequency resolution, the same criteria (F1, F2,
and F3) have been utilized, but the PSD is computed by the



Table 1: Frequency domain evaluation results (in dB) at low
and high frequency resolutions. Orig-Out, IGS, IGW, Med-
LPF, and IAR stand for original signal outside the MR scan-
ner, Iterative GEVD-similarities, Iterative GEVD-weighted,
Median-low-pass filter and Image Artifact Reduction [5], [6]

Frequency Low Resolution High Resolution
Method(dB) F1 F2 F3 F1 F2 F3
Orig-Out −34 −33 −23 −35 −30 −25
IGS −28 −27 −16 −28 −24 −17
IGW −27 −25 −14 −26 −23 −15
Med-LPF −26 −25 −13 −25 −22 −14
IAR −21 −23 −11 −20 −21 −12

DFT of 9s windowed segments. The window length is cho-
sen 9s since the gradient is switched on every 3 seconds. To
measure how the cleaned data is following this period, sev-
eral periods (e.g., 3 periods) are needed.

F1, F2 and F3 in low and high frequency resolutions were
calculated for IAR and the three proposed methods. It is im-
portant to mention that the low-pass filter applied on the re-
sults of the proposed methods utilized on the results of IAR
method before F1-F3 calculation for comparing all the meth-
ods equally. The calculations of F1-F3 were carried out over
50 different 30s EEG segments for an epileptic patient. The
average of 50 calculations of F1-F3 are reported in Table 1.
The method that better reduces the MR artifact has greater
absolute values of F1-F3 that is a necessary condition but not
sufficient. Since the outer original signal has no MR artifact
(no PSD peaks after 14Hz), F1-F3 for the outer scanner sig-
nal has the maximum absolute values that is the minimum
resemblance to contaminated EEG with MR artifact. Hence
the F1-F3 of the outer signal shows the minimum value in
each column of Table 1.

By comparing the results of Table 1, it can be noticed
that the proposed methods have outperformed the conven-
tional IAR method. Among, the proposed methods first IGS,
second IGW and third Median-LPF have better reduced the
MR artifacts (using the defined criteria). In the IGS method,
components of GEVD are well amplified in the first few com-
ponents. But in the IGW the MR methods, MR artifact is
not extracted as good as the IGS method. The Median-LPF
method is very simple, but it does not consider the informa-
tion between channels. It also does not use the prior informa-
tion as much as the first two methods. The PSD attenuation
in MR artifact peaks of the IGS method is comparable with
the EEG acquired outside of the scanner. This method has
effectively mitigated MR artifacts from contaminated EEG.

5. CONCLUSION

In simultaneous EEG and fMRI recording, MR artifact re-
duction is an important issue and the development of an effi-
cient artifact removal algorithm has significant effect on fur-
ther processing. We proposed three artifact removal meth-
ods using two models of MR artifact. The performance of
our proposed artifact removal methods was evaluated on real
epileptic patient data and appeared to outperform the con-
ventional IAR method. The IGS method has shown better
performance in MR artifact reduction compared to the other
proposed methods. It is important to mention that as MR ar-
tifacts are MR scanner dependent, our method has been cus-

tomized to the MR scanner used for our data. The presented
algorithms were based on a linear model. Convolutive mod-
els will be studied in the future work for this purpose.
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