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Abstract

We consider the problem of finding the minimal initial data of a controlled process which

guarantees to reach a controlled target with a given probability of success or, more generally,

with a given level of expected loss. By suitably increasing the state space and the controls,

we show that this problem can be converted into a stochastic target problem, i.e. find the

minimal initial data of a controlled process which guarantees to reach a controlled target with

probability one. Unlike the existing literature on stochastic target problems, our increased

controls are valued in an unbounded set. In this paper, we provide a new derivation of the

dynamic programming equation for general stochastic target problems with unbounded controls,

together with the appropriate boundary conditions. These results are applied to the problem

of quantile hedging in financial mathematics, and are shown to recover the explicit solution of

Föllmer and Leukert [5].
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1 Introduction

For 0 ≤ t ≤ T , we are given two controlled diffusion processes {Xν
t,x(s), t ≤ s ≤ T} and

{Y ν
t,x,y(s), t ≤ s ≤ T} with values respectively in Rd and R+, satisfying the initial condition

(Xν
t,x, Y

ν
t,x,y)(t) = (x, y). The main objective of this paper is to study the stochastic target problem

with controlled probability of success:

V̄ (t, x, p) := inf
{

y ≥ 0 : P
[

Y ν
t,x,y(T ) ≥ g

(

Xν
t,x(T )

)]

≥ p for some admissible control ν
}

.

In the case p = 1, V (t, x) := V̄ (t, x, 1) reduces to the stochastic target problem studied in Soner

and Touzi [9, 10], who concentrate on the case where the control ν takes values in a bounded set.

For p < 1, this problem was introduced in the context of financial mathematics by Föllmer and

Leukert [5]. In the latter paper, the process X models the price of some given securities and is not

affected by the control ν which corresponds to the portfolio strategy of the investor. The process

Y represents the value of the investor’s portfolio and is defined by a diffusion whose coefficients

are linear in the control variable. In this special context, Föllmer and Leukert [5] use a duality

argument to convert this problem into a classical test problem in mathematical statistics. An

elegant solution is then obtained by a direct application of the Neyman-Pearson Lemma. This

approach applies in the case where the securities prices are driven by general semimartingales but

the linearity in the control is crucial in order to use their duality argument.

In particular, the duality approach of [5] does not extend to the general nonlinear controlled

diffusion case.

Note that a possible approach consists in introducing the standard stochastic control problem:

p(t, x, y) := max
ν

P
[

Y ν
t,x,y(T ) ≥ g

(

Xν
t,x(T )

)]

which corresponds to the inverse of V (t, x, p) with respect to the p−variable, i.e. p(t, x, V̄ (t, x, p)) =

p. Then, one can provide a characterization of the value function p(·) by the dynamic programming

approach (DPE), and obtain V̄ by inverting the solution with respect to the y−variable. We may

also translate the DPE for p(t, x, y) into a partial differential equation (PDE) for V̄ by using the

above relation. This however requires some regularity of the value function p(t, x, y) which is a-

priori difficult to prove. One could also solve numerically the PDE associated to p(·) and then

invert it numerically. This would nonetheless require the computation of p(·) on a large grid of

different values y and introduce an additional error due to the numerical inversion.

In this paper, we propose a direct treatment of the problem V̄ along the lines of [9]. The key-

idea is to convert the problem V̄ into a stochastic target problem by diffusing the probability of

reaching the target and considering it as an additional controlled state variable Pα. This is a direct

consequence of the martingale representation theorem in our assumed Brownian filtration. This

reformulation of the problem V̄ opens the door to the geometric dynamic programming approach of

[9], but raises additional difficulties. First, the additional control process in the increased state is

unbounded leading to a singular stochastic target problem. Second, the re-formulation is crucially

subjet to the state constraint Pα ∈ [0, 1] a.s. which leads to non-trivial boundary conditions.
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Our first main result is an extension of the derivation of the dynamic programming equation

of [9] to the general case where the control takes values in an unbounded set. This is achieved by

conveniently introducing a semilimit relaxation of the corresponding natural dynamic programming

equation. While the subsolution derivation follows the lines of the original argument of [9], we

provide a new method for the derivation of the supersolution property which does not require

any compactness, and avoids delicate passages to the limits. We also provide a description of the

terminal condition in the present unbounded control case.

Our second main result concerns the special case of the stochastic target problem with controlled

probability of success V̄ . Under fairly general conditions, we show that the state constraint on Pα

yields the natural boundary conditions V̄ (t, x, 1−) = V (t, x) and V̄ (t, x, 0+) = 0 for t < T . At the

final time T , there is however no clear guess of what should be the behaviour of V̄ . Under some

extra conditions, we prove that V̄ (T−, x, p) = pg(x) which is a “face-lifted” version of the natural

boundary condition g(x)1p>0.

Notice that the geometric dynamic programming approach of this paper extends to a larger

class of problem, namely to stochastic target problems with controlled loss:

V ℓ(t, x, p) := inf
{

y ≥ 0 : E
[

ℓ ◦G
(

Xν
t,x(T ), Y ν

t,x,y(T )
)]

≥ p for some admissible ν
}

,

where G(x, y) is non-decreasing in y and the loss function ℓ is non-decreasing. The above problem

V̄ corresponds to the special case ℓ := 1R+
.

Finally, we apply our result to the so-called quantile hedging example of Föllmer and Leukert

[5]. By using the supersolution property of V̄ , we reproduce the explicit solution of [5] in the

complete market case. The key-idea is to observe that the convex conjugate function of V̄ with

respect to the p−variable solves a linear PDE.

The paper is organized as follows. Section 2 presents the general formulation of singular stochas-

tic target problems and contains the statement of the corresponding dynamic programming equa-

tion. The stochastic target problem under controlled probability of success is discussed in Section

3. We first reduce the problem to the setting of the preceeding section in order to obtain directly

the corresponding dynamic programming equation inside the domain. A delicate analysis of the

boundary conditions is then provided. Section 4 shows how our results reproduce the elegant ex-

plicit solution of Föllmer and Leukert [5] in the context of a complete financial market application.

The extension to general loss functions is briefly discussed in Section 3.5. Finally, Sections 5 and

6 contain the proofs of the main results.

In all this paper, elements of Rn, n ≥ 1, are identified to column vectors, the superscript T

stands for transposition, · denotes the scalar product on Rn, | · | the Euclydean norm, and Mn

denotes the set of n-dimensional square matrices. We denote by Sn the subset of elements of Mn

that are symmetric. For a subset O of Rn, n ≥ 1, we denote by cl(O) its closure, by int(O) its

interior and by dist(x,O) the Euclidean distance from x to O with the convention dist(x, ∅) = ∞.

Finally, we denote by Br(x) the open ball of radius r > 0 centered at x ∈ Rn. Given a locally
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bounded map v on an open subset B of Rn, we define the lower and upper semicontinuous envelopes:

v∗(b) :=lim inf
B∋b′→b

v(b′) , v∗(b) :=lim sup
B∋b′→b

v(b′) b ∈ cl(B).

In all this paper, inequalities between random variable have to be understood in the a.s. sense.

2 Singular stochastic target problems

2.1 Problem formulation

Let T > 0 be the finite time horizon and W = {Wt, 0 ≤ t ≤ T} be a d-dimensional Brownian

motion defined on a complete probability space (Ω,F , P ). We denote by F = {Ft, 0 ≤ t ≤ T} the

P−augmentation of the filtration generated by W .

Let Uo be a subset of the collection of progressively measurable processes ν in L2([0, T ]) P−a.s.,

with values in a given closed subset U of Rd. For t ∈ [0, T ], z = (x, y) ∈ Rd × R and ν ∈ Uo, we

define Zν
t,z := (Xν

t,x, Y
ν
t,z) as the Rd × R-valued solution of the stochastic differential equation:

dX(r) = µ(X(r), νr)dr + σ(X(r), νr)dWr (2.1)

dY (r) = µY (Z(r), νr)dr + σY (Z(r), νr) · dWr , t ≤ r ≤ T ,

satisfying the initial condition Z(t) = (X(t), Y (t)) = (x, y). Here,

(µY , σY ) : Rd × R × U −→ R × Rd

(µ, σ) : Rd × U −→ Rd × Md

are locally Lipschitz, and are assumed to satisfy

|µY (x, y, u)| + |µ(x, u)| + |σY (x, y, u)| + |σ(x, u)| ≤ K(x, y)(1 + |u|) , (2.2)

where K is a locally bounded map.

We denote by U the subset of elements of Uo for which (2.1) admits a strong solution for all

given initial data. We also allow for state constraints and we denote by X the interior of the

support of the controlled process X.

Given u ∈ U , we denote by Lu the Dynkin operator associated to the controlled diffusion X:

Luϕ(t, x) := ∂tϕ(t, x) + µ(x, u) ·Dϕ(t, x) +
1

2
Tr
[

σσT(x, u)D2ϕ(t, x)
]

for a smooth function ϕ, where ∂tϕ stands for the partial derivative with respect to t, Dϕ and D2ϕ

denote the gradient vector and the Hessian matrix with respect to the x variable.

Let G be a measurable map from Rd+1 to R such that for every fixed x the function

y 7−→ G(x, y) is non-decreasing and right-continuous. (2.3)
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The stochastic target problem is defined by

V (t, x) := inf
{

y ∈ R : G
(

Xν
t,x(T ), Y ν

t,x,y(T )
)

≥ 0 for some ν ∈ U
}

. (2.4)

Let us observe that this problem can be formulated equivalently as:

V (t, x) = inf
{

y ∈ R : Y ν
t,x,y(T ) ≥ g

(

Xν
t,x(T )

)

for some ν ∈ U
}

(2.5)

where g is the generalized inverse of G at 0:

g(x) := inf {y : G(x, y) ≥ 0} . (2.6)

When the set U is bounded, it was proved in [9] that the value function V is a discontinuous

viscosity solution of:

sup {µY (x, v(t, x), u) − Luv(t, x) : u ∈ N0 (x, v(t, x), Dv(t, x))} = 0 , (2.7)

where

N0(x, y, q) := {u ∈ U : Nu(x, y, q) = 0} and Nu(x, y, q) := σY (x, y, u) − σ(x, u)Tq . (2.8)

Since N0(x, y, q) may be empty, we shall use the standard convention sup ∅ = −∞ all over this

paper.

The chief goal of this section is to provide an extension of this result to the case where U is

unbounded.

2.2 The dynamic programming equation

Because the control set U is not necessarily bounded, we need to introduce the relaxed semilimits:

F ∗(Θ) := lim sup
εց0, Θ′→Θ

Fε(Θ
′) and F∗(Θ) := lim inf

εց0, Θ′→Θ
Fε(Θ

′)

where, for Θ = (x, y, q, A) ∈ Rd × R × Rd × Sd and ε ≥ 0,

Fε(Θ) := sup

{

µY (x, y, u) − µ(y, u) · q − 1

2
Tr
[

σσT(x, u)A
]

: u ∈ Nε(x, y, q)

}

and

Nε(x, y, q) := {u ∈ U : |Nu(x, y, q)| ≤ ε} , ε ≥ 0 .

Observe that (Nε)ε≥0 is non-decreasing so that

F∗(Θ) := lim inf
Θ′→Θ

F0(Θ
′) . (2.9)

For ease of notations, we shall often simply write Fv(t, x) in place of F (x, v(t, x), Dv(t, x),

D2v(t, x)). We shall similarly use the notations F ∗v and F∗v.
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Our first main result is the derivation of the dynamic programming equation corresponding to

the stochastic target problem in the present context of possibly unbounded controls. This is an

extension of [9] and [10] where the set U was assumed to be bounded, see also [2] for the case of

jump diffusions. This extension is crucial for our analysis of the stochastic target problem under

controlled probability, and under controlled loss. The following continuity assumption is needed in

order to prove the subsolution property. Note that this version is slightly weaker than Assumption

4.1 in [10].

Assumption 2.1 (Continuity of N0(x, y, q)) Let B be a subset of X×R×Rd such that N0 6= ∅
on B. Then, for every ε > 0, (x0, y0, q0) ∈ int(B), and u0 ∈ N0(x0, y0, q0), there exists an open

neighborhood B′ of (x0, y0, q0) and a locally Lipschitz map ν̂ defined on B′ such that |ν̂(x0, y0, q0)−
u0| ≤ ε and ν̂(x, y, q) ∈ N0(x, y, q) on B′.

Throughout this paper, we shall always assume the following

Standing Assumption V is locally bounded,

so that the semilimits V∗ and V ∗ are finite. Our first main result characterizes V as a discontinuous

viscosity solution of (2.7) in the following sense.

Theorem 2.1 The function V∗ is a viscosity supersolution of

−∂tV∗ + F ∗V∗ ≥ 0 on [0, T ) × X . (2.10)

If in addition Assumption 2.1 holds, then V ∗ is a viscosity subsolution of

−∂tV
∗ + F∗V ∗ ≤ 0 on [0, T ) × X . (2.11)

The proof of this result is reported in Section 5. In particular, the supersolution property is

proved by a new approach, and avoids delicate passages to limits that appear in [10].

Let us now introduce the set-valued map

N(x, y, q) :=
{

r ∈ Rd : r = Nu(x, y, q) for some u ∈ U
}

, (2.12)

together with the signed distance function from its complement set Nc to the origin:

δ := dist (0,Nc) − dist (0,N) , (2.13)

where we recall that dist stands for the (unsigned) Euclidean distance. Then,

0 ∈ int (N(x, y, q)) iff δ(x, y, q) > 0 . (2.14)

The upper and lower-semicontinuous envelopes of δ are respectively denoted by δ∗ and δ∗, and we

will abuse notation by writing δ∗v(x) = δ∗(x, v(x), Dv(x)) and δ∗v(x) = δ∗(x, v(x), Dv(x)).
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Remark 2.1 From the convention sup ∅ = −∞ and the supersolution property (2.10) in Theorem

2.1, it follows that

δ∗V∗ ≥ 0 on [0, T ) × Rd (2.15)

in the viscosity sense. Then, if Nc 6= ∅, this means that V is subject to a gradient constraint.

Remark 2.2 Let us check that Theorem 2.1 reduces to the viscosity property of [9] in their setting.

Assume that for every (x, y, q) and r ∈ Rd, there is a unique solution û(x, y, q, r) to the equation

Nu(x, y, q) = r, i.e.

Nu(x, y, q) = r iff u = û(x, y, q, r). (2.16)

Assume further that û is locally Lipschitz continuous, so that Assumption 2.1 trivially holds. For

ease of notations, we set û0(x, y, q) := û(x, y, q, 0). For a bounded set of controls U , it follows that

for any smooth function ϕ: F ∗ϕ(t, x) ≥ 0 implies that

û0(x, ϕ(t, x), Dϕ(t, x)) ∈ U and −∂tϕ(t, x) + F0ϕ(t, x) ≥ 0, (2.17)

where the operator F0 reduces in the present context to

F0ϕ = µY (., ϕ, û0) − µ(ϕ, û0) ·Dϕ− 1

2
Tr
[

σσT(., û0)D
2ϕ
]

.

Similarly, F∗ϕ(t, x) ≤ 0 implies that

either û0(x, ϕ(t, x), Dϕ(t, x)) /∈ int(U) or −∂tϕ(t, x) + F0ϕ(t, x) ≤ 0. (2.18)

Notice that (2.17)-(2.18) correspond to the PDE derived in [9].

We next discuss the boundary condition on {T}×X. By the definition of the stochastic target

problem, we have

V (T, x) = g(x) for every x ∈ Rd.

However, the possible discontinuities of V might imply that the limits V∗(T, .) and V ∗(T, .) do

not agree with this “natural” boundary condition. The following result states that the constraint

discussed in Remark 2.1 propagates up to the boundary. Again, this phenomenon was already

noticed in [9], among others. Here, the main difficulty is due to the unboundedness of the set U .

Theorem 2.2 The function x ∈ X 7→ V∗(T, x) is a viscosity supersolution of

min
{

(V∗(T, ·) − g∗)1{F ∗V∗(T,·)<∞} , δ
∗V∗(T, ·)

}

≥ 0 on X , (2.19)

and, under Assumption 2.1, x ∈ X 7→ V ∗(T, x) is a viscosity subsolution of

min {V ∗(T, ·) − g∗ , δ∗V ∗(T, ·)} ≤ 0 on X. (2.20)
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Remark 2.3 Note that δ(x, y, q) ≤ 0 whenever int (N(x, y, q)) = ∅, so that the subsolution prop-

erty carries no information. This is the case when the control set U has empty interior as in the

context of a stochastic volatility model. A specific analysis is needed in such cases, see [11] and [7].

Remark 2.4 In the context of Remark 2.2, observe that

• δ∗ϕ(x) ≥ 0 implies that û0(x, ϕ(x), Dϕ(x)) ∈ U , and F ∗ϕ(x) <∞ is always satisfied,

• δ∗ϕ(x) > 0 implies that û0(x, ϕ(x), Dϕ(x)) ∈ int(U).

Hence, for a convex set U with non-empty interior, we recover the boundary condition of [9].

When X = Rd (and under suitable conditions) a comparison result of viscosity supersolutions

of (2.10)-(2.19) and subsolutions of (2.11)-(2.20) can be proved in certain classes of functions. We

do not persue this issue any further, and we instead refer to [3] for some general results in this

direction and to [1] for a comparison result in a similar setting. We recall that the main concern

of this paper is the analysis of the stochastic target problem under controlled probability or, more

generally, controlled loss. However, we shall assume that such a comparison result holds in order to

establish the boundary conditions for the problem of stochastic target under controlled probability

and/or loss of the subsequent section.

Assumption 2.2 There is a class of functions C containing all non-negative functions dominated

by V ∗ such that, for every

• v1 ∈ C, lower-semicontinuous viscosity supersolution of (2.10)-(2.19) on [0, T ] × X,

• v2 ∈ C, upper-semicontinuous viscosity subsolution of (2.11)-(2.20) on [0, T ] × X,

we have v1 ≥ v2.

Note that, when the process X is subject to state constraints, the boundary conditions on

[0, T ] × ∂X have to be specified. We deliberately avoid this issue for sake of simplicity. However,

in our subsequent analysis, it will appear from the very nature of the problem, and we will deal

with a special type of state constraints, see Subsection 3.3.

3 Target reachability with controlled probability of success

In this section, we extend the model presented above to the case where the target has to be reached

only with a given probability p:

V̄ (t, x, p) := inf
{

y ∈ R+ : P
[

G
(

Xν
t,x(T ), Y ν

t,x,y(T )
)

≥ 0
]

≥ p for some ν ∈ U
}

. (3.1)

In order to avoid degenerate results, we restrict the analysis to the case where the Y process takes

non-negative values, by simply imposing the following conditions on the coefficients driving its

dynamics:

µY (x, 0, u) ≥ 0 and σY (x, 0, u) = 0 for all (x, u) ∈ X × U . (3.2)

Note that the above definition implies that

0 = V̄ (·, 0) ≤ V̄ ≤ V̄ (·, 1) = V . (3.3)
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3.1 Problem reduction

Our first objective is to convert this problem into the class of (standard) stochastic target problems,

so that the dynamic programming equation for the target reachability problem with controlled

probability can be deduced directly from Theorem 2.1. To do this, we introduce an additional

controlled state variable valued in [0, 1] and defined by:

Pα
t,p = p , dPα

t,p(s) = Pα
t,p(s)

(

1 − Pα
t,p(s)

)

αs · dWs , s ∈ [t, T ] , (3.4)

where the additional control α is an F−progressively measurable Rd−valued P − a.s. square in-

tegrable process. We next set X̄ := (X,P ), X̄ := X × (0, 1), Ū := U × Rd, denote by Ū the

corresponding set of admissible controls, and set

Ḡ(x̄, y) := 1{G(x,y)≥0} − p for y ∈ R, x̄ := (x, p) ∈ cl
(

X̄
)

.

Proposition 3.1 For all t ∈ [0, T ] and x̄ = (x, p) ∈ X̄, we have

V̄ (t, x̄) = inf
{

y ∈ R+ : Ḡ
(

X̄ ν̄
t,x̄(T ), Y ν

t,x,y(T )
)

≥ 0 for some ν̄ = (ν, α) ∈ Ū
}

. (3.5)

Proof. We denote by v(t, x, p) the right-hand side of (3.5). For y > V̄ (t, x, p), we can find ν ∈ U
such that P

[

G
(

Xν
t,x(T ), Y ν

t,x,y(T )
)

≥ 0
]

≥ p. By the stochastic integral representation theorem,

there exists an F-progressively measurable P − a.s.-square integrable process φ such that

P (T ) := p+ 1{G(Xν
t,x(T ),Y ν

t,x,y(T ))≥0} − P
[

G
(

Xν
t,x(T ), Y ν

t,x,y(T )
)

≥ 0
]

= p+

∫ T

t

φs · dWs .

Since P (T ) ∈ [0, 1], it is clear that P (T ) = Pα
t,p(T ) for some progressively measurable P − a.s.-

square integrable process α. Hence ν̄ := (ν, α) ∈ Ū . Observing from the above equality that

Ḡ
(

X̄ ν̄
t,x̄(T ), Y ν

t,x,y(T )
)

= P
[

G
(

Xν
t,x(T ), Y ν

t,x,y(T )
)

≥ 0
]

−p ≥ 0, we deduce from the arbitrariness of

y > V̄ (t, x, p) that V̄ (t, x, p) ≥ v(t, x, p).

Conversely, for y > v(t, x, p), we have Ḡ
(

X̄ ν̄
t,x̄(T ), Y ν

t,x,y(T )
)

≥ 0 for some ν̄ = (ν, α) ∈ Ū . Since

Pα
t,p is a martingale (as a bounded local martingale), it follows that

P
[

G
(

Xν
t,x(T ), Y ν

t,x,y(T )
)

≥ 0
]

= E
[

1{G(Xν
t,x(T ),Y ν

t,x,y(T ))≥0}
]

≥ E
[

Pα
t,p(T )

]

= p ,

which concludes the proof of (3.5). ✷

3.2 The dynamic programming equation

The above reduction of the problem V̄ to a stochastic target problem allows to apply the general

results of the previous section. For ū = (u, α) ∈ Ū , set

µ̄(x̄, ū) :=

(

µ(x, u)

0

)

, σ̄(x̄, ū) :=

(

σ(x, u)

αT

)

,
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where for presentation simplicity, we omit p(1 − p) in the diffusion of the state variable P . Note

that for p ∈ (0, 1), this only corresponds to a change of variable in the PDEs below. We also

introduce for (y, q, A) ∈ R × Rd+1 × Sd+1 and still ū = (u, α) ∈ Ū ,

N̄ ū(x̄, y, q) := σY (x, y, u) − σ̄(x̄, ū)Tq = Nu(x, y, qx) − qpα for q = (qx, qp) ∈ Rd × R,

N̄ε(x̄, y, q) :=
{

ū ∈ Ū : |N̄ ū(x̄, y, q)| ≤ ε
}

, ε > 0,

F̄ε(x̄, y, q, A) := sup
(u,α)∈N̄ε(x̄,y,q)

{

µY (x, y, u) − µ̄(x̄, u, α) · q − 1

2
Tr
[

σ̄σ̄T(x̄, u, α)A
]

}

,

and

N̄(x̄, y, q) :=
{

N ū(x̄, y, q) : ū ∈ Ū
}

, δ̄ := dist
(

0, N̄c
)

− dist
(

0, N̄
)

.

The operators F̄ ∗ and F̄∗ are constructed from F̄ε exactly as F ∗ and F∗ are defined from Fε.

Finally, we define the function

ḡ(x̄) := inf
{

y ≥ 0 : Ḡ(x̄, y) ≥ 0
}

, x̄ = (x, p) ∈ X̄ × [0, 1],

which is related to g by

ḡ(x, p) = g(x)1p>0 for x ∈ X and p ∈ [0, 1].

As an almost direct consequence of Theorem 2.1 and (3.5), we obtain the viscosity property of

V̄ under the following assumption which is the analog of Assumption 2.1 for the augmented control

system X̄.

Assumption 3.1 (Continuity of N̄0(x, p, y, q)) Let B be a subset of X× [0, 1]× R × Rd+1 such

that N̄0 6= ∅ on B. Then, for every ε > 0, (x0, p0, y0, q0) ∈ int(B), and ū0 ∈ N̄0(x0, p0, y0, q0),

there exists an open neighborhood B′ of (x0, p0, y0, q0) and a locally Lipschitz map ν̂ defined on B′

such that |ν̂(x0, p0, y0, q0) − ū0| ≤ ε and ν̂(x, p, y, q) ∈ N̄0(x, p, y, q) on B′.

Corollary 3.1 The function V̄∗ is a viscosity supersolution of

−∂tV̄∗ + F̄ ∗V̄∗ ≥ 0 on [0, T ) × X̄ .

Under the additional Assumption 3.1, V̄ ∗ is a viscosity subsolution of

min
{

V̄ ∗ , −∂tV̄
∗ + F̄∗V̄ ∗} ≤ 0 on [0, T ) × X̄ .

Proof. The supersolution property is a direct consequence of Theorem 2.1. The subsolution

property is obtained similarly. The first term accounts for the non-negativity constraint on the

state process Y in the arguments of the proof in Section 5.3 below. ✷

Remark 3.1 Clearly, Assumption 3.1 holds true whenever the function û introduced in Remark

2.2 is well defined and locally Lipschitz continuous.
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3.3 Boundary conditions and state constraint

The above result relies on converting V̄ into a (singular) stochastic target problem. This was

achieved by introducing the new state variable p. Because this variable is constrained in [0, 1], we

need to specify the boundary conditions at the endpoints 0 and 1. By definition of the stochastic

target problem with controlled probability, we have

V̄ (·, 1) = V and V̄ (·, 0) = 0 . (3.6)

Also, since G is non-decreasing in y, we know that V̄ is non-decreasing in p. Hence

0 ≤ V̄∗(·, 0) ≤ V̄ ∗(·, 1) ≤ V ∗ , (3.7)

and one can naturally expect that V̄∗(·, 0) = 0 and V̄ ∗(·, 1) = V ∗. However, the function V may

have discontinuities at p = 0 or p = 1 and, in general, the boundary conditions have to be stated

in a weak form. To obtain a characterization of V on these boundaries, we shall appeal to the

following additional assumptions.

Assumption 3.2 For all (x, y, q) ∈ X × (0,∞) × Rd, we have N0(x, y, q) ( U .

Assumption 3.3 For all compact subset A of Rd × R × Rd × Sd, there exists C > 0 such that

Fε(Θ) ≤ C(1 + ε2) for all ε ≥ 0 and Θ ∈ A.

Remark 3.2 Assumption 3.2 is natural and allows to avoid degenerate cases that would have to

be discussed separately. It will be used only to derive the boundary condition at p = 0. Assumption

3.3 is more of technical nature and will be only used to discuss the boundary condition at p = 1.

The main result of this section shows that the natural boundary conditions (3.6) indeed holds

true, whenever the comparison principle of Assumption 2.2 holds and under the above additional

assumptions.

Theorem 3.1 Assume that the function supu∈U |σ(·, u)| is locally bounded on X and that Assump-

tion 3.1 holds true.

(i) Under Assumption 3.2, we have V̄ ∗(·, 0) = 0 on [0, T ) × X and V̄∗(·, 0) = 0 on [0, T ] × X.

(ii) Under Assumption 3.3, V̄ ∗(·, 1) is a viscosity supersolution of (2.10)-(2.19) on [0, T ]×X. In

particular, if in addition the comparison Assumption 2.2 is satisfied, then V̄ ∗(·, 1) = V̄∗(·, 1) =

V∗ = V ∗ on [0, T ] × X.

The proof is reported in Section 6.

3.4 On the terminal condition

The boundary condition at T for V̄∗ and V̄ ∗ can be easily derived from the characterization of

Theorem 2.2.
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Corollary 3.2 The function x̄ ∈ X̄ 7→ V̄∗(T, x̄) is a viscosity supersolution of

min
{

(

V̄∗(T, ·) − ḡ∗
)

1{F̄ ∗V̄∗(T,·)<∞} , δ̄
∗V̄∗(T, ·)

}

≥ 0 on X̄ . (3.8)

If in addition Assumption 3.1 holds, then x̄ ∈ X̄ 7→ V̄ ∗(T, x̄) is a viscosity subsolution of

min
{

V̄ ∗(T, ·) − ḡ∗ , δ̄∗V̄ ∗(T, ·)
}

≤ 0 on X̄ . (3.9)

Note however that ḡ∗ = g∗ so that the discontinuity in the p variable of the boundary condition

on V̄ ∗ is not apparent in the above formulation. Moreover the condition F̄ ∗V̄∗(T, ·) <∞ may not

be satisfied because of the unboundeness of the control α that appears in the definition of F̄ . It

follows that the above boundary condition may be useless in most examples.

In the rest of this section, we provide conditions under which a more precise boundary condition

can be specified. These assumptions will be satisfied in our example of application, see Section 4

below.

Proposition 3.2 (i) Assume that g is continuous and that for all sequence (tn, xn, yn, pn, νn)n of

[0, T ) ×X× R+ × [0, 1] ×U such that (tn, xn, yn, pn) → (T, x, y, p) ∈ {T} ×X× R+ × [0, 1], there

exists a P-absolutely continuous probability measure Q such that

lim sup
n→∞

EQ
[

Y νn
tn,xn,yn

(T )
]

≤ y and lim sup
n→∞

EQ
[∣

∣g(Xνn
tn,xn

(T )) − g(x)
∣

∣

]

= 0 . (3.10)

Then, V̄∗(T, x, p) ≥ pg(x) for all (x, p) ∈ X × [0, 1].

(ii) Let the conditions of Theorem 3.1 hold true and assume that V̄ ∗ is convex in its p variable and

that V ∗(T, ·) ≤ g. Then, V̄ ∗(T, x, p) ≤ pg(x) for all (x, p) ∈ X × [0, 1].

Proof. It follows from Theorem 3.1 and the convexity property of V̄ ∗ that V̄ ∗(t, x, p) ≤ pV ∗(t, x)

for all (t, x, p) ∈ [0, T )×X×[0, 1]. Since V ∗(T, ·) ≤ g by assumption, we deduce that V̄ ∗(T, ·, p) ≤ pg

by considering a sequence (tn, xn, pn)n in [0, T ) × X × (0, 1) such that (tn, xn, pn) → (T, x, p) and

V̄ ∗(tn, xn, pn) → V̄ ∗(T, x, p). On the other hand, given a sequence (tn, xn, pn)n in [0, T )×X×(0, 1)

such that (tn, xn, pn) → (T, x, p) and V̄ (tn, xn, pn) → V̄∗(T, x, p), we can find (νn, αn) ∈ Ū such

that

1{Y νn
tn,xn,yn

(T )−g(Xνn
tn,xn

(T ))≥0} ≥ Pαn
tn,pn

(T )

where yn := V̄ (tn, xn, pn) + 1/n→ V̄∗(T, x, p). This implies that

Y νn
tn,xn,yn

(T ) ≥ Pαn
tn,pn

(T )g(Xνn
tn,xn

(T ))

and, since Pαn
tn,pn

(T ) is bounded by 1,

Y νn
tn,xn,yn

(T ) ≥ Pαn
tn,pn

(T )g(x) −
∣

∣g(Xνn
tn,xn

(T )) − g(x)
∣

∣

Taking the expectation under Q and recalling that Pαn
tn,pn

is a bounded martingale, we get

EQ
[

Y νn
tn,xn,yn

(T )
]

≥ png(x) − EQ
[∣

∣g(Xνn
tn,xn

(T )) − g(x)
∣

∣

]

.
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Passing to the limit and using (3.10) leads to V̄∗(T, x, p) ≥ pg(x). ✷

The conditions of Proposition 3.2 are easily satisfied if the coefficients of Xν and Y ν are Lips-

chitz continuous uniformly in the control variable. The condition on Y ν also typically holds if, after

a suitable change of measure, the control appears in its dynamics only through the Itô integral.

This is typically the case in finance where Y ν plays the role of the wealth process, see the example

of Section 4 below.

We now provide conditions ensuring the convexity of V̄ ∗ in its p variable.

Proposition 3.3 Assume that V̄ ∗ > 0 on [0, T ) × X × (0, 1) and that U = Rd. Assume further

that the function û defined in (2.16) is locally Lipschitz continuous, that û(x, y, q, ·) is Lipschitz on

Rd for all (x, y, q) ∈ X × R × Rd, and that for each compact set Θ ⊂ X × R+ there exists C > 0

and ε ∈ (0, 2] such that

|µY (x, y, u)| + |µ(x, u)| + |σ(x, u)|2 ≤ C(1 + |u|2−ε) for all (x, y, u) ∈ Θ × U . (3.11)

Then, V̄ ∗(t, x, p) is convex in p.

Proof. Since U = Rd, it follows from the same argument as in Remark 2.2 that the condition

of Corollary 3.1 is satisfied. Since V̄ ∗ > 0, this implies that V̄ ∗ is a viscosity subsolution of

−∂tV̄
∗ + F̄∗V̄ ∗ ≤ 0 on [0, T )× X̄. Let ϕ be a smooth function and (t, x, p) be a local maximizer of

V̄ ∗ − ϕ on [0, T ) × X̄. Note that, by definition of û and the assumption U = Rd,

N̄0(x, y, (qx, qp)) = {(û(x, y, qx, αqp), α), α ∈ R} .

In view of the growth condition (3.11) and the Lipschitz continuity assumption on û, this implies

that there exists C > 0 and ε ∈ (0, 2] such that, for all α ∈ R,

−1

2
|α|2Dppϕ(t, x, p) ≤ C(1 + |α|2−ε)

This implies that Dppϕ(t, x, p) ≥ 0. The convexity then follows from the same arguments as in [4,

Proposition 5.2]. ✷

3.5 Extension to target reachability with controlled expected loss

We now briefly explain how to extend the key-idea of Proposition 3.1 to the target reachability

problem with controlled expected loss.

Let ℓ : R −→ R be a non-decreasing function, and denote by

L := conv (ℓ ◦G(X × R+))

the closed convex hull of the image of ℓ ◦G. For p ∈ L, we define the target reachability problem

with controlled loss:

V̄ ℓ(t, x, p) := inf
{

y ∈ R+ : E
[

ℓ ◦G
(

Xν
t,x(T ), Y ν

t,x,y(T )
)]

≥ p for some ν ∈ U
}

.
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Observe that for ℓ(r) = 1r≥0 we recover the target reachability problem with controlled probability.

As in the previous section, we introduce an additional controlled state variable valued in L defined

by:

Pα
t,p = p , dPα

t,p(u) = αu · dWu , u ∈ [t, T ] , (3.12)

where the additional control α is an F−progressively measurable real valued process such that Pα

is a square integrable martingale taking values in L, P − a.s. We next denote by X̄ := (X,P ),

Ū = U × Rd, Ū the corresponding set of admissible controls, and

Ḡℓ(x̄, y) := ℓ ◦G(x, y) − p , y ∈ R+ , x̄ = (x, p) ∈ cl
(

X̄
)

where X̄ = X × L .

If ℓ ◦G
(

Xν
t,x(T ), Y ν

t,x,y(T )
)

is square integrable for all initial conditions and controls ν ∈ U , we can

then follow the arguments used in the proof of Proposition 3.1 and relate V̄ ℓ to a stochastic target

problem with unbounded controls:

V̄ ℓ(t, x̄) = inf
{

y ∈ R+ : Ḡℓ
(

X̄ ν̄
t,x̄(T ), Y ν

t,x,y(T )
)

≥ 0 for some ν̄ = (ν, α) ∈ Ū
}

.

This allows to provide a PDE characterization of V̄ ℓ in the spirit of the one obtained for V̄

above. The adaptation of the previous arguments to this context is obvious.

4 Application to the quantile hedging problem

In this section, we specialize the discussion to the quantile hedging problem of Föllmer and Leukert

[5]. We first assume that the state space of the process X is X := (0,∞)d and that it is not affected

by the control:

µ(x, u) = µ(x) and σ(x, u) = σ(x) are independent of u, (4.1)

where µ and σ are Lipschitz continuous. In order to avoid arbitrage, we also assume that σ is

invertible and that

sup
x∈(0,∞)d

|λ(x)| <∞ where λ := σ−1µ . (4.2)

The coefficients of the controlled process Y are given by:

µY (x, y, u) = u · µ(x) , σY (x, y, u) = σT(x)u , (4.3)

Finally,

G(x, y) = y − g(x) for some Lipschitz continuous function g : Rd −→ R+. (4.4)

The process X is thus defined by the stochastic differential equation

dXt,x(s) = µ (Xt,x(s)) ds+ σ (Xt,x(s)) dWs , Xt,x(t) = x ∈ (0,∞)d
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and should be interpreted as the price process of d risky securities. Here, we implicitly assume

that the coefficients µ and σ are such that Xt,x ∈ (0,∞)d P − a.s. for all initial conditions (t, x) ∈
[0, T ] × (0,∞)d.

The control process ν is valued in U = Rd, with components νi
s indicating the number of shares

of the i−th security held in portfolio at time s. After the usual reduction of the interest rates to

zero, it follows from the self-financing condition that the value of the portfolio is given by

Y ν
t,x,y(s) = y +

∫ s

t

νr · dXt,x(r), s ≥ t ,

which leads to the definitions in (4.3). The stochastic target problem V (t, x) corresponds to the

problem of super-hedging the contingent claim g(Xt,x(T )), and V̄ (t, x, p) is the corresponding

quantile hedging problem. Note that the above assumptions ensure that V is continuous and is

given by V (t, x) = EQt,x [g(Xt,x(T ))] where Qt,x is the P-equivalent martingale measure defined by

dQt,x/dP = exp

(

−1

2

∫ T

t

|λ(Xt,x(s))|2ds−
∫ T

t

λ(Xt,x(s)) · dWs

)

.

In particular, V is a viscosity supersolution on [0, T ) × (0,∞)d of

0 ≤ −∂tV − 1

2
Tr
[

σσTDxxV
]

. (4.5)

For later use, let us denote by WQt,x := W +
∫ ·
t
λ(Xt,x(s))ds the Qt,x-Brownian motion defined on

[t, T ].

In [5], the quantile hedging problem is solved in the general non-necessarilly Markov model of

asset prices process, by means of the Neyman-Pearson lemma from mathematical statistics. In our

Markov setting, we shall recover the solution of [5] by only using the supersolution property from

the results of the previous sections.

First note that the conditions of Corollary 3.1, Theorem 3.1 and (i) of Proposition 3.2 are

trivially satisfied. This implies that V̄∗ is a viscosity supersolution of [0, T ) × X̄

0 ≤ −∂tV̄∗ + F̄ ∗V̄∗ (4.6)

= −∂tV̄∗ −
1

2
Tr
[

σσTDxxV̄∗
]

− inf
α∈Rd

(

−α(DpV̄∗)Tσ−1µ+ Tr
[

σαDxpV̄∗
]

+
1

2
|α|2DppV̄∗

)

,

with the boundary conditions

V̄∗(·, 1) = V and V̄∗(·, 0) = 0 on [0, T ] × X, and V̄∗(T, x, p) ≥ pg(x) on X × [0, 1] . (4.7)

For sake of clarity, we extend V̄∗ to [0, T ] × X × R by setting

V̄∗(·, p) := 0 for p < 0 and V̄∗(·, p) := ∞ for p > 1 . (4.8)

The key idea for solving (4.6)-(4.7) is to introduce its Legendre-Fenchel dual with respect to

the p−variable in order to remove the non-linearity in (4.6):

v(t, x, q) := sup
p∈R

{

pq − V̄∗(t, x, p)
}

, (t, x, q) ∈ [0, T ] × (0,∞)d × R . (4.9)
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Note that (4.8) and the second equality in (4.7) imply that

v(·, q) = ∞ for q < 0 and v(·, q) = sup
p∈[0,1]

{

pq − V̄∗(·, p)
}

for q > 0 . (4.10)

Using the PDE characterization of V̄ and V above, we shall prove below that v is an upper-

semicontinuous viscosity subsolution on [0, T ) × (0,∞)d × (0,∞) of

−∂tv −
1

2
Tr
[

σσTDxxv
]

− 1

2
|λ|2 q2Dqqv − Tr [σλDxqv] ≤ 0 (4.11)

with the boundary condition

v(T, x, q) ≤ (q − g(x))+ . (4.12)

Since the above equation is linear, an explicit upper bound for v is available from the Feynman-Kac

representation result. Namely,

v(t, x, q) ≤ v̄(t, x, q) := EQt,x
[

(Qt,x,q(T ) − g (Xt,x(T )))+
]

, (4.13)

on [0, T ] × (0,∞)d × (0,∞), where the process Qt,x,q is defined by the dynamics

dQ(s)

Q(s)
= λ(Xt,x(s)) · dWQt,x

s , Qt,x,q(t) = q ∈ (0,∞) . (4.14)

Given the explicit representation of v̄, we can now provide a lower bound to the primal function

V̄ by using (4.10). Clearly the function v̄ is convex in q and there is a unique solution q̂(t, x, p) to

the equation

∂v̄

∂q
(t, x, q̂) = EQt,x

[

Qt,x,1(T )1{Qt,x,q̂(T )≥g(Xt,x(T ))}
]

= P [Qt,x,q̂(T ) ≥ g (Xt,x(T ))] = p , (4.15)

where we have used the fact that dP/dQt,x = Qt,x,1(T ). It follows that the value function of the

quantile hedging problem V̄ admits the lower bound

V̄ (t, x, p) ≥ V̄∗(t, x, p) ≥ pq̂(t, x, p) − v̄ (t, x, q̂(t, x, p))

= q̂(t, x, p)
[

p− EQt,x
[

Qt,x,1(T )1{q̂(t,x,p)Qt,x,1(T )≥g(Xt,x(T ))}
]

]

+ EQt,x
[

g (Xt,x(T ))1{q̂(t,x,p)Qt,x,1(T )≥g(Xt,x(T ))}
]

= EQt,x
[

g (Xt,x(T ))1{q̂(t,x,p)Qt,x,1(T )≥g(Xt,x(T ))}
]

=: y(t, x, p) .

On the other hand, it follows from the martingale representation theorem that we can find ν ∈ U
such that

Y ν
t,x,y(t,x,p)(T ) ≥ g (Xt,x(T ))1{q̂(t,x,p)Qt,x,1(T )≥g(Xt,x(T ))} .

Since, by (4.15), P [q̂(t, x, p)Qt,x,1(T ) ≥ g (Xt,x(T ))] = p, this implies that V̄ (t, x, p) = y(t, x, p)

which corresponds exactly to the solution of Föllmer and Leukert [5].

To conclude our argument, it remains to prove that v is a viscosity subsolution of (4.11)-(4.12).
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Proof of (4.11)-(4.12). First note that the fact that v is upper-semicontinuous on [0, T ]×(0,∞)d×
(0,∞) follows from the lower-semicontinuity of V̄∗ and the representation in the right-hand side of

(4.10), which allows to reduce the computation of the sup to the compact set [0, 1]. Moreover, the

boundary condition (4.12) is an immediate consequence of the right-hand side inequality in (4.7)

and (4.10) again.

We now turn to the PDE characterization inside the domain. Let ϕ be a smooth function with

bounded derivatives and (t0, x0, q0) ∈ [0, T ) × (0,∞)d × (0,∞) be a local maximizer of v − ϕ such

that (v − ϕ)(t0, x0, q0) = 0.

a. We first show that we can reduce to the case where the map q 7→ ϕ(·, q) is strictly convex. Indeed,

since v is convex, we necessarily have Dqqϕ(t0, x0, q0) ≥ 0. Given ε, η > 0, we now define ϕε,η by

ϕε,η(t, x, q) := ϕ(t, x, q)+ε|q−q0|2+η|q−q0|2(|q−q0|2+ |t−t0|2+ |x−x0|2). Note that (t0, x0, q0) is

still a local maximizer of U −ϕε,η. Since Dqqϕ(t0, x0, q0) ≥ 0, we have Dqqϕε,η(t0, x0, q0) ≥ 2ε > 0.

Since ϕ has bounded derivatives, we can then choose η large enough so that Dqqϕε,η > 0. We next

observe that, if ϕε,η satisfies (4.11) at (t0, x0, q0) for all ε > 0, then (4.11) holds for ϕ at this point

too. This is due to the fact that the derivatives up to order two of ϕε,η at (t0, x0, q0) converge to

the corresponding derivatives of ϕ as ε→ 0.

b. From now on, we thus assume that the map q 7→ ϕ(·, q) is strictly convex. Let ϕ̃ be the Fenchel

transform of ϕ with respect to q, i.e.

ϕ̃(t, x, p) := sup
q∈R

{pq − ϕ(t, x, q)} .

Since ϕ is strictly convex in q and smooth on its domain, ϕ̃ is strictly convex in p and smooth on

its domain, see e.g. [8]. Moreover, we have

ϕ(t, x, q) = sup
p∈R

{pq − ϕ̃(t, x, p)}

= J(t, x, q)q − ϕ̃(t, x, J(t, x, q)) on (0, T ) × (0,∞)d × (0,∞) ⊂ int(dom(ϕ)) (4.16)

where q 7→ J(·, q) denotes the inverse of p 7→ Dpϕ̃(·, p), recall that ϕ̃ is strictly convex in p.

We now deduce from the assumption q0 > 0 and (4.10) that we can find p0 ∈ [0, 1] such that

v(t0, x0, q0) = p0q0−V̄∗(t0, x0, p0) which, by using the very definition of (t0, x0, p0, q0) and v, implies

that

(t0, x0, p0) is a local minimizer of V̄∗ − ϕ̃ such that (V̄∗ − ϕ̃)(t0, x0, p0) = 0 (4.17)

and

ϕ(t0, x0, q0) = sup
p∈R

{pq0 − ϕ̃(t0, x0, p)} = p0q0 − ϕ̃(t0, x0, p0) with p0 = J(t0, x0, q0) , (4.18)

where the last equality follows from (4.16) and the strict convexity of the map p 7→ pq0−ϕ̃(t0, x0, p)

in the domain of ϕ̃.

We conclude the proof by discussing three alternative cases depending on the value of p0.

1. If p0 ∈ (0, 1), then (4.17) implies that ϕ̃ satisfies (4.6) at (t0, x0, p0) and the required result
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follows by exploiting the link between the derivatives of ϕ̃ and the derivatives of its p-Fenchel

transform ϕ, which can be deduced from (4.16).

2. If p0 = 1, then the first boundary condition in (4.7) and (4.17) imply that (t0, x0) is a local

minimizer of V̄∗(·, 1) − ϕ̃(·, 1) = V − ϕ̃(·, 1) such that (V − ϕ̃(·, 1))(t0, x0) = 0. This implies that

ϕ̃(·, 1) satisfies (4.5) at (t0, x0) so that ϕ̃ satisfies (4.6) for α = 0 at (t0, x0, p0). We can then

conclude as in 1. above.

3. If p0 = 0, then the second boundary condition in (4.7) and (4.17) imply that (t0, x0) is a

local minimizer of V̄∗(·, 0) − ϕ̃(·, 0) = 0 − ϕ̃(·, 0) such that 0 − ϕ̃(·, 0)(t0, x0) = 0. In particular,

(t0, x0) is a local maximum point for ϕ̃(·, 0) so that (∂tϕ̃,Dxϕ̃)(t0, x0, 0) = 0 and Dxxϕ̃(t0, x0, 0) is

negative semi-definite. This implies that ϕ̃(·, 0) satisfies (4.5) at (t0, x0) so that ϕ̃ satisfies (4.6) at

(t0, x0, p0), for α = 0. We can then argue as in the first case. ✷

5 Derivation of the DPE for singular stochastic target problems

This section is dedicated to the proof of Theorems 2.1 and 2.2. We first recall the geometric

dynamic programming principle of [10]. We next report the proof of the supersolution properties

in subsections 5.1 and 5.2, and that of the subsolution properties in subsections 5.3 and 5.4.

Theorem 5.1 (Geometric Dynamic Programming Principle) Let (t, x) ∈ [0, T ) ×X and θ

be a [s, T ]−valued stopping time. Then,

V (t, x) = inf{y ∈ R : Y ν
t,x,y(θ) ≥ V

(

θ,Xν
t,x(θ)

)

a.s. for some ν ∈ U}. (5.1)

The dynamic programming equation (2.7) is the infinitesimal analogue of the above geometric

dynamic programming principle. The viscosity property stated in Theorem 2.1 is obtained in two

steps. The super-solution property will be deduced from the following consequence of (5.1).

(GDP1) If y > V (t, x), then there exists ν ∈ U such that for all stopping time θ ≤ T

Y ν
t,x,y(θ) ≥ V (θ,Xν

t,x(θ)) (5.2)

The sub-solution property will be proved using the following claim which is again implied by (5.1).

(GDP2) For every y < V (t, x), ν ∈ U , and all stopping time θ ≤ T ,

P
[

Y ν
t,x,y(θ) > V (θ,Xν

t,x(θ))
]

< 1 . (5.3)

Notice that (5.1) is equivalent to (GDP1)-(GDP2).

5.1 The supersolution property on [0, T ) × X

This proof avoids delicate limit arguments of the supersolution derivation in [9] and [10]
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Step 1 Let (t0, x0) ∈ [0, T ) × X and ϕ be a smooth function such that

(strict) min
[0,T )×X

(V∗ − ϕ) = (V∗ − ϕ)(t0, x0) = 0 .

Assume to the contrary that (−∂tϕ+ F ∗ϕ) (t0, x0) =: −2η for some η > 0, and let us work towards

a contradiction. By definition of F ∗, we may find ε > 0, such that

µY (x, y, u) − Luϕ(t, x) ≤ −η for all u ∈ Nε(x, y,Dϕ(t, x)) (5.4)

and (t, x, y) ∈ [0, T ) × X × R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ(t, x)| ≤ ε ,

where we recall that Bε(t0, x0) denotes the ball of radius ε around (t0, x0). Let ∂pBε(t0, x0) :=

{t0 + ε} × cl (Bε(t0, x0)) ∪ [t0, t0 + ε) × ∂Bε(x0) denote the parabolic boundary of Bε(t0, x0) and

observe that

ζ := min
∂pBε(t0,x0)

(V∗ − ϕ) > 0 (5.5)

since (t0, x0) is a strict minimum.

Step 2 We now show that (5.4) and (5.5) lead to a contradiction to (GDP1). Let (tn, xn)n be

a sequence in [0, T ) × X which converges to (t0, x0) and such that V (tn, xn) → V∗(t0, x0). Set

yn = V (tn, xn) + n−1 and observe that

γn := yn − ϕ(tn, xn) → 0 . (5.6)

For each n ≥ 1, we have yn > V (tn, xn). Then, there exists some νn ∈ U such that

G (Zn(T )) ≥ 0 where Zn := (Xn, Y n) :=
(

Xνn

tn,xn
, Y νn

tn,xn,yn

)

. (5.7)

We now define the stopping times

θo
n := {s ≥ tn : (s,Xn(s)) /∈ Bε(t0, x0)} , θn := {s ≥ tn : |Y n(s) − ϕ(s,Xn(s))| ≥ ε} ∧ θo

n ,

and set

An :=
{

s ∈ [tn, θn] : µY (Zn(s), νn
s ) − Lνn

s ϕ (s,Xn(s)) > −η
}

. (5.8)

Observe that (5.4) implies that the process

ψn
s := Nνn

(Zn
s , Dϕ(s,Xn

s )) satisfies |ψn
s | > ε for s ∈ An. (5.9)

By (5.7) and (GDP1), it follows that

Y n(t ∧ θn) ≥ V (t ∧ θn, X
n(t ∧ θn)) , t ≥ tn .

Using the definition of ζ in (5.5) and θn, this implies that

Y n(t ∧ θn) ≥ ϕ (t ∧ θn, X
n(t ∧ θn)) +

(

ζ1{θo
n=θn} + ε1{θo

n>θn}
)

1{t=θn}

≥ ϕ (t ∧ θn, X
n(t ∧ θn)) + (ζ ∧ ε)1{t=θn} , t ≥ tn .
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Since ϕ is smooth, it follows from Itô’s Lemma, (5.6), the definition of ψn, (2.8) and (5.8) that

− (ζ ∧ ε)1{t<θn} ≤ γn − (ζ ∧ ε) +

∫ t∧θn

tn

{

µY (Zn(s), νn
s ) − Lνn

s ϕ (s,Xn(s))
}

ds+

∫ t∧θn

tn

ψn
s · dWs

≤ Mn
t := γn − (ζ ∧ ε) +

∫ t∧θn

tn

bns ds+

∫ t∧θn

tn

ψn
s · dWs , (5.10)

where we set bns :=
{

µY (Zn(s), νn
s ) − Lνn

s ϕ (s,Xn(s))
}

1An(s). Let Ln be the exponential local

martingale defined by Ln
tn = 1 and, for s ≥ tn,

dLn
s = −Ln

s b
n
s |ψn

s |−2ψn
s 1An(s) · dWs ,

which is well defined by (5.9), (2.2) and our definition of the set of admissible controls U .

By Itô’s formula and (5.10), we see that LnMn is a local martingale which is bounded from

below by the submartingale − (ζ ∧ ε)Ln. Then, LnMn is a supermartingale, and it follows from

(5.10) that

0 ≤ E
[

Ln
θn
Mn

θn

]

≤ Ln
tnM

n
tn = Mn

tn = γn − ζ ∧ ε ,

which contradicts (5.6) for n large enough. ✷

5.2 The supersolution property on {T} × X

Let x0 ∈ X and ϕ be a smooth function such that

(strict) min
X

(V∗(T, ·) − ϕ) = (V∗(T, ·) − ϕ)(x0) = 0 .

The fact that δ∗ϕ(x0) ≥ 0 is deduced from (2.15) and the upper-semicontinuity of δ∗ by standard

arguments, see e.g. the proof of Lemma 5.2 in [9]. We now prove the second assertion. Assume

that

F ∗ϕ(x0) <∞ and ϕ(x0) = V∗(T, x0) < g∗(x0) ,

and let us work towards a contradiction. Since V (T, .) = g by the definition of the problem, there

is a constant η > 0 such that ϕ − V (T, ·) ≤ ϕ − g∗ ≤ −η on Bε(x0) for some ε > 0. Since x0 is

a strict minimizer, 2ζ := minx∈∂Bε(x0) V∗(T, x) − ϕ(x) > 0 and it follows that there exists r > 0

such that V (t, x) − ϕ(x) ≥ ζ > 0 for all (t, x) ∈ [T − r, T ] × ∂Bε(x0). Indeed, otherwise we could

find (tr, xr) ∈ [T − r, T ] × ∂Bε(x0) such that V (tr, xr) − ϕ(xr) ≤ ζ, for each r > 0. Sending r → 0

would then lead to a contradiction since ∂Bε(x0) is compact. Hence,

V (t, x) − ϕ(x) ≥ ζ ∧ η > 0 for (t, x) ∈ ([T − r, T ] × ∂Bε(x0)) ∪ ({T} ×Bε(x0)) . (5.11)

We now use the fact that F ∗ϕ(x0) <∞ to deduce that, after possibly changing ε > 0,

µY (x, y, u) − Luϕ(x) ≤ C for all u ∈ Nε(x, y,Dϕ(t, x))

and (x, y) ∈ X × R s.t. x ∈ Bε(x0) and |y − ϕ(x)| ≤ ε,
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for some constant C > 0. Let ϕ̃(t, x) := ϕ(x) + C(t − T ). Then, for sufficiently small r > 0, we

have

V (t, x) − ϕ̃(x) ≥ 1
2(ζ ∧ η) > 0 for (t, x) ∈ ([T − r, T ] × ∂Bε(x0)) ∪ ({T} ×Bε(x0)) .

and µY (x, y, u) − Luϕ̃(x) ≤ C for all u ∈ Nε(x, y,Dϕ̃(t, x))

(x, y) ∈ X × R s.t. x ∈ Bε(x0) and |y − ϕ̃(x)| ≤ ε.

By following the arguments in Step 2 of Section 5.1, the latter inequalities lead to a contradiction

of (GDP1). ✷

5.3 The sub-solution property on [0, T ) × X

We essentially adapt the arguments of [9] and [10]. Since our controls are not bounded and

Assumption 2.1 is weaker that their assumptions, we provide the complete proof.

Step 1 Let (t0, x0) ∈ [0, T ) × X and ϕ be a smooth function such that

0 = (V ∗ − ϕ)(t0, x0) > (V ∗ − ϕ)(t, x) , (t0, x0) 6= (t, x) ∈ [0, T ) × X . (5.12)

We have to show that (−∂tϕ+ F∗ϕ) (t0, x0) ≤ 0. Assume to the contrary that

4η := (−∂tϕ+ F∗ϕ) (t0, x0) > 0.

By (2.9), we may find ε > 0 such that

µY (x, y, u) − Luϕ(t, x) ≥ 2η for some u ∈ N0(x, y,Dϕ(t, x))

for all (t, x, y) ∈ [0, T ) × X × R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ(t, x)| ≤ ε .

For ε small enough, Assumption 2.1 then implies that

α(t, x, y) := µY (x, y, ν̂(x, y,Dϕ(t, x))) − Lν̂(x,y,Dϕ(t,x))ϕ(t, x) ≥ η

for all (t, x, y) ∈ [0, T ) × X × R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ(t, x)| ≤ ε (5.13)

where ν̂ is a locally Lipschitz map satisfying

ν̂(x, y,Dϕ(t, x)) ∈ N0(x, y,Dϕ(t, x)) on Bε(t0, x0) . (5.14)

Observe that, since (t0, x0) is a strict maximizer in (5.12), we have

−ζ := max
∂pBε(t0,x0)

(V ∗ − ϕ) < 0 , (5.15)

where ∂pBε(t0, x0) := {t0+ε}×cl (Bε(t0, x0))∪[t0, t0+ε)×∂Bε(x0) denotes the parabolic boundary

of Bε(t0, x0).

Step 2 We now show that (5.13), (5.14) and (5.15) lead to a contradiction of (GDP2). Let

(tn, xn)n be a sequence in [0, T ) × X which converges to (t0, x0) and such that V (tn, xn) →
V ∗(t0, x0). Set yn = V (tn, xn) − n−1 and observe that

γn := yn − ϕ(tn, xn) −→ 0 . (5.16)
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Let Zn := (Xn, Y n) denote the solution of the SDE (2.1) associated to the Markovian control

ν̂n = ν̂(Xn, Y n, Dϕ(·, Xn)) and the initial condition Zn(tn) = (xn, yn). Since ν̂ is locally Lipschitz,

this solution is well-defined. We next define the stopping times

θo
n := inf {s ≥ tn : (s,Xn(s)) /∈ Bε(t0, x0)} ,
θn := inf {s ≥ tn : |Y n(s) − ϕ(s,Xn(s))| ≥ ε} ∧ θo

n .

Note that the first line in (5.13), (5.16) and a standard comparison theorem implies that Y n(θn)−
ϕ(θn, X

n(θn)) ≥ ε on {|Y n(θn) − ϕ(θn, X
n(θn))| ≥ ε} for n large enough. Since V ≤ V ∗ ≤ ϕ, we

then deduce from (5.15) and the definition of θn that

Y n(θn) − V (θn, X
n(θn)) ≥ 1{θn<θo

n} {Y
n(θn) − ϕ (θn, X

n(θn))}
+1{θn=θo

n} {Y
n(θo

n) − V ∗ (θo
n, X

n(θo
n))}

= ε1{θn<θo
n} + 1{θn=θo

n} {Y
n(θo

n) − V ∗ (θo
n, X

n(θo
n))}

≥ ε1{θn<θo
n} + 1{θn=θo

n} {Y
n(θo

n) + ζ − ϕ (θo
n, X

n(θo
n))}

≥ ε ∧ ζ + 1{θn=θo
n} {Y

n(θo
n) − ϕ (θo, Xn(θo

n))} .

We continue by using Itô’s formula:

Y n(θn) − V (θn, X
n(θn)) ≥ ε ∧ ζ + 1{θn=θo

n}

(

γn +

∫ θn

tn

α(s,Xn
s , Y

n
s )ds

)

where the drift term α(·) ≥ η is defined in (5.13) and the diffusion coefficient vanishes by (5.14).

Since ε, ζ > 0 and γn → 0, this implies that

Y n(θn) ≥ V (θn, X
n(θn)) for sufficiently large n.

Recalling that the initial position of the process Y n is yn = V (tn, xn) − n−1 < V (tn, xn), this is

clearly in contradiction with part (GDP2) of the geometric dynamic programming principle. ✷

5.4 The subsolution property on {T} × X

The proof combines arguments used in Section 5.3 and in Section 5.2 above. We only explain the

main steps.

Let x0 ∈ X and ϕ be a smooth function such that

(strict) max
X

(V ∗(T, ·) − ϕ) = (V ∗(T, ·) − ϕ)(x0) = 0 .

Assume that

δ∗ϕ(x0) > 0 and 0 < 4η := ϕ(x0) − g∗(x0) = V ∗(T, x0) − g∗(x0) . (5.17)

By (2.14) and Assumption 2.1, we can find r, ε > 0 and a locally Lipschitz map ν̂ satisfying

ν̂(x, y,Dϕ(x)) ∈ N0(x, y,Dϕ(x)) (5.18)

for all (x, y) ∈ X × R s.t. x ∈ Br(x0) and |y − ϕ(x)| ≤ ε .
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Set ϕ̃(t, x) := ϕ(x) +
√
T − t. Since ∂tϕ̃(t, x) → −∞ as t → T , we deduce that, for r > 0 small

enough,

α(x, y) := µY (x, y, ν̂(x, y,Dϕ̃(t, x))) − Lν̂(x,y,Dϕ̃(t,x))ϕ̃(t, x) ≥ η

for all (t, x, y) ∈ [T − r, T ) X × R s.t. x ∈ Br(x0) and |y − ϕ̃(t, x)| ≤ ε . (5.19)

Also observe that, since V ∗− ϕ̃ is upper-semicontinuous and (V ∗(T, ·)−ϕ)(x0) = 0, we can choose

r > 0 so that

V (t, x) ≤ ϕ̃(t, x) + ε/2 for all (t, x) ∈ [T − r, T ] ×Br(x0) . (5.20)

Moreover, combining the identity V (T, x0) = g(x0), (5.17), (5.19), the fact that x0 achieves a strict

maximum, and using similar arguments as those of Section 5.2 above, we see that

V (t, x) − ϕ̃(t, x) ≤ −ζ for all (t, x) ∈ ([T − r, T ] × ∂Br(x0)) ∪ ({T} ×Br(x0)) (5.21)

for some r, ε, ζ > 0 small enough but so that the above inequalities still hold.

By following the arguments in Step 2 of Section 5.3, we see that (5.18), (5.19), (5.20) and (5.21)

lead to a contradiction of (GDP2). ✷

6 Derivation of the boundary conditions for the stochastic target

with controlled probability

We now prove Theorem 3.1. The Dynkin operator associated to (Xν , Pα) will be denoted by

L̄ūϕ(t, x̄) := ∂tϕ(t, x̄) + µ̄(x̄, ū) ·Dϕ(t, x̄) +
1

2
Tr
[

σ̄σ̄T(x̄, ū)D2ϕ(t, x̄)
]

.

6.1 The endpoint p = 1

In order to prove that V̄∗(·, 1) is a supersolution of (2.10)-(2.19), it suffices to show that V̄∗(·, 1) is

a supersolution of

max
{

V̄∗(., 1) − V∗ , −∂tV̄∗(., 1) + F ∗V̄∗(., 1)
}

≥ 0 on [0, T ) × X , (6.1)

and that V̄∗(T, ·, 1) is a viscosity super-solution on X of

max
{

V̄∗(T, ., 1) − V∗(T, .),min
{

(

V̄∗(T, ., 1) − g∗
)

1{F ∗V̄∗(T,.,1)<∞}, δ
∗V̄∗(T, ·, 1)

}}

≥ 0. (6.2)

To convince ourself, let us show for instance that (6.1) implies (2.10). Let (t0, x0) be a local mini-

mizer of V̄∗(·, 1) − ϕ for some smooth function ϕ. Then,

- either V̄∗(t0, x0, 1) < V∗(t0, x0) and (2.10) holds for ϕ at (t0, x0),

- or V̄∗(t0, x0, 1) = V∗(t0, x0) so that (t0, x0) is a local minimizer of V∗ − ϕ, and (2.10) holds for ϕ

at (t0, x0) by the viscosity property of V∗, see Theorem 2.1.
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Step 1 We first show that for any smooth function ϕ on [0, T ]×X× [0, 1] and (t0, x0) ∈ [0, T )×X

such that

(strict) min
[0,T )×X×(0,1]

(V̄∗ − ϕ) = (V̄∗ − ϕ)(t0, x0, 1) = 0 , (6.3)

we have

max
{

ϕ(t0, x0, 1) − V∗(t0, x0) ,
(

−∂tϕ+ F̄ ∗ϕ
)

(t0, x0, 1)
}

≥ 0 . (6.4)

If not, we can find η, ε > 0 such that

max
{

ϕ(t, x, p) − V (t, x) , µY (x, y, u) − L̄u,αϕ(t, x, p)
}

≤ −η (6.5)

for all (u, α) ∈ N̄ε(x, y,Dϕ(t, x, p)) and (t, x, p, y) ∈ [0, T ) × X × (0, 1] × R

s.t. (t, x, p) ∈ Bε(t0, x0) × [1 − ε, 1] and |y − ϕ(t, x, p)| ≤ ε .

Let (tn, xn, pn)n be a sequence in [0, T ) × X × (0, 1) which converges to (t0, x0, 1) and such that

V̄ (tn, xn, pn) → V̄∗(t0, x0, 1). Set yn = V̄ (tn, xn, pn) + n−1 and observe that

γn := yn − ϕ(tn, xn) → 0 .

For each n ≥ 1, we have yn > V (tn, xn). Then, there exists some ν̄n := (νn, αn) ∈ Ū such that

Ḡ
(

Z̄n(T )
)

≥ 0 where Z̄n := (Xn, Pn, Y n) :=
(

Xνn

tn,xn
, Pαn

tn,pn
, Y νn

tn,xn,yn

)

. (6.6)

We now define the stopping times

θo
n := {s ≥ tn : (s,Xn(s), Pn(s)) ∈ D} , θn := {s ≥ tn : |Y n(s) − ϕ(s,Xn(s))| ≥ ε} ∧ θo

n ,

where

D := (∂pBε(t0, x0) × [1 − ε, 1]) ∪ (Bε(t0, x0) × {1 − ε, 1}) ,

and ∂pBε(t0, x0) := {t0 + ε}× cl (Bε(t0, x0))∪ [t0, t0 + ε)×∂Bε(x0) denotes the parabolic boundary

of Bε(t0, x0). It follows from (6.3) and (6.5) that

ζ := inf
D

(V̄ − ϕ) > 0 .

By (6.6) and (GDP1), it follows that

Y n(θn) ≥ V̄ (θn, X
n(θn), Pn(θn)) ≥ ϕ(θn, X

n(θn), Pn(θn))

where the second inequality follows from (6.3). Using the definition of θn and ζ > 0, this implies

that

Y n(θn) ≥ ϕ (θn, X
n(θn), Pn(θn)) + ζ ∧ ε .

By arguing as in Section 5.1, this leads to a contradiction.
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Step 2 We now show (6.1), i.e. for any smooth function ϕ on [0, T ]×X and (t0, x0) ∈ [0, T )×X

such that

(strict) min
[0,T )×X

(V̄∗(·, 1) − ϕ) = (V̄∗(·, 1) − ϕ)(t0, x0) = 0 ,

we have

max {ϕ(t0, x0) − V∗(t0, x0) , (−∂tϕ+ F ∗ϕ) (t0, x0)} ≥ 0 . (6.7)

a. For every k > 0, we introduce the smooth function

ϕk(t, x, p) := ϕ(t, x) − |x− x0|4 − (t− t0)
2 − ψk(p)

where, for some fixed ρ > 0,

ψk(p) := −ρk
∫ 1

p

e2k

ek(r+1) − e2k+1
dr , k > 0 . (6.8)

Observe that

−2ρk ≤ ψ
′

k(p) = ρk
e2k

ek(p+1) − e2k+1
≤ − ρk

2(e− 1)
for k large enough (6.9)

ψ
′′

k (p) = −ρk2 ek(p+3)

(ek(p+1) − e2k+1)2
< 0 for all k > 0 (6.10)

lim
k→∞

(ψ
′

k(pk))
2

|ψ′′

k (pk)|
= ρ if (pk)k is a sequence in [0, 1] s.t. lim

k→∞
k(1 − pk) = 0 . (6.11)

Let (tk, xk, pk) be a minimizer of V̄∗ −ϕk on [0, T ]× B̄X

1 (x0)× [0, 1], where B̄X

1 (x0) := B̄1(x0)∩X

and B1(x0) is the closed unit ball centered at x0. Observe that, by definition of (tk, xk, pk) and

(t0, x0),

(V̄∗ − ϕ)(t0, x0, 1) = (V̄∗ − ϕk)(t0, x0, 1)

≥ (V̄∗ − ϕk)(tk, xk, pk)

= (V̄∗ − ϕ)(tk, xk, pk) + |xk − x0|4 + (tk − t0)
2 + ψk(pk)

≥ (V̄∗ − ϕ)(tk, xk, pk) + |xk − x0|4 + (tk − t0)
2 +

ρk

2(e− 1)
(1 − pk) ,

where the last inequality follows from (6.9) for k large enough and the fact that ψk(1) = 0. Since

V̄∗ ≥ 0 by construction and ϕ is bounded, this implies that the sequence (tk, xk, pk)k is bounded

and therefore converges to some (t∗, x∗, p∗) up to a subsequence. Clearly, p∗ = 1, since otherwise

we would have k(1 − pk) → ∞. By definition of (t0, x0), this implies that

(V̄∗ − ϕ)(t0, x0, 1) ≥ lim inf
k→∞

(V̄∗ − ϕk)(tk, xk, pk)

≥ (V̄∗ − ϕ)(t∗, x∗, 1) + |x∗ − x0|4 + (t∗ − t0)
2 + lim inf

k→∞
ρk

2(e− 1)
(1 − pk)

≥ (V̄∗ − ϕ)(t0, x0, 1) + |x∗ − x0|4 + (t∗ − t0)
2 + lim inf

k→∞
ρk

2(e− 1)
(1 − pk) .
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This shows that, after possibly passing to a subsequence,

(tk, xk, pk) → (t0, x0, 1) , k(1 − pk) → 0 and V̄∗(tk, xk, pk) → V̄∗(t0, x0, 1) . (6.12)

b. In order to prove (6.7), we assume that

V̄∗(t0, x0, 1) − V∗(t0, x0) < 0, (6.13)

and we intend to prove that

(−∂tϕ+ F ∗ϕ)(t0, x0) ≥ 0 . (6.14)

By the previous convergence results, it follows from (6.13) that the sequence (tk, xk, pk) of min-

imizers of the difference V̄∗ − ϕ satisfy V̄∗(tk, xk, pk) − V∗(tk, xk) < 0 after possibly passing to a

subsequence. By Corollary 3.1 together with the result of Step 1, we then deduce that

(

−∂tϕk + F̄ ∗ϕk

)

(tk, xk, pk) ≥ 0 for every k > 1 .

Now observe that by (6.12)

(∂tϕk, Dxϕk, D
2
xxϕk)(tk, xk, pk) → (∂tϕ,Dϕ,D

2ϕ)(t0, x0) as k → ∞, (6.15)

(Dpϕk, D
2
xpϕk, D

2
ppϕk)(tk, xk, pk) = (−ψ′

k(pk), 0,−ψ
′′

k (pk)) for every k > 1 .

By definition of F̄ ∗, we can then find sequences εk > 0, x̄k = (x0
k, p

0
k) ∈ X × [0, 1], yk ≥ 0,

qk = (qx
k , q

p
k) ∈ Rd × R, and a symmetric matrix Ak ∈ Sd+1 with rows (Axx

k , Axp
k ) ∈ Sd × Rd and

(Axp
k

T
, App

k ) ∈ Rd × R such that

εk → 0, x̄k → (x0, 1), and
∣

∣(yk, qk, Ak) − (ϕ,Dϕ,D2ϕk)(tk, xk, pk)
∣

∣ ≤ k−1 (6.16)

and

−∂tϕ(t0, x0) + F̄εk
(x̄k, yk, qk, Ak) ≥ −k−1 .

By the definition of F̄εk
, we may find a maximizing sequence (uk, αk) ∈ N̄εk

(x̄k, yk, qk) such that

−∂tϕ(t0, x0) + µY (x0
k, yk, uk) − µ(x0

k, uk) · qx
k

−1

2

(

Tr
[

σσT(x0
k, uk)A

xx
k

]

+ |αk|2App
k + 2σT(x0

k, uk)A
xp
k · αk

)

≥ −2k−1 .

Observe that (uk, αk) ∈ N̄εk
(x̄k, yk, qk) implies that uk ∈ Nεk+|qp

k
αk|
(

x0
k, yk, q

x
k

)

. Then

−∂tϕ(t0, x0) + Fεk+|qp

k
αk|
(

x0
k, yk, q

x
k , A

xx
k

)

≥ −2

k
+

1

2
|αk|2App

k + σT(x0
k, uk)A

xp
k · αk, (6.17)

and we deduce from Assumption 3.3 that, for some constant C > 0 (which may change from line

to line),

C
(

1 + |qp
kαk|2

)

≥ 1

2
App

k |αk|2 + σT(x0
k, uk)A

xp
k · αk

≥ 1

2
App

k |αk|2 + C|Axp
k ||αk| (6.18)
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where we used the condition that supu∈U |σ(x, u)| is locally bounded. From (6.9), (6.10), (6.11),

(6.12), (6.15) and (6.16), it follows that

App
k −→ ∞, Axp

k −→ 0, and
(qp

k)
2

|App
k | −→ ρ as k → ∞ , (6.19)

and we deduce from (6.18) that, for small ρ,

|αk|2|App
k | ≤ C and |αk|2|qp

k|2 ≤ Cρ

for some constant C. In view of (6.19), this implies that |αk| → 0. We now return to (6.17) to

deduce that

−∂tϕ(t0, x0) + Fεk+
√

Cρ

(

x0
k, yk, q

x
k , A

xx
k

)

≥ −2

k
+ σT(x0

k, uk)A
xp
k · αk ,

since App
k > 0, and we obtain the required result (6.14) by sending k → ∞ and then ρ → 0, and

recalling that (|αk|, Axp
k ) → 0 and that σ is locally bounded, uniformly in the control u.

Step 3 It remains to prove (6.2). The fact that V̄∗(T, ·, 1) is a viscosity supersolution of

max
{

V̄∗(T, ., 1) − V∗(T, .) , δ∗V̄∗(T, ., 1)
}

≥ 0

is deduced from (6.7) of the previous step by using the same arguments as in Section 5.2. It remains

to show that V̄∗(T, ·, 1) is a viscosity supersolution of

max
{

V̄∗(T, ., 1) − V∗(T, .) , (V̄∗(T, ., 1) − g∗)1{F ∗V̄∗(T,.,1)<∞}
}

≥ 0 .

By combining the arguments of Step 1 with those of Section 5.2, we first show that for any smooth

function ϕ̄ on X × [0, 1] and x0 ∈ X such that

(strict) min
X×(0,1]

(V̄∗(T, ·) − ϕ̄) = (V̄∗(T, ·) − ϕ̄)(x0, 1) = 0 ,

we have

max
{

V̄∗(T, x0, 1) − V∗(T, x0) ,
(

V̄∗(T, x0, 1) − ḡ∗(x0)
)

1{F̄ ∗ϕ̄(x0,1)<∞}
}

≥ 0 . (6.20)

We then consider a smooth function ϕ on X and x0 ∈ X such that

(strict) min
X

(V̄∗(T, ·, 1) − ϕ) = (V̄∗(T, ·, 1) − ϕ)(x0) = 0

and

ϕ̄(T, x0) < V∗(T, x0) , F ∗ϕ(T, x0) <∞ . (6.21)

We follow the construction of Step 2 of modified test functions

ϕk(x, p) := ϕ(x) − |x− x0|4 − ψk(p),

where ψk is defined in (6.8). As in the above Step 2, we prove that the difference V̄∗(T, .) − ϕk

has a local minimizer x̄k = (xk, pk) satisfying all estimates derived in the above Step 2 (forgetting

about the t variable). In particular, since F ∗ϕ(x̄k) ≤ C for some constant C > 0 independent of k

by (6.21), we deduce from the same estimates than in Step 2 that F̄ ∗ϕ(x̄k) ≤ 2C for all large k. It

then follows from Corollary 3.2, (6.20) and (6.21) that V̄∗(T, x̄k) ≥ ḡ∗(x̄k). Sending k → ∞, this

provides V̄∗(T, x0, 1) ≥ ḡ∗(x0, 1), and the proof is completed by observing that ḡ∗(x0, 1) = g∗(x0).

✷

27



6.2 The endpoint p = 0

We organize the proof in three steps. As in the previous subsection, Steps 1 and 2 focus on t < T

while Step 3 concentrates on t = T .

Step 1 We first show that for any smooth function ϕ̄ on [0, T )×X× [0, 1] and (t1, x1) ∈ [0, T )×X

such that

(strict) max
[0,T )×X×[0,1]

(V̄ ∗ − ϕ̄) = (V̄ ∗ − ϕ̄)(t1, x1, 0) = 0 , (6.22)

we have

min
{

V̄ ∗ , −∂tϕ̄+ F̄∗ϕ̄
}

(t1, x1, 0) ≤ 0 . (6.23)

The proof is very similar to that of Subsection 5.3 up to the modification explained in the proof

of Corollary 3.1 and the fact that we have to handle the state constraint p = 0. For completeness,

we report here the entire argument. Assume on the contrary that

4η := min
{

V̄ ∗ ,
(

−∂tϕ̄+ F̄∗ϕ̄
)

(t0, x0, 0)
}

> 0

i.e., for some ε > 0,

min
{

ϕ̄(t, x̄) , µY (x̄, y, ū) − L̄ūϕ̄(t, x̄)
}

≥ 2η for some ū ∈ N̄0(x̄, y,Dϕ̄(t, x̄))

for all (t, x̄, y) ∈ [0, T ) × X̄ × R s.t. (t, x̄) ∈ Bε(t0, x0) × [0, ε] , |y − ϕ̄(t, x̄)| ≤ ε. (6.24)

Assumption 3.1 implies that

α(t, x, y) := min
{

ϕ̄(t, x̄) , µY (x̄, y, ν̄(x̄, y,Dϕ̄(t, x̄))) − L̄ν̄(x̄,y,Dϕ̄(t,x̄))ϕ̄(t, x̄)
}

≥ η

for (t, x̄, y) ∈ [0, T ] × X̄ × R s.t. (t, x̄) ∈ Bε(t0, x0) × [0, ε] , |y − ϕ̄(t, x̄)| ≤ ε (6.25)

where ν̄ is a locally Lipschitz map satisfying

ν̄(x̄, y,Dϕ̄(t, x̄)) ∈ N̄0(x̄, y,Dϕ̄(t, x̄)) on Bε(t0, x0) × [0, ε] . (6.26)

Observe that since (t1, x1) is a strict maximizer in (6.22), we have

−ζ := max
D

(V̄ ∗ − ϕ̄) < 0 , where D := (∂pBε(t0, x0) × [0, ε]) ∪ (Bε(t0, x0) × {ε}) (6.27)

Also, we deduce from (6.24) and the fact that V̄ (·, 0) = 0 by definition:

0 > −η ≥ max
Bε(t0,x0)

(V̄ − ϕ̄)(·, 0) (6.28)

By following the arguments in Step 2 of Section 5.3, we see that (6.25), (6.26), (6.27) and (6.28)

lead to a contradiction of (GDP2).

Step 2 Let ϕ be a smooth test function on [0, T ] × X and (t0, x0) ∈ [0, T ) × X be such that

(strict) max
[0,T )×X

(V̄ ∗ − ϕ)(·, 0) = (V̄ ∗ − ϕ)(t0, x0, 0) = 0
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By definition, we have V̄ ∗(t0, x0, 0) ≥ 0. Let us assume that

V̄ ∗(t0, x0, 0) > 0 , (6.29)

and work towards a contradiction. Recall the function ψk of (6.8), and define

ϕk(t, x, p) := ϕ(t, x) + |x− x0|4 + (t− t0)
2 + ψk(1 − p) .

Arguing as in Step 2 of the previous subsection, we see that the difference V̄ ∗ − ϕk has a local

maximizer (tk, xk, pk) on cl([0, T ] × X × [0, 1]) satisfying

(tk, xk, pk) → (t0, x0, 0), kpk → 0 and V̄ ∗(tk, xk, pk) → V̄ ∗(t0, x0, 0) , (6.30)

so that

(∂tϕk, Dxϕk, D
2
xxϕk)(tk, xk, pk) −→ (∂tϕ,Dϕ,D

2ϕ)(t0, x0) (6.31)

(Dpϕk, D
2
xpϕk, D

2
ppϕk)(tk, xk, pk) = (−ψ′

k(1 − pk), 0, ψ
′′

k (1 − pk)) .

Since V̄ ∗(t0, x0, 0) > 0, we have V̄ ∗(tk, xk, pk) > 0 for all k, after possibly passing to a subsequence.

Then, it follows from Corollary 3.1 and Step 1 that

(

−∂tϕk + F̄∗ϕk

)

(tk, xk, pk) ≤ 0 for all k > 1 .

By the definition of F̄∗, we can then find sequences εk > 0, x̄k = (x0
k, p

0
k) ∈ X × [0, 1], yk ≥ 0,

qk = (qx
k , q

p
k) ∈ Rd × R, and a symmetric matrix Ak ∈ Sd+1 with rows (Axx

k , Axp
k ) ∈ Sd × Rd and

(Axp
k

T
, App

k ) ∈ Rd × R such that

εk → 0, x̄k → (x0, 1), and
∣

∣(yk, qk, Ak) − (ϕ,Dϕ,D2ϕk)(tk, xk, pk)
∣

∣ ≤ k−1 (6.32)

and

−∂tϕ(t0, x0) + F̄εk
(x̄k, yk, qk, Ak) ≤ k−1 ,

i.e. for every (u, α) ∈ N̄εk
(x̄k, yk, qk):

−∂tϕ(t0, x0) + µY (x0
k, yk, u) − µ(x0

k, u) · qx
k (6.33)

−1

2

(

Tr
[

σσT(x0
k, u)A

xx
k

]

+ |α|2App
k + 2σT(x0

k, u)A
xp
k · α

)

≤ k−1 .

Observe that (6.9), (6.10), (6.11), (6.30), and (6.31) imply that

App
k < 0 , |qp

k| > 0 , for large k, lim
k→∞

Axp
k = 0, and lim

k→∞
(qp

k)
2

|App
k | = ρ . (6.34)

Now let u ∈ U be an arbitrary control, and define αk := Nu
(

x0
k, yk, q

x
k

)

/qp
k, so that (u, αk) ∈

N̄εk
(x̄k, yk, qk), and it follows from (6.33) that

|App
k |

(qp
k)

2

∣

∣Nu
(

x0
k, yk, q

x
k

)∣

∣

2 ≤ C,
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for some C > 0 independent of k and ρ. Sending k → ∞ in the above inequality, we then deduce

from (6.32) and (6.34) that

ρ−1 |Nu (x0, ϕ(t0, x0), Dϕ(t0, x0))|2 ≤ C.

Since ρ > 0 can be chosen arbitrarily close to 0, this shows that Nu (x0, ϕ(t0, x0), Dϕ(t0, x0)) = 0,

and the arbitrariness of u ∈ U is in contradiction with Assumption 3.2. Hence, (6.29) does not

hold and therefore V̄ ∗(·, 0) = 0 on [0, T ) × X.

Step 3 We finally show that V̄∗(T, ·, 0) = 0 on X. Since V̄ ∗(t, x, 0) = 0 for t < T and x ∈ X,

we can find a sequence (tn, xn, pn)n in [0, T ) × X × (0, 1) such that (tn, xn, pn) → (T, x, 0) and

0 ≤ V̄ (tn, xn, pn) ≤ 1/n for all n ≥ 0. Passing to the limit leads to the required result. ✷
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