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Abstract

In this paper, we investigate the minimax properties of Stein block thresholding in
any dimension d with a particular emphasis on d = 2. Towards this goal, we consider
a frame coefficient space over which minimaxity is proved. The choice of this space
is inspired by the characterization provided in [5] of family of smoothness spaces on
R

d, a subclass of so-called decomposition spaces [28]. These smoothness spaces cover
the classical case of Besov spaces, as well as smoothness spaces corresponding to
curvelet-type constructions. Our main theoretical result investigates the minimax
rates over these decomposition spaces, and shows that our block estimator can
achieve the optimal minimax rate, or is at least nearly-minimax (up to a log factor)
in the least favorable situation. Another contribution is that the minimax rates
given here are stated for a noise sequence model in the transform coefficient domain
satisfying some mild assumptions. This covers for instance the Gaussian case with
frames where the noise is not white in the coefficient domain. The choice of the
threshold parameter is theoretically discussed and its optimal value is stated for
some noise models such as the (non-necessarily i.i.d.) Gaussian case. We provide a
simple, fast and a practical procedure. We also report a comprehensive simulation
study to support our theoretical findings. The practical performance of our Stein
block denoising compares very favorably to the BLS-GSM state-of-the art denoising
algorithm on a large set of test images. A toolbox is made available for download
on the Internet to reproduce the results discussed in this paper.
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1 Introduction

Consider the nonparametric regression model:

Yi = f(i/n) + σǫi, i ∈ {1, ..., n}d, (1.1)

where d ∈ N
∗ is the dimension of the data, (Yi)i∈{1,...,n}d are the observations

regularly sampled on a d-dimensional Cartesian grid, (ǫi)i∈{1,...,n}d are inde-

pendent and identically distributed (i.i.d.) N (0, 1), and f : [0, 1]d → R is an
unknown function. The goal is to estimate f from the observations. We want
to build an adaptive estimator f̂ (i.e. its construction depends on the obser-
vations only) such that the mean integrated squared error (MISE) defined by

R(f̂ , f) = E

(∫
[0,1]d

(
f̂(x) − f(x)

)2
dx
)

is as small as possible for a wide class

of f . A now classical approach to the study of nonparametric problems of the
form (1.1) is to, first, transform the data to obtain a sequence of coefficients,
second, analyze and process the coefficients (e.g. shrinkage, thresholding), and
finally, reconstruct the estimate from the processed coefficients. This approach
has already proven to be very successful by several authors and a good survey
may be found in [31, 32, 33]. In particular, it is now well established that the
quality of the estimation is closely linked to the sparsity of the sequence of
coefficients representing f in the transform domain. Therefore, in this paper,
we focus our attention on transform-domain shrinkage methods, such as those
operating in the wavelet domain.

1.1 The one-dimensional case

First, let’s consider the one-dimensional case d = 1. The most standard of
wavelet shrinkage methods is VisuShrink of [27]. It is constructed through
individual (or term-by-term) thresholding of the empirical wavelet coefficients.
It enjoys good theoretical (and practical) properties. In particular, it achieves
the optimal rate of convergence up to a logarithmic term over the Hölder class
under the MISE. Other term-by-term shrinkage rules have been developed in
the literature. An exhaustive account is provided in [3] that the interested
reader may refer to.

The individual thresholding achieves a degree of trade-off between variance
and bias contribution to the MISE. However, this trade-off is not optimal; it
removes too many terms from the observed wavelet expansion, with the con-
sequence the estimator is too biased and has a sub-optimal MISE convergence
rate. One way to increase estimation precision is by exploiting information
about neighboring coefficients. In other words, empirical wavelet coefficients
tend to form clusters that could be thresholded in blocks (or groups) rather
than individually. This would allow threshold decisions to be made more ac-
curately and permit convergence rates to be improved. Such a procedure has
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been introduced in [29, 30] who studied wavelet shrinkage methods based on
block thresholding. The procedure first divides the wavelet coefficients at each
resolution level into non-overlapping blocks and then keeps all the coefficients
within a block if, and only if, the magnitude of the sum of the squared empiri-
cal coefficients within that block is greater than a fixed threshold. The original
procedure developed by [29, 30] is defined with the block size (log n)2. Block-
Shrink of [9, 8] is the optimal version of this procedure. It uses a different block
size, log n, and enjoys a number of advantages over the conventional individual
thresholding. In particular, it achieves the optimal rate of convergence over
the Hölder class under the MISE by removing the extra logarithmic factor.
The minimax properties of BlockShrink under the Lp risk have been studied in
[22]. Other local block thresholding rules have been developed. Among them,
there is BlockJS of [10, 8] which combines James-Stein rule (see [43]) with
the wavelet methodology. In particular, it is minimax optimal but improves
the constant in the rate. From a practical point view, it is better than Block-
Shrink. Further details about the theoretical performances of BlockJS can be
found in [19]. We refer to [3] and [11] for a comprehensive simulation study.
Variations of BlockJS are BlockSure of [23] and SureBlock of [12]. The distinc-
tive aspect of these block thresholding procedures is to provide data-driven
algorithms to choose the threshold parameter. Let’s also mention the work of
[1] who considered wavelet block denoising in a Bayesian framework to obtain
level-dependent block shrinkage and thresholding estimates.

1.2 The multi-dimensional case

Denoising is a long-standing problem in image processing. Since the seminal
papers by Donoho & Johnstone [27], the image processing literature has been
inundated by hundreds of papers applying or proposing modifications of the
original algorithm in image denoising. Owing to recent advances in compu-
tational harmonic analysis, many multi-scale geometrical transforms, such as
ridgelets [17], curvelets [15, 18] or bandelets [38], were shown to be very ef-
fective in sparsely representing the geometrical content in images. Thanks to
the sparsity (or more precisely compressibility) property of these expansions,
it is reasonable to assume that essentially only a few large coefficients will
contain information about the underlying image, while small values can be
attributed to the noise. Thus, the wavelet thresholding/shrinkage procedure
can be mimicked for these transforms, even though some care should be taken
when the transform is redundant (corresponding to a frame or a tight frame).
The modus operandi is again the same, first apply the transform, then per-
form a non-linear operator on the coefficients (each coefficient individually or
in group of coefficients), and finally apply the inverse transform to get an im-
age estimate. Among the many transform-domain image denoising algorithms
to date, we would like to cite [41, 42, 40, 36] which are amongst the most
efficient in the literature. Except [36], all cited approaches use usual Bayesian
machinery and assume different forms of multivariate priors over blocks of
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neighboring coefficients and even interscale dependency. Nonetheless, none of
those papers provide a study of the theoretical performance of the estimators.

From a theoretical point of view, Candès [14] has shown that the ridgelet-
based individual coefficient thresholding estimator is nearly minimax for re-
covering piecewise smooth images away from discontinuities along lines. In-
dividual thresholding of curvelet tight frame coefficients yields an estimator
that achieves a nearly-optimal minimax rate O(n−4/3) 1 (up to logarithmic
factor) uniformly over the class of piecewise C2 images away from singulari-
ties along C2 curves— so-called C2-C2 images [16] 2 . The wedgelet estimator
of Donoho [26] adapts to the anisotropic smoothness of the image by finding
the best edgelet-decorated recursive partition of the image which minimizes
a complexity-penalized sum of squares. This wedgelet estimator is nearly-
minimax with the rate O(n−2α/(α+1)), α ∈ [1, 2] for Cα functions away from
Cα edges. Similarly, Le Pennec et al. [39] have recently proved that individual
thresholding in an adaptively selected best bandelet orthobasis achieves nearly
this minimax rate over the Cα-Cα image class.

In the image processing community, block thresholding/shrinkage in a non-
Bayesian framework has been used very little. In [20, 21] the authors propose a
multi-channel block denoising algorithm in the wavelet domain. The hyperpa-
rameters associated to their method (e.g. threshold), are derived using Stein’s
risk estimator. Yu et al. [45] advocated the use of BlockJS [10] to denoise
audio signal in the time-frequency domain with anisotropic block size. To the
best of our knowledge, no theoretical study of the minimax properties of block
thresholding/shrinkage for images, and more generally for multi-dimensional
data, has been reported in the literature.

1.3 Contributions

In this paper, we propose a generalization of Stein block thresholding to any
dimension d. We investigate its minimax properties with a particular empha-
sis on d = 2. Towards this goal, we consider a frame coefficient space over
which minimaxity is proved; see (2.2). The choice of this space is inspired by
the characterization provided in [5] of family of smoothness spaces on R

d, a
subclass of so-called decomposition spaces [5, 28]. We will elaborate more on
these (sparsity) smoothness spaces later in subsection 2.2. From this charac-
terization, it turns out that our frame coefficient spaces are closely related
to smoothness spaces that cover the classical case of Besov spaces, as well as
smoothness spaces corresponding to curvelet-type constructions in R

d, d ≥ 2.
Therefore, for d = 2 our denoiser will apply to both images with smoothness in
Besov spaces for which wavelets are known to provide a sparse representation,
and also to images that are compressible in the curvelet domain.

1 It is supposed that the image has size n × n.
2 Known as the cartoon model.

4



Our main theoretical result investigates the minimax rates over these decom-
position spaces, and shows that our block estimator can achieve the optimal
minimax rate, or is at least nearly-minimax (up to a log factor) in the least
favorable situation. Another novelty is that the minimax rates given here are
stated for a general noise sequence model in the transform coefficient domain
beyond the usual i.i.d. Gaussian case. Thus, our result is particularly useful
when the transform used corresponds to a frame, where a bounded zero-mean
white Gaussian noise in the original domain is transformed into a bounded
zero-mean correlated Gaussian process with a covariance matrix given by the
Gram matrix of the frame.

The choice of the threshold parameter is theoretically discussed and its opti-
mal value is stated for some noise models such as the (non-necessarily i.i.d.)
Gaussian case. We provide a simple, fast and a practical procedure. We report
a comprehensive simulation study to support our theoretical findings. It turns
out that the only two parameters of our Stein block denoiser—the block size
and the threshold— dictated by the theory work well for a large set of test im-
ages and various transforms. Moreover, the practical performance of our Stein
block denoising compares very favorably to state-of-the art methods such as
the BLS-GSM of [41]. Our procedure is however much simpler to implement
and has a much lower computational cost than usual Bayesian methods such
as BLS-GSM, since it does not involve any computationally consuming inte-
gration nor optimization steps. A toolbox is made available for download on
the Internet to reproduce the results discussed in this paper.

1.4 Organization of the paper

The paper is organized as follows. In Section 2, we describe the multi-dimensional
BlockJS under a fairly general noise model beyond the i.i.d. Gaussian case.
This section also contains our main theoretical results. In Section 3, a com-
prehensive experimental study is reported and discussed. We finally conclude
in Section 4 and point to some perspectives. The proofs of the results are
deferred to the appendix awaiting inspection by the interested reader.

2 The multi-dimensional BlockJS

This section is the core of our proposal where we introduce a BlockJS-type
procedure for multi-dimensional data. The goal is to adapt its construction
in such a way that it preserves its optimal properties over a wide class of
functions.
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2.1 The sequence model

Let (ψj,ℓ,k(x))j,ℓ,k, x ∈ [0, 1]d be a collection of unit-norm functions forming
a (tight) frame of L2([0, 1]d). Set θj,ℓ,k = 〈f, ψj,ℓ,k〉 the unknown frame coeffi-
cients of f , yj,ℓ,k = 〈Y, ψj,ℓ,k〉 and zj,ℓ,k is a sequence of noise random variables.
We then observe a multi-dimensional sequence of coefficients (yj,ℓ,k)j,ℓ,k defined
by

yj,ℓ,k = θj,ℓ,k + n−r/2zj,ℓ,k, j = 0, ..., J, ℓ ∈ Bj, k ∈ Dj, (2.1)

where J = ⌊log2 n⌋, r ∈ (0, d], d ∈ N
∗, Bj = {1, ..., ⌊c∗2

υj⌋}, c∗ ≥ 1, υ ∈ [0, 1],
k = (k1, ..., kd),Dj =

∏d
i=1{0, ..., ⌊2

µij⌋−1}, (µi)i=1,...,d is a sequence of positive
real numbers. Let d∗ =

∑d
i=1 µi.

A wide variety of statistical models fall within the scope of the sequence model
(2.1). For instance, consider the d-dimensional Gaussian model in zero-mean
white noise (1.1). Then we have yj,ℓ,k = θj,ℓ,k +σzj,ℓ,k. Taking σ = n−d/2 as the
classical noise level for a dataset defined on a d-dimensional discrete grid of
equally-spaced samples, (2.1) is a projection of (1.1) onto the frame (ψj,ℓ,k)j,ℓ,k.
In general, setting σ = n−r/2, the sequence model (2.1) is equivalent, in some
sense, to (1.1) (see, for instance, [6]). Other models can be re-expressed in this
form; see the fractional Gaussian noise model discussed in Remark 2.1.

The notations of the indices are those of multiscale transforms (wavelets,
curvelets, etc), generally corresponding to tight frames or orthobases. Here, j
and k are respectively the scale and position parameters. ℓ is a generic integer
indexing for example the orientation (subband) which may be scale-dependent,
and Bj is the set of subbands at scale j. The parameters (µi)i=1,...,d allow to
handle anisotropic subbands. To illustrate the meaning of these parameters,
let’s see how they specialize in some popular transforms. For example, with
the separable two-dimensional wavelet transform, we have v = 0, c∗ = 3, and
µ1 = µ2 = 1. Thus, as expected, we get three isotropic subbands at each scale.
For the second generation curvelet transform [18], we have v = 1/2, µ1 = 1
and µ2 = 1/2 which corresponds to the parabolic scaling of curvelets.

Remark 2.1 (Comment on r) r is a tuning parameter depending on the
model. For standard statistical models (e.g. Gaussian white noise), we have
r = d. However, there exist sophisticated models where r ∈ (0, d). This is
case for the d-dimensional fractional Gaussian noise defined by dY (x) =
f(x)dx + n−d(1−H)dWH(x), x ∈ [0, 1]d, where {WH(x); x ∈ [0, 1]d} is a frac-
tional Brownian motion and H ∈ (1/2, 1). This model can be reexpressed as
(2.1) with r = 2d(1 −H) in a tight frame domain. We refer to [44].

Remark 2.2 Our study is formulated in the coefficient domain according to
the sequence model (2.1). However, as the transforms that we deal with corre-
spond to frames, thanks to the generalized Parseval relation, the convergence
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rates on the function estimator can be easily deduced from those stated in terms
on the coefficients.

2.1.1 Assumptions on the noise sequence

Let L = ⌊(r log n)1/d⌋ be the block length, j0 = ⌊(1/mini=1,...,d µi) log2 L⌋ is
the coarsest decomposition scale, and J∗ = ⌊(r/(d∗ + δ + υ)) log2 n⌋. For any
scale j ∈ {j0, ..., J∗}, let

• Aj =
∏d

i=1{1, ..., ⌊2
µijL−1⌋} be the set indexing the blocks at scale j.

• For each block index K = (K1, ..., Kd) ∈ Aj, Uj,K = {k ∈ Dj; (K1 − 1)L ≤
k1 ≤ K1L − 1, ..., (Kd − 1)L ≤ kd ≤ KdL − 1} is the set indexing the
positions of coefficients within the Kth block Uj,K.

Our assumptions on the noise model are as follows. Suppose that there exist
δ ≥ 0, λ∗ > 0, Q1 > 0 and Q2 > 0 independent of n such that

(A1) supj∈{0,...,J} supℓ∈Bj
2−j(d∗+δ)∑

k∈Dj
E

(
z2

j,ℓ,k

)
≤ Q1.

(A2)
J∗∑

j=j0

∑

ℓ∈Bj

∑

K∈Aj

∑

k∈Uj,K

E



z2
j,ℓ,k1

{∑
k∈Uj,K

z2

j,ℓ,k
>λ∗2δjLd/4

}


 ≤ Q2.

Assumptions (A1) and (A2) are satisfied for a wide class of noise models on the
sequence (zj,ℓ,k)j,ℓ,k (not necessarily independent or identically distributed).
Several such noise models are characterized in Propositions 2.1 and 2.2 below.

Remark 2.3 (Comments on δ) The parameter δ is connected to the nature
of the model. For standard models, and in particular, the d-dimensional non-
parametric regression corresponding to the problem of denoising (see Section
3), δ is set to zero. The presence of δ in our assumptions, definitions and
results is motivated by potential applicability of the multi-dimensional BlockJS
(to be defined in subsection 2.3) to other inverse problems such as deconvo-
lution. The role of δ becomes explicit when addressing such inverse problems.
This will be the focus of a future work. To illustrate the importance of δ in
one-dimensional deconvolution, see [34].

2.2 The smoothness space

We wish to estimate (θj,ℓ,k)j,ℓ,k from (yj,ℓ,k)j,ℓ,k defined by (2.1). To measure

the performance of an estimator θ̂ = (θ̂j,ℓ,k)j,ℓ,k of θ = (θj,ℓ,k)j,ℓ,k, we adopt the
minimax approach under the expected multi-dimensional squared error over
a multi-dimensional frame coefficient space. The expected multi-dimensional
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squared error is defined by

R
(
θ̂, θ

)
=

∞∑

j=0

∑

ℓ∈Bj

∑

k∈Dj

E

(
(θ̂j,ℓ,k − θj,ℓ,k)

2
)

and the multi-dimensional frame coefficient smoothness/sparseness space by

Θs
p,q(M) =





θ = (θj,ℓ,k)j,ℓ,k;




∞∑

j=0

∑

ℓ∈Bj



2j(s+d∗/2−d∗/p)




∑

k∈Dj

|θj,ℓ,k|
p




1/p




q



1/q

≤M





,

(2.2)
with a smoothness parameter s, 0 < p ≤ +∞ and 0 < q ≤ +∞ are norm
parameters 3 , and M ∈ (0,∞) denotes the radius of the ball. We recall that
d∗ =

∑d
i=1 µi.

The definition of these smoothness spaces is motivated by the work of [5].
These authors studied decomposition spaces associated to appropriate struc-
tured uniform partition of the unity in the frequency space R

d. They consid-
ered construction of tight frames adapted to form atomic decomposition of the
associated decomposition spaces, and established norm equivalence between
these smoothness/sparseness spaces and the sequence norm defined in (2.2).
That is, the decomposition space norm can be completely characterized by
the sparsity or decay behavior of the associated frame coefficients.

For example, in the case of a ”uniform” dyadic partition of the unity, the
smoothness/sparseness space is a Besov space Bs

p,q, for which suitable wavelet

expansion 4 is known to provide a sparse representation [37]. In this case, from
subsection 2.1 we have d∗ = d, and Θs

p,q(M) is a d-dimensional Besov ball.

Curvelets in arbitrary dimensions correspond to partitioning the frequency
plane into dyadic coronae, which are then angularly localized near regions
of side length 2j in the radial direction and 2j/2 in all the other directions
[13]. For d = 2, the angular wedges obey the parabolic scaling law [15]. This
partition of the frequency plane is significantly different from dyadic decom-
positions, and as a consequence, sparseness for curvelet expansions cannot
be described in terms of classical smoothness spaces. For d = 2, Borup and
Nielsen [5, Lemma 10] showed that the smoothness/sparseness space (2.2)
and the smoothness/sparseness of the second-generation curvelets [18] are the
same, in which case d∗ = 3/2. Embedding results for curvelet-type decompo-
sition spaces relative to Besov spaces were also provided in [5]. Furthermore,
it was shown that piecewise C2 images away from piecewise-C2 singularities,
which are sparsely represented in the curvelet tight frame [15], are contained

3 This is a slight abuse of terminology as for 0 < p, q < 1, we have quasi-normed
spaces.
4 With a wavelet having sufficient regularity and number of vanishing moments
[37].
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in Θ
3/2+β
2/3,2/3, ∀β > 0. Even though the role and the range of β has not been

clarified by the authors in [5].

2.3 Multi-dimensional block estimator

We wish to construct an adaptive estimator θ̂ = (θ̂j,ℓ,k)j,ℓ,k such that supθ∈Θ
s
p,q(M)R

(
θ̂, θ

)

is as small as possible. To reach this goal, we propose a multi-dimensional ver-
sion of the BlockJS procedure introduced in [10].

From subsection 2.1.1, recall the definitions of L, j0, J∗, Aj and Uj,K. We

estimate θ = (θj,ℓ,k)j,ℓ,k by θ̂∗ = (θ̂∗j,ℓ,k)j,ℓ,k where, for any k ∈ Uj,K in the
block K ∈ Aj and subband ℓ ∈ Bj,

θ̂∗j,ℓ,k =






yj,ℓ,k, if j ∈ {0, ..., j0 − 1},

yj,ℓ,k



1 − λ∗n−r2δj

1
Ld

∑
k∈Uj,K

y2

j,ℓ,k





+

, if j ∈ {j0, ..., J∗},

0, if j ∈ N − {0, ..., J∗}.

(2.3)

(x)+ = max(x, 0). In this definition, δ and λ∗ denote the constants involved
in (A1) and (A2). Thus, at the coarsest scales j ∈ {0, ..., j0}, the observed
coefficients (yj,k)k∈Uj,K

are left intact as usual. For each block Uj,K in the

scales j ∈ {j0, ..., J}, if the mean energy within the block
∑

k∈Uj,K
y2

j,ℓ,k/L
d is

larger than λ∗n
−r2δj then yj,k is shrunk by the amount yj,ℓ,k

λ∗n−r2δj

1
Ld

∑
k∈Uj,K

y2

j,ℓ,k

;

otherwise, θj,k is estimated by zero. In fact,
1

Ld

∑
k∈Uj,K

y2

j,ℓ,k

n−r can be interpreted
as a local measure of signal-to-noise ratio in the block Uj,K. Such a block
thresholding originates from the James-Stein rule introduced in [43]. Notice
that the dimension d of the model appears in the definition of L, the length of
each block Uj,K. This point is crucial; L optimizes the theoretical and practical
performance of the considered multi-dimensional BlockJS procedure. As far
as the choice of the threshold parameter λ∗ is concerned, it will be discussed
in subsection 2.5 below.

2.4 Minimax theorem

Theorem 2.1 below investigates the minimax rate of (2.3) over Θs
p,q.

Theorem 2.1 Consider the model (2.1) for n large enough. Suppose that (A1)

and (A2) are satisfied. Let θ̂∗ be given as in (2.3).
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• There exists a constant C > 0 such that

sup
θ∈Θ

s
p,q(M)

R
(
θ̂∗, θ

)
≤ Cρn,

where

ρn =






n−2r(s+υ(1/q−1/2))/(2s+δ+d∗+2υ/q) for p ≥ 2, q ≥ 2, s > υ(1/2 − 1/q),

n−2sr/(2s+δ+d∗+υ), for q ≤ 2 ≤ p,

(log n/n)2sr/(2s+δ+d∗+υ), for q ≤ p < 2, sp > d∗ ∨ (1 − p/2)(δ + d∗ + υ).

(2.4)

• If υ = 0, in addition to (2.4), we have ρn = (log n/n)2sr/(2s+δ+d∗) for p ≤
q < 2 and sp > d∗ ∨ (1 − p/2)(δ + d∗).

The rates of convergence (2.4) are optimal for a wide class of variables (zj,ℓ,k)j,ℓ,k

satisfying (A1) and (A2). If we take d∗ = d = µ1 = 1, r = 1, c∗ = 1 and
υ = δ = 0, then we recover the rates exhibited in the one-dimensional wavelet
case [10]. There is only a minor difference on the power of the logarithmic
term for p < 2. Thus, Theorem 2.1 can be viewed as a generalization of that
result.

In the case of d-dimensional isotropic Besov spaces, where wavelets (corre-
sponding to υ = 0, µ1 = µ2 = 1 and then d∗ = d) provide optimally sparse
representations, Theorem 2.1 gives two distinct rates depending whether p ≥ 2
or p < 2, ∀q. Therefore, for p ≥ 2, Theorem 2.1 states that Stein block thresh-
olding gets rid of the logarithmic factor, hence achieving the optimal minimax
rate over those Besov spaces. For p < 2, the block estimator is nearly-minimax.

Note that the condition sp > (1− p/2)(δ+ d∗ + υ) is only technical but seems
inevitable. Such condition is usual when we deal with minimax rates of conver-
gence over Besov spaces. See [25] for further details on the multidimensional
Besov balls with the tensor-product wavelet basis (δ = 0, d∗ = d and υ = 0).

As far as curvelet-type decomposition spaces are concerned, from section 2.1
we have µ1 = 1, µ2 = 1

2
, d∗ = µ1 + µ2 = 3

2
, r = d = 2, υ = 1

2
, δ = 0. This gives

the rates

ρn =






n−(4s+2/q−1)/(2s+1+1/q), for q ≥ 2 and p ≥ 2,

n−2s/(s+1), for q ≤ 2 ≤ p,

(log n/n)2s/(s+1), for q ≤ p < 2, sp >
3

2
∨ (2 − p).

where the logarithmic factor disappears only for q ≤ 2 ≤ p. Following the
discussion of section 2.2, C2-C2 images correspond to a smoothness space
Θs

p,q with p = q = 2/3. Moreover, ∃κ > 0 such that taking s = 2 + κ

satisfies the condition of Theorem 2.1, and C2-C2 images are contained in
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Θs
2/3,2/3 with such a choice. We then arrive at the rate O(n−4/3) (ignoring the

logarithmic factor). This is clearly consistent with our rate for α = 2 up to
a logarithmic factor which is we believe to be the the price to pay for the
estimator adaptivity.

For the class of Cα-Cα geometrically regular 2D images, a non-adaptive es-
timation procedure– it depends on a priori knowledge of α– was proposed in
[35]. These authors proved that the minimax rate uniformly over this class is
O(n−2α/(α+1)) and no better. Both the adaptive wedgelet and bandelet esti-
mators of [26] and [39] reviewed in subsection 1.2 achieve nearly this minimax
rate over the Cα-Cα image class. Both these estimators have the same rate as
ours (with the fixed curvelet transform) for C2-C2 images. Individual thresh-
olding in the curvelet tight frame has also the nearly-minimax rate O(n−4/3)
[16] uniformly over C2-C2 images. Nonetheless, the experimental results re-
ported in this paper indicate that block curvelet thresholding outperforms in
practice term-by-term thresholding on a wide variety of images, although the
improvement can be of a limited extent.

2.5 On the (theoretical) choice of the threshold

To apply Theorem 2.1, it is enough to determine δ and λ∗ such that (A1) and
(A2) are satisfied. The parameter δ is imposed by the nature of the model; it
can be easily fixed as in our denoising experiments where it was set to δ = 0.
The choice of the threshold λ∗ is more involved and is crucial towards good
performance of the estimator θ̂∗. From a theoretical point of view, since the
constant C of the bound (2.4) increases with growing threshold, the optimal
threshold value is the smallest real number λ∗ such that (A2) is fulfilled. In
the following, we first provide the explicit expression of λ∗ in the situation of
a non-necessarily i.i.d. Gaussian noise sequence (zj,ℓ,k)j,ℓ,k. This result is then
refined in the case of a white Gaussian noise.

Proposition 2.1 below determines a suitable threshold λ∗ satisfying (A1) and
(A2) when (zj,ℓ,k)j,ℓ,k are Gaussian random variables (not necessarily i.i.d.).

Proposition 2.1 Consider the model (2.1) for n large enough. Suppose that,
for any j ∈ {0, ..., J} and any ℓ ∈ Bj, (zj,ℓ,k)k is a centered Gaussian process.
Assume that there exists two constants Q3 > 0 and Q4 > 0 (independent of
n) such that

• (A3): supj∈{0,...,J} supℓ∈Bj
supk∈Dj

2−2δj
E

(
z4

j,ℓ,k

)
≤ Q3.

• (A4): for any a = (ak)k∈Dj
such that supj∈{0,...,J} supK∈Aj

∑
k∈Uj,K

a2
k
≤ 1,

we have

sup
j∈{0,...,J}

sup
ℓ∈Bj

sup
K∈Aj

2−δj
E








∑

k∈Uj,K

akzj,ℓ,k




2


 ≤ Q4.
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Then (A1) and (A2) are satisfied with λ∗ = 4
(
(2Q4)

1/2 +Q
1/4
3

)2
. Therefore

Theorem 2.1 can be applied to θ̂∗ defined by (2.3) with such a λ∗.

This result is useful as it establishes that the block denoising procedure and
the minimax rates of Theorem 2.1 apply to the case of frames where a bounded
zero-mean white Gaussian noise in the original domain is transformed into a
bounded zero-mean correlated Gaussian process whose covariance structure
is given by the Gram matrix of the frame. However, the estimate provided
by Proposition 2.1 is clearly not optimal for arbitrary frames. This remains a
challenging open question.

Remark 2.4 (Comments on (A4)) Assumption (A4) can be re-expressed us-
ing the covariance of the noise in the coefficient domain. Denote such a co-
variance cj,ℓ,k,k′ = E (zj,ℓ,kzj,ℓ,k′), then (A4) is satisfied if and only if, there
exists a constant Q4 > 0 such that

sup
j∈{0,...,J},ℓ∈Bj ,K∈Aj

2−δj
∑

(k,k′)∈Uj,K×Uj,K

akak′cj,ℓ,k,k′ ≤ Q4.

In particular, one can prove that it is satisfied if |cj,ℓ,k,k′ | ≤ C2δjb||k−k′||,
(bu)u∈N is a positive summable sequence. For example, with curvelets and white
noise in the original domain, one can show that |cj,ℓ,k,k′| ≤ CN(1 + ‖k −
k′‖2)−N/2, N ≥ 3 is a regularity parameter, so that

∑
u∈N2 b‖u‖ =

∑
u∈N2(1 +

‖u‖2)−N/2 ≤ (1/2)
(∑

u∈N(1 + u2)−N/4
)2
<∞.

If additional information is considered on (zj,ℓ,k)j,ℓ,k, the threshold constant λ∗
defined in Proposition 2.1 can be improved. This is the case when (zj,ℓ,k)j,ℓ,k are
i.i.d. N (0, 1) as is the case if the transform were orthonormal (e.g. orthogonal
wavelet transform). The statement is made formal in the following proposition.

Proposition 2.2 Consider the model (2.1) for n large enough. Suppose that,
for any j ∈ {0, ..., J} and any ℓ ∈ Bj, (zj,ℓ,k)k are i.i.d. N (0, 1). Theorem 2.1

can be applied with the estimator θ̂∗ defined by (2.3) with δ = 0 and λ∗ the
root of x− log x = 3, i.e. λ∗ = 4.50524... .

The optimal threshold constant λ∗ described in Proposition 2.2 corresponds
to the one isolated in [10].

12



3 Application to image block denoising

3.1 Impact of threshold and block size

In this first experiment, the goal is twofold: first assess the impact of the
threshold and the block size on the performance of block denoising, and second
investigate the validity of their choice as prescribed by the theory. For a n×n
image f and its estimate f̂ , the denoising performance is measured in terms
of peak signal-to-noise ratio (PSNR) in decibels (dB)

PSNR = 20 log10

n‖f‖∞

‖f̂ − f‖2

dB .

In this experiment, as well as in the rest of paper, three popular transforms
are used: the orthogonal wavelet transform (DWT), its translation invariant
version (UDWT) and the second generation fast discrete curvelet transform
(FDCT) with the wrapping implementation [18]. The Symmlet wavelet with 6
vanishing moments was used throughout all experiments. For each transform,
two images were tested Barbara (512×512) and Peppers (256×256), and each
image, was contaminated with zero-mean white Gaussian noise with increasing
standard deviation σ ∈ {5, 10, 15, 20, 25, 30}, corresponding to input PSNR
values {34.15, 28.13, 24.61, 22.11, 20.17, 18.59, 14.15} dB. At each combination
of test image and noise level, ten noisy versions were generated. Then, block
denoising was ten applied to each of the ten noisy images for each block size
L ∈ {1, 2, 4, 8, 16} and threshold λ ∈ {2, 3, 4, 4.5, 5, 6}, and the average output
PSNR over the ten realizations was computed. This yields one plot of average
output PSNR as a function of λ and L at each combination (image-noise level-
transform). The results are depicted in Fig.1, Fig.2 and Fig.3 for respectively
the DWT, UDWT and FDCT. One can see that the maximum of PSNR occurs
at L = 4 (for λ ≥ 3) whatever the transform and image. This value is in a good
agreement with the choice dictated by our theoretical procedure, although
derived in an asymptotic setting. As far as the influence of λ is concerned, the
PSNR attains its exact highest peak at different values of λ depending on the
image, transform and noise level. For the DWT, this maximum PSNR takes
place near the theoretical threshold λ∗ ≈ 4.5 as expected from Proposition 2.2.
Even with the other redundant transforms, that correspond to tight frames
for which Proposition 2.2 is not rigorously valid, a sort of plateau is reached
near λ = 4.5. Only a minor improvement can be gained by taking a higher
threshold λ; see e.g. Fig.2 or 3 with Peppers for σ ≥ 20. Note that this
improvement by taking a higher λ for redundant transforms (i.e. non i.i.d.
Gaussian noise) is formally predicted by Proposition 2.1. Even though the
estimate of Proposition 2.1 was expected to be rather crude. To summarize,
the value 4.50524... intended to work for orthonormal bases seems to yield
good results also with redundant transforms.
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Fig. 1. Output PSNR as a function of the block size and the threshold λ at different
noise levels σ ∈ {5, 10, 15, 20, 25, 30}. Block denoising was applied in the DWT
domain.

3.2 Comparative study

Block vs term-by-term It is instructive to quantify the improvement
brought by block denoising compared to term-by-term thresholding. For reli-
able comparison, we applied the denoising algorithms to six standard grayscale
images with different contents of size 512×512 (Barbara, Lena, Boat and Fin-
gerprint) and 256 × 256 (House and Peppers). All images were normalized
to a maximum grayscale value 255. The images were corrupted by a zero-
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Fig. 2. Output PSNR as a function of the block size and the threshold λ at different
noise levels σ ∈ {5, 10, 15, 20, 25, 30}. Block denoising was applied in the UDWT
domain.

mean white Gaussian noise with standard deviation σ ∈ {5, 10, 15, 20, 25, 30}.
The output PSNR was averaged over ten realizations, and all algorithms were
applied to the same noisy versions. The threshold used with individual thresh-
olding was set to the classical value 3σ for the (orthogonal) DWT, and 3σ for
all scales and 4σ at the finest scale for the (redundant) UDWT and FDCT. The
results are displayed in Fig.4. Each plot corresponds to PSNR improvement
over DWT term-by-term thresholding as a function of σ. To summarize,

• Block shrinkage improves the denoising results in general compared to in-
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Fig. 3. Output PSNR as a function of the block size and the threshold λ at different
noise levels σ ∈ {5, 10, 15, 20, 25, 30}. Block denoising was applied in the FDCT
domain.

dividual thresholding. Even though the improvement extent decreases with
increasing σ. The PSNR increase brought by block denoising with a given
transform compared to individual thresholding with the same transform can
be up to 2.55 dB.

• Owing to block shrinkage, even the orthogonal DWT becomes competitive
with redundant transforms. For Barbara, block denoising with DWT is even
better than individual thresholding in the translation-invariant UDWT. The
reason is that block thresholding better preserves the textured part.

• For some images (e.g. Peppers or House), block denoising with curvelets can
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be slightly outperformed by its term-by-term thresholding counterpart for
σ = 50.

• As expected, no transform is the best for all images. Block denoising with
curvelets is more beneficial to images with high frequency content (e.g.
anisotropic oscillating patterns in Barbara). For the other images, and ex-
cept Peppers, block denoising with UDWT or curvelets are comparable
(∼ 0.2 dB difference).

Note that the additional computational burden of block shrinkage compared
to individual thresholding is marginal: respectively 0.1s, 1s and 0.7s for the
DWT, UDWT and FDCT with 512 × 512 images, and less than 0.03s, 0.2s
and 0.1 for 256× 256 images. The algorithms were run under Matlab with an
Intel Xeon 3GHz CPU, 8Gb RAM.

Block vs BLS-GSM The described block denoising procedure has been
compared to one of state-of-the-art denoising methods in the literature BLS-
GSM [41]. BLS-GSM is a widely used reference in image denoising experi-
ments reported in the literature. BLS-GSM uses a sophisticated prior model
of the joint distribution within each block of coefficients, and then computes
the Bayesian posterior conditional mean estimator by numerical integration.
For fair comparison, BLS-GSM was also adapted and implemented with the
curvelet transform. The two algorithms were applied to the same ten realiza-
tions of additive white Gaussian noise with σ in the same range as before.
The output PSNR values averaged over the ten realizations for each of the six
tested image are tabulated in Table 2. By inspection of this table, the per-
formance of block denoising and BLS-GSM remain comparable whatever the
transform and image. None of them outperforms the other for all transforms
and all images. When comparing both algorithms for the DWT transform,
the maximum difference between the corresponding PSNR values is 0.5 dB in
favor of block shrinkage. For the UDWT and FDCT, the maximum difference
is ∼ 0.6 dB in BLS advantage. Visual inspection of Fig.5 and 6 is in agreement
with the quantitative study we have just discussed. For each transform, differ-
ences between the two denoisers are hardly visible. Our procedure is however
much simpler to implement and has a much lower computational cost than
BLS-GSM as can be seen from Table 1. Our algorithm can be up to 10 times
faster than BLS-GSM while reaching comparable denoising performance. As
stated in the previous paragraph, the bulk of computation in our algorithm is
essentially invested in computing the forward and inverse transforms.

3.3 Reproducible research

Following the philosophy of reproducible research, a toolbox is made available
freely for download at the address

http://www.greyc.ensicaen.fr/∼jfadili/software.html
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Fig. 4. Block vs term-by-term thresholding. Each plot corresponds to PSNR im-
provement over DWT term-by-term thresholding as a function of σ.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Visual comparison of our block denoising to BLS-GSM on Barbara 512×512.
(a) original. (b) noisy σ = 20. (c), (e) and (g) block denoising with respectively DWT
(28.04 dB), UDWT (29.01 dB) and FDCT (30 dB). (d), (f) and (h) BLS-GSM with
respectively DWT (28.6 dB), UDWT (29.3 dB) and FDCT (30.07 dB).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. Visual comparison of our block denoising to BLS-GSM on Lena 512×512. (a)
original. (b) noisy σ = 20. (c), (e) and (g) block denoising with respectively DWT
(30.51 dB), UDWT (31.47 dB) and FDCT (31.48 dB). (d), (f) and (h) BLS-GSM
with respectively DWT (30.62 dB), UDWT (32 dB) and FDCT (31.6 dB).
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512 × 512 image 256 × 256 image

DWT UDWT FDCT

Block 0.22 2.6 5.8

BLS-GSM 3 26 30

DWT UDWT FDCT

Block 0.045 0.45 1.2

BLS-GSM 1 5.5 6.6

Table 1
Execution times in seconds for 512×512 images and 256×256 images. The algorithms
were run under Matlab with an Intel Xeon 3GHz CPU, 8Gb RAM.

Barbara 512 × 512 Lena 512 × 512

σ 5 10 15 20 25 30 50

PSNRin 34.15 28.13 24.61 22.11 20.17 18.59 14.15

Block DWT 36.81 32.50 30.07 28.41 27.16 26.16 23.74

BLS-GSM DWT 36.87 32.65 30.26 28.61 27.40 26.40 23.90

Block UDWT 37.37 33.24 30.80 29.09 27.77 26.70 24.01

BLS-GSM UDWT 37.44 33.43 31.06 29.40 28.16 27.13 24.49

Block FDCT 37.57 33.68 31.52 30.00 28.83 27.86 25.38

BLS-GSM FDCT 37.63 33.82 31.64 30.08 28.93 28.01 25.36

5 10 15 20 25 30 50

34.15 28.13 24.61 22.11 20.17 18.59 14.15

37.61 34.05 31.99 30.62 29.58 28.71 26.36

37.41 33.97 31.68 30.62 29.62 28.70 26.36

38.02 34.75 32.85 31.48 30.41 29.53 27.16

38.16 35.15 33.34 32.02 30.97 30.13 27.78

38.09 34.78 32.86 31.45 30.43 29.55 27.12

38.10 34.93 33.03 31.60 30.53 29.65 27.02

House 256 × 256 Boat 512 × 512

σ 5 10 15 20 25 30 50

PSNRin 34.15 28.13 24.61 22.11 20.17 18.59 14.15

Block DWT 37.63 33.47 31.33 29.86 28.76 27.79 25.41

BLS-GSM DWT 37.43 33.97 31.77 29.88 29.17 28.43 26.12

Block UDWT 38.10 34.31 32.31 30.86 29.75 28.80 26.35

BLS-GSM UDWT 38.17 34.79 32.95 31.52 30.41 29.49 27.00

Block FDCT 38.35 34.36 32.04 30.32 29.70 28.71 25.90

BLS-GSM FDCT 38.47 34.69 32.47 30.92 29.71 28.72 25.93

5 10 15 20 25 30 50

34.15 28.13 24.61 22.11 20.17 18.59 14.15

36.41 32.52 30.41 28.93 27.81 26.97 24.83

36.06 32.36 30.36 29.04 27.35 26.76 24.86

36.89 33.15 31.11 29.67 28.59 27.71 25.45

36.85 33.46 31.52 30.14 29.09 28.22 26.00

36.89 33.07 31.03 29.65 28.59 27.70 25.49

36.74 33.17 31.20 29.80 28.77 27.88 25.52

Fingerprint 512 × 512 Peppers 256 × 256

σ 5 10 15 20 25 30 50

PSNRin 34.15 28.13 24.61 22.11 20.17 18.59 14.15

Block DWT 35.74 31.37 29.10 27.53 26.33 25.34 22.84

BLS-GSM DWT 35.53 31.08 28.82 27.08 26.01 25.11 22.72

Block UDWT 36.22 31.89 29.62 28.06 26.87 25.90 23.37

BLS-GSM UDWT 36.54 32.23 29.91 28.36 27.20 26.30 23.85

Block FDCT 36.13 31.98 29.66 28.03 26.84 25.92 23.51

BLS-GSM FDCT 36.34 32.14 29.82 28.21 27.05 26.14 23.70

5 10 15 20 25 30 50

34.15 28.13 24.61 22.11 20.17 18.59 14.15

36.81 32.56 30.28 28.64 27.42 26.42 23.77

36.69 32.50 30.38 28.90 27.65 26.70 23.55

37.48 33.60 31.37 29.74 28.52 27.52 24.71

37.59 33.96 31.78 30.17 28.99 27.97 25.16

37.09 33.14 30.86 29.17 28.01 27.09 24.38

37.15 33.32 31.10 29.44 28.19 26.85 24.27

Table 2
Comparison of average PSNR over ten realizations of block denoising and BLS-
GSM, with three transforms.

This toolbox is a collection of Matlab functions, scripts and datasets for im-
age block denoising. It requires at least WaveLab 8.02 [7] to run properly.
The toolbox implements the proposed block denoising procedure with several
transforms and contains all scripts to reproduce the figures and tables reported
in this paper.
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4 Conclusion

In this paper, a Stein block thresholding algorithm for denoising d-dimensional
data is proposed with a particular focus on 2D image. Our block denoising is a
generalization of one-dimensional BlockJS to d dimensions, with other trans-
forms than orthogonal wavelets, and handles noise in the coefficient domain
beyond the i.i.d. Gaussian case. Its minimax properties are investigated, and
a fast and appealing algorithm is described. The practical performance of the
designed denoiser were shown to be very promising with several transforms
and a variety of test images. It turns out that the proposed block denoiser is
much faster than state-of-the art competitors in the literature while reaching
comparable denoising performance.

We believe however that there is still room for improvement of our procedure.
For instance, for d = 2, it would be interesting to investigate both theoretically
and in practice how our results can be adapted to anisotropic blocks with
possibly varying sizes. The rationale behind such a modification is to adapt
the blocks to the geometry of the neighborhood. We expect that the analysis
in this case, if possible, would be much more involved. A possible alternative
to our minimax study is the maxiset point of view introduced by [24] and
recently studied for µ-thresholding rules, including block thresholding in the
one-dimensional case, by [4]. This approach might allow to better explain the
reason behind the fact that in the curvelet case, BlockJS is better in practice
than hard thresholding for image denoising. As remarked in subsection 2.1.1,
a parameter δ was introduced, whose role becomes of interest when addressing
linear inverse problems such as deconvolution. Extension of BlockJS to linear
inverse problems remains also an open question. All these aspects need further
investigation that we leave for a future work.

Appendix: Proofs

In this section, C represents a positive constant which may differ from one
term to another. We suppose that n is large enough.

I Proof of Theorem 2.1

We have the decomposition:

R(θ̂∗, θ) = R1 +R2 +R3, (I.1)
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where

R1 =
j0−1∑

j=0

∑

ℓ∈Bj

∑

k∈Dj

E

(
(θ̂∗j,ℓ,k − θj,ℓ,k)

2
)
, R2 =

J∗∑

j=j0

∑

ℓ∈Bj

∑

k∈Dj

E

(
(θ̂∗j,ℓ,k − θj,ℓ,k)

2
)
,

R3 =
∞∑

j=J∗+1

∑

ℓ∈Bj

∑

k∈Dj

θ2
j,ℓ,k.

Let us bound the terms R1, R3 and R2 (by order of difficulty).

The upper bound for R1. It follows from (A1) that

R1 =n−r
j0−1∑

j=0

∑

ℓ∈Bj

∑

k∈Dj

E

(
z2

j,ℓ,k

)
≤ Q1n

−r
j0−1∑

j=0

2j(d∗+δ)Card(Bj)

= c∗Q1n
−r

j0−1∑

j=0

2j(d∗+δ+υ) ≤ C2j0(d∗+δ+υ)n−r

≤CL(1/ mini=1,...,d µi))(d∗+δ+υ)n−r ≤ C(log n)(1/(d mini=1,...,d µi))(d∗+δ+υ)n−r

≤Cρn. (I.2)

The upper bound for R3. We distinguish the case q ≥ 2 and p ≥ 2, the
case q ≤ 2 ≤ p and the case q ≤ p < 2.

Let q ≥ 2 and p ≥ 2. Since p ≥ 2, we have θ ∈ Θs
p,q(M) ⊆ Θs

2,q(M).
The Hölder inequality applied with the exponent q/2 ≥ 1, and the fact that
s > υ(1/2 − 1/q) imply

R3 ≤
∞∑

j=J∗+1




∑

ℓ∈Bj




∑

k∈Dj

θ2
j,ℓ,k




q/2




2/q

Card(Bj)
(1−2/q)

≤C
∞∑

j=J∗+1

2−2js2jυ(1−2/q) ≤ C2−2J∗(s+υ(1/q−1/2))

≤Cn−2r(s+υ(1/q−1/2))/(d∗+δ+υ) ≤ Cn−2r(s+υ(1/q−1/2))/(2s+d∗+δ+2υ/q)

=Cρn. (I.3)

For q ≤ 2 ≤ p, we have θ ∈ Θs
p,q(M) ⊆ Θs

2,q(M) ⊆ Θs
2,2(M). Hence

R3 ≤M2
∞∑

j=J∗+1

2−2js ≤ C2−2J∗s ≤ Cn−2sr/(d∗+δ+υ) ≤ Cn−2sr/(2s+δ+d∗+υ)

=Cρn. (I.4)
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For q ≤ p < 2, we have θ ∈ Θs
p,q(M) ⊆ Θ

s−d∗/p+d∗/2
2,q (M) ⊆ Θ

s−d∗/p+d∗/2
2,2 (M).

We have

s/(2s+ δ + d∗ + υ) ≤ (s− d∗/p+ d∗/2)/(d∗ + δ + υ)

⇔ s(d∗ + δ + υ) ≤ (s− d∗/p+ d∗/2)(2s+ δ + d∗ + υ)

⇔ 0 ≤ 2s2 − (d∗/p− d∗/2)(2s+ δ + d∗ + υ)

⇔ 0 ≤ 2s(s− d∗/p) + sd∗ − (d∗/p− d∗/2)(δ + d∗ + υ) .

This implies that, if sp > d∗ and s > (1/p − 1/2)(δ + d∗ + υ), we have
s/(2s+ δ + d∗ + υ) ≤ (s− d∗/p+ d∗/2)/(d∗ + δ + υ). Therefore,

R3 ≤M2
∞∑

j=J∗+1

2−2j(s−d∗/p+d∗/2) ≤ C2−2J∗(s−d∗/p+d∗/2)

≤Cn−2r(s−d∗/p+d∗/2)/(d∗+δ+υ) ≤ Cn−2sr/(2s+δ+d∗+υ) ≤ Cρn. (I.5)

Putting (I.3), (I.4) and (I.5) together, we obtain the desired upper bound.

The upper bound for R2. We need the following result which will be proved
later.

Lemma I.1 Let (vi)i∈N∗ be a sequence of real numbers and (wi)i∈N∗ be a se-
quence of random variables. Set, for any i ∈ N

∗,

ui = vi + wi.

Then, for any m ∈ N
∗ and any λ > 0, the sequence of estimates (ũi)i=1,...,m

defined by ũi = ui

(
1 − λ2 (

∑m
i=1 u

2
i )

−1
)

+
satisfies

m∑

i=1

(ũi − vi)
2 ≤ 10

m∑

i=1

w2
i 1
{
(
∑m

i=1
w2

i )
1/2

>λ/2

} + 10 min

(
m∑

i=1

v2
i , λ

2/4

)

.

Lemma I.1 yields

R2 =
J∗∑

j=j0

∑

ℓ∈Bj

∑

K∈Aj

∑

k∈Uj,K

E

(
(θ̂∗j,ℓ,k − θj,ℓ,k)

2
)
≤ 10(B1 +B2), (I.6)

where

B1 = n−r
J∗∑

j=j0

∑

ℓ∈Bj

∑

K∈Aj

∑

k∈Uj,K

E



z2
j,ℓ,k1

{∑
k∈Uj,K

z2

j,ℓ,k
>λ∗2δjLd/4

}




and

B2 =
J∗∑

j=j0

∑

ℓ∈Bj

∑

K∈Aj

min




∑

k∈Uj,K

θ2
j,ℓ,k, λ∗2

δjLdn−r/4



 .

24



Using (A2), we bound B1 by

B1 ≤ Q2n
−r ≤ Cρn. (I.7)

To bound B2, we again distinguish the case p ≥ 2 and q ≥ 2, the case q ≤ 2 ≤ p
and the case q ≤ p < 2.

Let p ≥ 2 and q ≥ 2. Since p ≥ 2, we have θ ∈ Θs
p,q(M) ⊆ Θs

2,q(M). Let js be
the integer js = ⌊(r/(2s + δ + d∗ + 2υ/q)) log2 n⌋. It follows from the Hölder
inequality applied with the exponent q/2 ≥ 1 that

B2 ≤ 4−1λ∗L
dn−r

js∑

j=j0

2jδCard(Aj)Card(Bj) +
J∗∑

j=js+1

∑

ℓ∈Bj

∑

k∈Dj

θ2
j,ℓ,k

≤ 4−1c∗λ∗L
dn−r

js∑

j=j0

2j(d∗+δ+υ)L−d

+
J∗∑

j=js+1




∑

ℓ∈Bj




∑

k∈Dj

θ2
j,ℓ,k




q/2




2/q

Card(Bj)
(1−2/q)

≤Cn−r2js(d∗+δ+υ) + C
J∗∑

j=js+1

2−2js2υ(1−2/q)

≤Cn−r2js(d∗+δ+υ) + C2−2js(s+υ(1/q−1/2))

≤Cn−2r(s+υ(1/q−1/2))/(2s+d∗+δ+2υ/q) = Cρn. (I.8)

Putting (I.6), (I.7) and (I.8) together, it follows immediately that

R2 ≤ Cρn. (I.9)

For q ≤ 2 ≤ p, we have θ ∈ Θs
p,q(M) ⊆ Θs

2,q(M) ⊆ Θs
2,2(M). Let js be the

integer js = ⌊(r/(2s+ δ + d∗ + υ)) log2 n⌋. We then obtain the bound

B2 ≤ 4−1λ∗L
dn−r

js∑

j=j0

2jδCard(Aj)Card(Bj) +
J∗∑

j=js+1

∑

ℓ∈Bj

∑

k∈Dj

θ2
j,ℓ,k

≤ 4−1c∗λ∗L
dn−r

js∑

j=j0

2j(d∗+δ+υ)L−d +
J∗∑

j=js+1

∑

ℓ∈Bj

∑

k∈Dj

θ2
j,ℓ,k

≤Cn−r2js(d∗+δ+υ) +M2
J∗∑

j=js+1

2−2js

≤Cn−r2js(d∗+δ+υ) + C2−2jss ≤ Cn−2sr/(2s+δ+d∗+υ) = Cρn. (I.10)
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Putting (I.6), (I.7) and (I.10) together, it follows immediately that

R2 ≤ Cn−2sr/(2s+δ+d∗+υ) = Cρn. (I.11)

Let’s now turn to the case q ≤ p < 2. Let j∗s be the integer j∗s = ⌊(r/(2s+ δ+
d∗ + υ)) log2(n/ log n)⌋. We have

B2 ≤ D1 +D2 +D3, (I.12)

where

D1 = 4−1λ∗L
dn−r

j∗s∑

j=j0

2jδCard(Aj)Card(Bj),

D2 = 4−1λ∗L
dn−r

J∗∑

j=j∗s +1

∑

ℓ∈Bj

∑

K∈Aj

2δj1{∑
k∈Uj,K

θ2

j,ℓ,k
>λ∗2δjLdn−r/4

}

and

D3 =
J∗∑

j=j∗s +1

∑

ℓ∈Bj

∑

K∈Aj

∑

k∈Uj,K

θ2
j,ℓ,k1

{∑
k∈Uj,K

θ2

j,ℓ,k
≤λ∗2δjLdn−r/4

}.

We have

D1 ≤ 4−1c∗λ∗L
dn−r

j∗s∑

j=j0

2j(d∗+δ+υ)L−d ≤ Cn−r2j∗s (d∗+δ+υ)

≤C(log n/n)2sr/(2s+δ+d∗+υ) = Cρn. (I.13)

Moreover, using the classical inequality ‖θ‖p
2 ≤ ‖θ‖p

p, p < 2, we obtain

D2 ≤CLdn−r(Ldn−r)−p/2
J∗∑

j=j∗s +1

2δj(1−p/2)
∑

ℓ∈Bj

∑

K∈Aj




∑

k∈Uj,K

θ2
j,ℓ,k




p/2

≤C(log n/n)r(1−p/2)
J∗∑

j=j∗s +1

2δj(1−p/2)
∑

ℓ∈Bj

∑

k∈Dj

|θj,ℓ,k|
p. (I.14)

Since q ≤ p, we have θ ∈ Θs
p,q(M) ⊆ Θs

p,p(M). Combining this with sp > d∗
and s > (1/p− 1/2)(δ + d∗ + υ), we obtain

D2 ≤C(log n/n)r(1−p/2)
J∗∑

j=j∗s +1

2δj(1−p/2)2−j(s+d∗/2−d∗/p)p

≤C(log n/n)r(1−p/2)2−j∗s (s+d∗/2−d∗/p−δ/p+δ/2)p

≤C(log n/n)(2s+υ(1−p/2))r/(2s+δ+d∗+υ)

≤C(log n/n)2sr/(2s+δ+d∗+υ) = Cρn. (I.15)
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We have, for any k ∈ Uj,K, the inclusion
{∑

k∈Uj,K
θ2

j,ℓ,k ≤ λ∗2
δjLdn−r/4

}
⊆

{
|θj,ℓ,k| ≤ (λ∗2

δjLdn−r)1/2/2
}
. Therefore,

D3 ≤
J∗∑

j=j∗s +1

∑

ℓ∈Bj

∑

K∈Aj

∑

k∈Uj,K

θ2
j,ℓ,k1{|θj,ℓ,k|≤(λ∗2δjLdn−r)1/2/2}

≤C(λ∗L
dn−r)1−p/2

J∗∑

j=j∗s +1

2jδ(1−p/2)
∑

ℓ∈Bj

∑

k∈Dj

|θj,ℓ,k|
p ,

which is the same bound as for D2 in (I.14). Then using similar arguments as
those used for in (I.15), we arrive at

D3 ≤ C(log n/n)2sr/(2s+δ+d∗+υ) = Cρn. (I.16)

Inserting (I.13), (I.15) and (I.16) into (I.12), it follows that

R2 ≤ C(log n/n)2sr/(2s+δ+d∗+υ) = Cρn. (I.17)

Finally, bringing (I.1), (I.2), (I.3), (I.4), (I.5), (I.9), (I.11) and (I.17) together
we obtain

sup
θ∈Θ

s
p,q(M)

R(θ̂∗, θ) ≤ R1 +R2 +R3 ≤ Cρn,

where ρn is defined by (2.4). This ends the proof of Theorem 2.1.

II Proof of Lemma I.1

We have
m∑

i=1

(ũi − vi)
2 = max (A,B) , (II.1)

where

A =
m∑

i=1



wi − λ2ui

(
m∑

i=1

u2
i

)−1



2

1{
(
∑m

i=1
u2

i )
1/2

>λ

}, B =
m∑

i=1

v2
i 1
{
(
∑m

i=1
u2

i )
1/2

≤λ

}.

Let’s bound A and B, in turn.

The upper bound for A. Using the elementary inequality (a− b)2 ≤ 2(a2 +
b2), we have
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A≤ 2
m∑

i=1



w2
i + λ4u2

i

(
m∑

i=1

u2
i

)−2


1{
(
∑m

i=1
u2

i )
1/2

>λ

}

= 2




m∑

i=1

w2
i + λ4

(
m∑

i=1

u2
i

)−1


1{
(
∑m

i=1
u2

i )
1/2

>λ

}

≤ 2

(
m∑

i=1

w2
i + λ2

)

1{
(
∑m

i=1
u2

i )
1/2

>λ

}. (II.2)

Set

D = 2

(
m∑

i=1

w2
i + λ2

)

1{
(
∑m

i=1
u2

i )
1/2

>λ

}.

We have the decomposition

D = D1 +D2, (II.3)

where

D1 = D1{
(
∑m

i=1
w2

i )
1/2

>λ/2

}, D2 = D1{
(
∑m

i=1
w2

i )
1/2

≤λ/2

}.

We clearly have

D1 ≤ 2

(
m∑

i=1

w2
i + λ2

)

1{
(
∑m

i=1
w2

i )
1/2

>λ/2

} ≤ 10
m∑

i=1

w2
i 1
{
(
∑m

i=1
w2

i )
1/2

>λ/2

}.

(II.4)

Using the Minkowski inequality, we have the inclusion
{
(
∑m

i=1 u
2
i )

1/2
> λ

}
∩

{
(
∑m

i=1w
2
i )

1/2
≤ λ/2

}
⊆
{
(
∑m

i=1 v
2
i )

1/2
> λ/2

}
∩
{
(
∑m

i=1w
2
i )

1/2
≤ λ/2

}
. There-

fore

D2 ≤ 2

(
m∑

i=1

w2
i + λ2

)

1{
(
∑m

i=1
v2

i )
1/2

>λ/2

}
∩

{
(
∑m

i=1
w2

i )
1/2

≤λ/2

}

≤ 10 min

(
m∑

i=1

v2
i , λ

2/4

)

. (II.5)

If we combine (II.2), (II.3), (II.4) and (II.5), we obtain

A ≤ D ≤ 10
m∑

i=1

w2
i 1
{
(
∑m

i=1
w2

i )
1/2

>λ/2

} + 10 min

(
m∑

i=1

v2
i , λ

2/4

)

. (II.6)

The upper bound for B. We have the decomposition

B = G1 +G2 (II.7)
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G1 = B1{
(
∑m

i=1
w2

i )
1/2

>λ/2

}, G2 = B1{
(
∑m

i=1
w2

i )
1/2

≤λ/2

}.

Using the Minkowski inequality, we have again the inclusion
{
(
∑m

i=1 u
2
i )

1/2
≤ λ

}
∩

{
(
∑m

i=1w
2
i )

1/2
> λ/2

}
⊆
{
(
∑m

i=1 v
2
i )

1/2
≤ 3 (

∑m
i=1w

2
i )

1/2
}
∩
{
(
∑m

i=1w
2
i )

1/2
> λ/2

}
.

It follows that

G1 ≤
m∑

i=1

v2
i 1
{
(
∑m

i=1
v2

i )
1/2

≤3(
∑m

i=1
w2

i )
1/2
}
∩

{
(
∑m

i=1
w2

i )
1/2

>λ/2

}

≤ 9
m∑

i=1

w2
i 1
{
(
∑m

i=1
w2

i )
1/2

>λ/2

}. (II.8)

Another application of the Minkowski inequality leads to the inclusion
{
(
∑m

i=1 u
2
i )

1/2
≤ λ

}
∩

{
(
∑m

i=1w
2
i )

1/2
≤ λ/2

}
⊆
{
(
∑m

i=1 v
2
i )

1/2
≤ 3λ/2

}
∩
{
(
∑m

i=1w
2
i )

1/2
≤ λ/2

}
. It fol-

lows that

G2 ≤
m∑

i=1

v2
i 1
{
(
∑m

i=1
v2

i )
1/2

≤3λ/2

}
∩

{
(
∑m

i=1
w2

i )
1/2

≤λ/2

}

≤min

(
m∑

i=1

v2
i , 9λ

2/4

)

. (II.9)

Therefore, if we combine (II.7), (II.8) and (II.9), we obtain

B ≤ 9
m∑

i=1

w2
i 1
{
(
∑m

i=1
w2

i )
1/2

>λ/2

} + min

(
m∑

i=1

v2
i , 9λ

2/4

)

. (II.10)

Putting (II.1), (II.6) and (II.10) together, we have

m∑

i=1

(ũi − vi)
2 = max (A,B)

≤ 10
m∑

i=1

w2
i 1
{
(
∑m

i=1
w2

i )
1/2

>λ/2

} + 10 min

(
m∑

i=1

v2
i , λ

2/4

)

.

Lemma I.1 is proved.

III Proof of Proposition 2.1

First of all, notice that the Jensen inequality, (A3) and the fact that Card(Dj) ≤
2jd∗ imply
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sup
j∈{0,...,J}

sup
ℓ∈Bj

2−j(d∗+δ)
∑

k∈Dj

E

(
z2

j,ℓ,k

)
≤ sup

j∈{0,...,J}
2−j(d∗+δ) sup

ℓ∈Bj

∑

k∈Dj

(
E

(
z4

j,ℓ,k

))1/2

≤Q
1/2
3 sup

j∈{0,...,J}
2−jd∗Card(Dj)

≤Q
1/2
3 .

Therefore (A1) is satisfied.

Let’s now turn to (A2). Again, the Jensen inequality yields

J∗∑

j=j0

∑

ℓ∈Bj

∑

K∈Aj

∑

k∈Uj,K

E



z2
j,ℓ,k1

{(∑
k∈Uj,K

z2

j,ℓ,k

)1/2

>(λ∗2δjLd)1/2/2

}





≤
J∗∑

j=j0

∑

ℓ∈Bj

∑

K∈Aj

∑

k∈Uj,K

(
E

(
z4

j,ℓ,k

))1/2



P








∑

k∈Uj,K

z2
j,ℓ,k




1/2

> (λ∗2
δjLd)1/2/2









1/2

.

Using (A3), it comes that

J∗∑

j=j0

∑

ℓ∈Bj

∑

K∈Aj

∑

k∈Uj,K

(
E

(
z4

j,ℓ,k

))1/2



P








∑

k∈Uj,K

z2
j,ℓ,k




1/2

> (λ∗2
δjLd)1/2/2









1/2

≤C2J∗(d∗+δ+υ)Q
1/2
3 sup

j∈{j0,...,J∗}

sup
ℓ∈Bj

sup
K∈Aj



P








∑

k∈Uj,K

z2
j,ℓ,k




1/2

> (λ∗2
δjLd)1/2/2









1/2

≤CnrQ
1/2
3 sup

j∈{j0,...,J∗}
sup
ℓ∈Bj

sup
K∈Aj



P








∑

k∈Uj,K

z2
j,ℓ,k




1/2

> (λ∗2
δjLd)1/2/2









1/2

.

(III.1)

To bound the probability term, we introduce the Cirelson-Ibragimov-Sudakov
inequality. For further details about this inequality, see, for instance, [2].

Lemma III.1 (The Cirelson-Ibragimov-Sudakov inequality) Let (ηt)t∈D

be a centered Gaussian process. Suppose that

E

(

sup
t∈D

ηt

)

≤ N and sup
t∈D

V(ηt) ≤ Z.

Then, for any x > 0, we have

P

(

sup
t∈D

ηt ≥ x+N

)

≤ exp(−x2/(2Z)).
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Let us consider the set S2 defined by S2 = {a = (ak) ∈ R
∗;
∑

k∈Uj,K
a2
k
≤ 1},

and the centered Gaussian process Z(a) defined by

Z(a) =
∑

k∈Uj,K

akzj,ℓ,k.

We have by the Cauchy-Schwartz inequality

sup
a∈S2

Z(a) = sup
a∈S2

∑

k∈Uj,K

akzj,ℓ,k =




∑

k∈Uj,K

z2
j,ℓ,k




1/2

.

In order to use Lemma III.1, we have to investigate the upper bounds for
E(supa∈S2

Z(a)) and supa∈S2
V(Z(a)).

The upper bound for E(supa∈S2
Z(a)). The Jensen inequality and (A3)

imply that

E

(

sup
a∈S2

Z(a)

)

= E








∑

k∈Uj,K

z2
j,ℓ,k




1/2


 ≤




∑

k∈Uj,K

E(z2
j,ℓ,k)




1/2

≤




∑

k∈Uj,K

(
E(z4

j,ℓ,k)
)1/2




1/2

≤ Q
1/4
3 2δj/2Ld/2

≤Q
1/4
3 2δj/2(log n)1/2.

So, N = Q
1/4
3 2δj/2(log n)1/2.

The upper bound for supa∈S2
V(Z(a)). By assumption, for any j ∈ N and

k ∈ Dj, we have E(zj,ℓ,k) = 0. The assumption (A4) yields

sup
a∈S2

V (Z(a)) = sup
a∈S2

E








∑

k∈Uj,K

akzj,ℓ,k




2


 ≤ Q42
δj.

It is then sufficient to take Z = Q42
δj.

Combining the obtained expressions of N and Z with Lemma III.1, for any
j ∈ {j0, ..., J∗}, K ∈ Aj and k ∈ Uj,K, we have
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P








∑

k∈Uj,K

z2
j,ℓ,k




1/2

≥ (λ∗2
δjLd)1/2/2





= P








∑

k∈Uj,K

z2
j,ℓ,k




1/2

≥ (λ1/2
∗ /2 −Q

1/4
3 )(2δjLd)1/2 +Q

1/4
3 (2δjLd)1/2





= P

(

sup
a∈S2

Z(a) ≥ (λ1/2
∗ /2 −Q

1/4
3 )(2δjLd)1/2 +N

)

≤ exp
(
−(λ1/2

∗ /2 −Q
1/4
3 )22δjLd/(2Z)

)
≤ n−r(λ

1/2

∗ /2−Q
1/4

3
)2/(2Q4).

Since λ∗ = 4
(
(2Q4)

1/2 +Q
1/4
3

)2
, it follows that

P








∑

k∈Uj,K

z2
j,ℓ,k




1/2

≥ (λ∗2
δjLd)1/2/2



 ≤ n−r. (III.2)

Putting (III.1) and (III.2) together, we have proved (A2). This ends the proof
of Proposition 2.1.

IV Proof of Proposition 2.2

The proof of this proposition is similar to the one of Theorem 2.1. The only
difference is that, instead of using Lemma I.1, we use Lemma IV.1 below.

Lemma IV.1 (Cai and Silverman [11]) Let (vi)i∈N∗ be a sequence of real
numbers, (wi)i∈N∗ be i.i.d. N (0, 1) and σ ∈ R

∗. Set, for any i ∈ N
∗,

ui = vi + σwi.

Then, for any m ∈ N
∗ and any γ > 1, the sequence of estimates (ũi)i=1,...,m

defined by ũi = ui

(
1 − γmσ2 (

∑m
i=1 u

2
i )

−1
)

+
satisfies

E

(
m∑

i=1

(ũi − vi)
2

)

≤ 2σ2π−1/2(γ−1)−1m−1/2e−(m/2)(γ−log γ−1)+γmin

(
m∑

i=1

v2
i , σ

2m

)

.

To clarify, if the variables (zj,ℓ,k)j,ℓ,k are i.i.d. N (0, 1) then Lemma IV.1 im-
proves the bound of the term B1 appearing in the proof of Theorem 2.1.

If we analyze the proof of Theorem 2.1 and we use Lemma I.1 instead of
Lemma IV.1, we see that it is enough to determine λ∗ such that there exists
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a constant Q5 > 0 satisfying

J∗∑

j=j0

Card(Bj)Card(Aj)e
−(Ld/2)(λ∗−log λ∗−1) ≤ Q5.

(It corresponds to the bound of the term B1 that appears in (I.6)). If λ∗ is the
root of x− log x = 3, it comes that

J∗∑

j=j0

Card(Bj)Card(Aj)e
−(Ld/2)(λ∗−log λ∗−1) = c∗e

−(Ld/2)(λ∗−log λ∗−1)2J∗(d∗+υ)

≤Ce−(Ld/2)(λ∗−log λ∗−1)nr ≤ Q5.

Proposition 2.2 is proved.
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[31] W. Härdle, G. Kerkyacharian, D. Picard, and A. B. Tsybakov. Wavelets,
Approximation and Statistical Applications. Lecture Notes in Statistics.
Springer, New York, 1998.

[32] I. Johnstone. Wavelets and the theory of non-parametric function. Phil.
Trans. Roy. Soc. Lond. A., 357:2475–2494, 1999.

[33] I. Johnstone. Function estimation and gaussian sequence models. Draft
of Monograph, 2002. URL http://www-stat.stanford.edu/∼imj/.

[34] I. Johnstone, G. Kerkyacharian, D. Picard, and M. Raimondo. Wavelet
deconvolution in a periodic setting. J. R. Stat. Soc. Ser. B Stat.
Methodol., 6(3):547–573, 2004.

[35] A. P. Korostelev and A. B. Tsybakov. MinimaxTheory of ImageRecon-
struction, volume 82. Springer, 1993.

[36] F. Luisier, T. Blu, and M. Unser. A new SURE approach to image de-
noising: Interscale orthonormal wavelet thresholding. IEEE Trans. Image
Processing, 16(3):593–606, March 2007.

[37] Y. Meyer. Wavelets and operators, volume 37 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1992.
ISBN 0-521-42000-8; 0-521-45869-2. Translated from the 1990 French
original by D. H. Salinger.

[38] E. Le Pennec and S. Mallat. Bandelet image approximation and compres-
sion. SIAM Multiscale Modeling and Simulation, 4(3):992–1039, 2005.

[39] E. Le Pennec, C. Dossal, G. Peyré, and S. Mallat. Débruitage géométrique
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