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We use dynamic light scattering and computer simulations to study equilibrium dynamics and
dynamic heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an
unprecedented density range and spans seven decades in structural relaxation time, τα, including
equilibrium measurements above ϕc, the critical volume fraction where the mode-coupling theory
predicts a glass transition. Instead of falling out of equilibrium, the system remains ergodic above
ϕc and enters a new dynamical regime where τα increases with a functional form that was not antic-
ipated by theory or previous experiments, while the amplitude of dynamic heterogeneity increases
logarithmically slowly with τα, as found in molecular glass-formers close to the glass transition.

PACS numbers: 05.10.-a, 05.20.Jj, 64.70.P-

Hard sphere assemblies often constitute the simplest
model to tackle a variety of fundamental questions in sci-
ence, from phase transitions in condensed matter physics
to the mathematics of packing or optimization prob-
lems in computer science. Experimentally, hard spheres
systems are obtained using colloidal particles [1], emul-
sions, or granular materials [2]. When crystallization is
avoided, e.g. by introducing size polydispersity, hard
spheres at thermal equilibrium become very viscous and
eventually form an amorphous solid [3] at large volume
fraction, ϕ, in analogy to the glass transition of molecular
liquids [4] and the jamming transition of grains [2]. How-
ever, the nature of the colloidal glass transition, its pre-
cise location, the functional form of the structural relax-
ation time divergence, and the connection between slow
dynamics and kinetic heterogeneities remain largely open
issues [5, 6].

For hard spheres at thermal equilibrium, several dis-
tinct glass transition scenarios have been described. In
the first, the viscosity or, equivalently, the timescale for
structural relaxation, τα(ϕ), diverges algebraically:

τα(ϕ) ∼ (ϕc − ϕ)−γ . (1)

This is predicted [8] by the mode coupling theory (MCT),
and supported by the largest set of light scattering data
to date [5], with γ ≈ 2.7, ϕc ≈ 0.571. Packing frac-
tions ϕ ≈ 0.57 − 0.59 are the most often quoted values
for the location of the ‘colloidal glass transition’. It is
widely believed that a truly non-ergodic state is obtained
at larger ϕ [1, 3, 5, 7]. Within MCT, the amplitude of
dynamic heterogeneity, as quantified by multi-point cor-
relation functions, also diverges algebraically. In particu-
lar, the four-point dynamic susceptibility should diverge

as [9]: χ4 ∼ (ϕc −ϕ)−2 ∼ τ
2/γ
α , a prediction that has not

been tested in experiments so far.

Several alternative scenarios [10, 11, 12] suggest a
stronger divergence:

τα(ϕ) = τ∞ exp

[

A

(ϕ0 − ϕ)δ

]

. (2)

Equation (2) with δ = 1 is frequently used to account for
viscosity data [6] because it resembles the Vogel-Fulcher-
Tammann (VFT) form used to fit the viscosity of molec-
ular glass-formers [4], with temperature replaced by ϕ.
Moreover, it is theoretically expected on the basis of free
volume arguments [10], which lead to the identification
ϕ0 ≡ ϕrcp, the random close packing fraction where os-
motic pressure diverges. Kinetic arrest must occur at
ϕrcp (possibly with δ 6= 1 [11]), because all particles
block each other at that density [11, 13, 14]. Entropy-
based theories and replica calculations [12] predict in-
stead a divergence of τα at an ideal glass transition at
ϕ0 < ϕrcp, where the configurational entropy vanishes
but the pressure is still finite. Here, the connection to
dynamical properties is made through nucleation argu-
ments [15] yielding Eq. (2), with δ not necessarily equal
to unity [16]. In this context, the amplitude of dynamic
heterogeneity should increase only moderately, typically
logarithmically slowly in τα [17].

In molecular glass-formers where dynamical slowing
down can be followed over as many as 15 decades, the
transition from an MCT regime, Eq. (1), to an activated
one, Eq. (2), has been experimentally demonstrated [4].
For colloidal hard spheres, the situation remains con-
troversial, because dynamic data are available over a
much smaller range [1, 5, 6, 18], typically five decades or
less. Crucially, measurements could only be performed
for ϕ < ϕc, leaving unknown the precise nature and lo-
cation of the divergence. Theoretical claims exist that
the cutoff mechanism suppressing the MCT divergence
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in molecular systems is inefficient in colloids due to the
Brownian nature of the microscopic dynamics, suggesting
that MCT could be virtually exact [19]. This viewpoint
is challenged by more recent MCT calculations [20], and
by computer studies of simple model systems where MCT
transitions are avoided both for stochastic and Newto-
nian dynamics [21, 22].

Here, we settle several of the above issues by studying
the equilibrium dynamics of colloidal hard spheres using
dynamic light scattering and computer simulations. By
extending previous data by at least two orders of magni-
tude in τα, we establish that the volume fraction depen-
dence of both τα and χ4 follows MCT predictions only
in a restricted density range below ϕc ≈ 0.59. Unlike
previous studies, we provide equilibrium measurements
above ϕc, thereby proving unambiguously that the alge-
braic divergence at ϕc is absent. Instead, a new regime is
entered at larger ϕ, where the dynamics is well described
by Eq. (2) with δ ≈ 2 and ϕ0 close to, but smaller than,
ϕrcp. The amplitude of kinetic heterogeneities then in-
creases logarithmically slowly with τα, as found in molec-
ular glasses close to the experimental glass transition.

Dynamic light scattering (DLS) experiments are per-
formed in the range 0.01 < ϕ < 0.5981. We use poly-
(methyl methacrylate) (PMMA) particles of average di-
ameter σ = 260 nm, stabilized by a thin layer of grafted
poly-(12-hydroxy stearic acid) (PHSA). The size poly-
dispersity, about 10%, is large enough to prevent crys-
tallization on a timescale of at least several months. The
particles are suspended in a mixture of cis-decalin and
tetralin that almost perfectly matches their average re-
fractive index, allowing the dynamics to be probed by
DLS. Additionally, due to polydispersity and the slight
difference in refractive index between the PMMA core
and the PHSA shell, DLS essentially probes the self-part
of the intermediate scattering function [23]:

Fs(q, t) =

〈

1

N

N
∑

j=1

eiq·(rj(t)−rj(0))

〉

. (3)

Here, rj(t) is the position of particle j at time t, q is
the scattering vector (qσ = 6.5, close to the first peak
of the static structure factor) and brackets indicate an
ensemble average. A combination of traditional [24] and
multispeckle [25] DLS is used to measure the full decay
of Fs(q, t). We carefully check equilibration by following
the evolution of the dynamics after initialization, until
Fs stops changing over a time window of at least 10τα.
Samples are prepared by dilution, starting from a very
concentrated batch obtained by centrifugation. All vol-
ume fractions relative to that of the initial batch are ob-
tained with a relative accuracy of 10−4, using an analyt-
ical balance and literature values for particle and solvent
densities [18]. Relative volume fractions are converted to
absolute ones by comparing the experimental ϕ depen-
dence of the short-time self-diffusion coefficient measured
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FIG. 1: (Color online) Time dependence of the self-
intermediate scattering function Fs(q, t) in DLS experiments
at qσ = 6.5 for representative volume fractions. Lines are
stretched exponential fits to the final decay, yielding relax-
ation times spanning about 7 decades. Ergodicity is preserved
above the (avoided) MCT glass transition at ϕc ≈ 0.59.

by DLS to two sets of theoretical calculations [26] at low
density, ϕ ≤ 0.2. For less polydisperse samples, this cal-
ibration method yields ϕ values compatible with those
obtained by mapping the experimental freezing fraction
to ϕf = 0.494 [27]. The remaining uncertainty on the ab-
solute ϕ is about 5%, because [26] contains two slightly
different predictions. To ease the comparison with the
simulations, we set the absolute ϕ, within this uncer-
tainty range, so that our experimental and numerical τα

closely overlap for ϕ > 0.55.

We use a standard Monte Carlo algorithm [22] to study
numerically a 50:50 binary mixture of hard spheres of
diameter σ and 1.4σ, known to efficiently prevent crys-
tallization. We work in a three dimensional space with
periodic boundary conditions, and mainly use N = 103

particles. No noticeable finite size effects were found in
runs with N = 8 · 103 particles performed for selected
state points. In an elementary move, a particle is chosen
at random and assigned a random displacement drawn
within a cubic box of linear size 0.1σ centered around the
origin. The move is accepted if the hard sphere constraint
remains satisfied. One Monte Carlo step corresponds to
N such attempts. The dynamics is characterized by the
self-intermediate scattering function, Eq. (3), measured
for qσ = 6.1, close to the first diffraction peak.

Representative Fs(q, t) obtained by DLS are plotted in
Fig. 1, showing that the relaxation is fast and monoexpo-
nential at low ϕ, while a two-step decay is observed when
increasing ϕ, reflecting the increasingly caged motion of
particles in dense suspensions [3]. We measure the struc-
tural relaxation time by fitting the final decay of Fs to a
stretched exponential, Fs(q, t) = B exp[−(t/τα)β ].

Figure 2a shows τα(ϕ) for both experiments and simu-
lations. Time units are adjusted to maximize the overlap
(≈ 5.5 decades) of both data sets at high ϕ. As reported
before [5], we find that our experimental data are well
fitted by Eq. (1) in the range 0.49 < ϕ ≤ 0.585, with
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FIG. 2: (Color online) a) Relaxation timescale τα for hard
spheres in experiments (black circles) and simulations (open
triangles), respectively in units of τ0 = 1 sec and τ0 = 7 · 104

MC steps. The red dashed line is a power law fit, Eq. (1),
with ϕc = 0.590 (vertical dotted line) and γ = 2.5± 0.1. The
continuous blue line is a fit to DLS data using Eq. (2), with
ϕ0 = 0.637 and δ = 2. The zoom in the inset shows that
the MCT singularity is absent. b) Same data plotted against
1/(1 − ϕ/ϕc). A straight line with slope γ is obtained in an
MCT regime covering about 3.5 decades. c) Data for ϕ > 0.41
plotted using reduced variables with ϕ0 = 0.637 and 0.641 for
experiments and simulations, respectively.

ϕc = 0.590±0.005 and γ = 2.5±0.1. However, our mea-
surements at ϕ values higher than those previously acces-
sible strongly deviate from the fit. Attempts to include
points at ϕ > 0.59 in the MCT fit yield unphysically large
values of γ. We find similar results in the simulations,
showing that hydrodynamic interactions play little role
in experiments performed at large ϕ, although they prob-
ably explain the discrepancy with simulations at low vol-
ume fraction, see Fig. 2a. Therefore, our data unambigu-
ously demonstrate that the mode-coupling singularity is
absent in colloidal hard spheres, as is found in molecu-
lar glass-formers [4]. We attribute previous observations
of non-ergodic amorphous states above ϕc to measure-
ments that were insufficiently long. Indeed, experiments
in colloids become prohibitively slow near the end of the
mode-coupling regime, which, by contrast, corresponds
to relatively short (≈ 10−7 sec) timescales in liquids.

What is the fate of the fluid phase above ϕc? Fig-
ures 2a and 2c show that the increase of τα at high
ϕ is extremely well described by an exponential diver-
gence, Eq. (2). We find that the data can be fitted
well using the conventional form with δ = 1, yielding
ϕ0(δ = 1) ≈ 0.614 ± 0.002. This is consistent with pre-

vious analysis [6] of viscosity data for a broad range of
experimental systems, but in a much smaller dynamic
range. However, the quality of the fit improves when
the exponent δ is allowed to depart from unity. The
optimal value, robust for both experimental and numer-
ical data, is δ = 2.0 ± 0.2, which yields our best esti-
mate for the location of the dynamic glass transition:
ϕ0 ≈ 0.637±0.002 (experiments) and ϕ0 ≈ 0.641±0.002
(simulations). Figure 2c shows the linear dependence of
log τα on (ϕ0 − ϕ)−2, demonstrating the exponential na-
ture of the dynamic singularity.

The behavior of dynamical heterogeneity provides ad-
ditional evidence of a crossover from a restricted MCT
regime to an ‘activated’ type of dynamics. Using meth-
ods detailed in [28, 29], we study the evolution of the
three-point dynamic susceptibility defined by: χϕ(t) ≡
∂Fs(q, t)/∂ϕ. This linear response function is directly
connected to a four-point dynamic susceptibility: χ4(t) =
N〈δFs(q, t)

2〉, where δFs(q, t) denotes the fluctuating
part of the self-intermediate function; χ4 is a pow-
erful tool to quantify dynamic heterogeneity in glass-
formers [17], because it represents the average number
of molecules whose dynamics are correlated. In hard
spheres, the following relation holds [28]:

χ4(t) = χ4(t)|ϕ + ρkBTκT (ϕχϕ(t))2, (4)

where ρ is the number density, κT the isothermal com-
pressibility (measured in simulations, taken from the
Carnahan-Starling equation of state in experiments), and
χ4(t)|ϕ denotes the value taken by χ4(t) in a system
where density is strictly fixed. Only the second contri-
bution to χ4(t) in (4) can be accessed experimentally,
but both terms can be determined in simulations. We
obtain χϕ(t) by applying the chain rule to the fitted
Fs(B, τα, β) [29], where the ϕ dependence of B, τα, β is
fitted by smooth polynomials. Our results are indepen-
dent of the choice of fitting functions, and consistent
with that obtained from finite differences between data
at nearby ϕ, when available. Figure 3 shows the peak of
dynamical susceptibilities as a function of ϕ. First, we
numerically establish in Fig. 3a that the term compris-
ing χϕ is the main contribution to χ4 when ϕ > 0.52,
implying that a good estimate of χ4 can be obtained us-
ing three-point functions in hard spheres, as surmised in
[28], and established for molecular glass-formers in [9].
For both simulations and experiments, the MCT predic-
tion for the algebraic divergence of χ4(t) only holds over
a limited density range. Indeed, when plotted against τα,
χ4 increases rather moderately. A similar logarithmic re-
lation between the size of dynamically correlated regions
and τα is found in molecular glasses close to the glass
transition [29]–a hallmark of activated dynamics [17].

Our results establish the existence of a non-trivial, ex-
ponential divergence of τα(ϕ) at a critical volume frac-
tion ϕ0 ≈ 0.637 much above the putative ‘colloidal glass
transition’ at ϕc ≈ 0.59. It is natural to ask whether
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FIG. 3: (Color online) Peak of dynamic susceptibilites,
Eq. (4), measured in a) simulations and b) experiments .
In a) both contributions to χ4 are compared, validating
χϕ as a valuable tool to quantify dynamic heterogeneity in
hard spheres. The predicted MCT algrebraic divergence (red
dashed line) holds over a small density range. The inset shows
that the size of dynamic heterogeneities increases logarithmi-
cally with τα, as found in molecular glass-formers.

ϕ0 and ϕrcp coincide. This is a difficult question be-
cause ϕrcp can always be shifted to a larger value by
trading order and packing [13]. For the binary mix-
ture studied here, the onset of jamming has been located
at ϕJ = 0.648 [14]. Furthermore, for 10 % polydis-
persity, the estimate ϕrcp ≈ 0.67 was obtained in nu-
merical work [30], well above ϕ0. Finally, we have em-
ployed Monte Carlo simulations to produce disordered
hard sphere configurations with finite pressure above ϕ0

by very fast compression of fluid configurations used to
produce the equilibrium data in Fig. 1. These results
suppport the possibility that ϕ0 < ϕrcp, implying a fun-
damental difference [31] between the glass [12] and jam-
ming [14] transitions in hard spheres.

In conclusion, while the onset of dynamical slowing
in colloidal hard spheres can be described by an MCT
regime, upon further compression a crossover from an
algebraic to an exponential divergence at a non-trivial
volume fraction ϕ0 is observed, accompanied by a log-
arithmic growth of dynamical correlations. Our experi-
ments and simulations show unambiguously that there is
no glass transition around 58 % and that the slow dynam-
ics of colloidal hard spheres shares more similarities with
the physics of molecular glass-formers than anticipated.
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