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ABSTRACT 
 Dispersed particles can form clusters even at sufficiently low concentrations. Colloidal 

and hydrodynamic forces are responsible for this phenomenon and these forces determine 

both structure and size of clusters. We assume that viscosity of concentrated suspension is 

completely determined by cluster size distribution, no matter if clusters form under the action 

of colloidal, hydrodynamic interactions or shear rates. Based on this assumption an equation, 

which describes dependency of viscosity on a concentration of dispersed particles taking into 

account cluster formation, is deduced.  Under special restrictions the deduced dependency 

coincides with the well-known Douherty-Krieger’s equation except for a clear physical 

meaning of entering parameters. Our consideration shows that Douherty-Krieger’s equation 

has deeper physical background than it has been supposed earlier. Experimental verification 

of the suggested model shows a good agreement with the theory predictions and proves a 

presence of clusters even at low concentrations of dispersed particles. 
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INTRODUCTION 
 There is no need to describe an importance of concentrated suspensions for industrial 

applications as well as a number of theoretical approaches used for description of viscosity 

dependence on concentration of dispersed particles [1]. Colloidal and hydrodynamic 

interactions between particles result in a formation of doublets, triplets and higher clusters 

[1]. Aggregation of particles is accompanied by destruction of aggregates caused by finite 

depth of potential well and/or shear stress applied. As a result a distribution of cluster sizes is 

formed in the suspension. Presence of clusters influences drastically viscosity of concentrated 

suspensions. Computer simulation is a useful tool for exploring the relationship between 

interparticle interactions and suspension rheological properties. Clustering and restructuring 

of colloidal systems under shear is observed in a number of computer simulations [2-6]. 

However, computer simulations can not substitute analytical modeling and interactions 

between these two types of modeling can provide a new insight. Here we present a new 

analytical method, which allows deducing a dependency of viscosity on particle concentration 

taking into account cluster formation. Differential method, a modified version of which is 

used in the present paper, has not been frequently used in this area. That is why differential 

method is briefly reviewed below.  

Differential method is adjusted for determination of effective properties of non-

homogenous media. For the first time differential method has been suggested in ref. [7] and 

then it has been applied for determination of viscosity of concentrated suspensions without 

cluster formation [8,9]. Elastic properties of solid non-homogeneous materials have been 

investigated [10,11] with the help of the same method. Below a modified version of 

differential method is used for calculation of viscosity dependence on concentration in the 

case when clusters form in a suspension. 

  

THEORY 
Let us consider a suspension of volume V, which contains N single particles.    

Volume fraction of particles, γ, is 

V
Nνγ = ,                      (1) 

where aa ,
3

4 3πν =  are the volume of a single particle and particle radius, respectively. Let 

,...3,2,1, =ini be a number of clusters of corresponding size in the volume V and 
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,...3,2,1,max, =iiγ  be an averaged packing density of single particles inside clusters. n1 is a 

number density of “clusters of size 1”, that is, single particles, hence, γ1,max=1.  

Volume fraction of clusters containing i particles can be written as 

,...3,2,1,,
max,

=== i
ivn

V
V
V

i

i
i

i
i γ

γ           (2) 

which satisfy the following mass conservation condition 

∑
∞

=

=
1

max,
i

ii γγγ            (3) 

It is assumed below that the viscosity of the suspension is completely determined by 

cluster size distribution, that is, can be described by the following dependency  

( ) ,...],,,[, 32100 γγγηγηη Ψ= ,        (4) 

where 0η  is the viscosity of the pure liquid. 

 When all cluster concentrations, iγ , are zero, the suspension consists only of the pure 

liquid and Eq (4) gives 

,...)0,0,0,( 00 ηη Ψ= ,                                      (5) 

which is used below. 

 When particle density, γ, is small then all iγ  are also small and Eq (4) can be written 

in accordance with Einstein’s relation as 

i
i

iγηηγγγη ∑
∞

=

+Ψ=Ψ
1

003210 5.2,...]0,0,0,[,...],,,[ A                   (6) 

where coefficients ,...3,2,1, =iAi  are deviations of friction coefficient of clusters with i 

particles from the corresponding value for solid particles. Obviously A1=1. Coefficients 

,...3,2,1, =iAi  are referred to below as friction coefficients for abbreviation. A meaning of 

friction coefficients can be understood using the following example. Let two spherical 

particles with the same diameter be considered: the first one is a solid particle, the second one 

is a particle composed of i smaller particles (a model of a cluster). A friction force exerted to 

each of two particles under consideration will be different if both particles are placed in a 

liquid flow. Let iA  be a ratio of the friction force in the case of the composed particle 

(cluster) to the corresponding force exerted to the solid particle. The friction force is changed 

in the case of the composed particle because of two reasons: (a) a solid surface exposed to the 

liquid flow is smaller than in the case of the solid particle, (b) the liquid flow partially 
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penetrates inside the composed particle. Two mentioned trends, (a) and (b), change 

,...3,2, =iAi  values in different ways: because of the reason (a) these values decrease and 

increase because of the reason (b). That is, a complex interplay determines ,...3,2, =iAi  

values. Friction coefficients can be calculated based on theory developed in [12].  

Deviation of cluster shapes from spherical is an additional cause of change of friction 

coefficient values [13].  

It is obvious that parameters ,...3,2,max, =iAiiγ are functions of both colloidal, 

hydrodynamic interactions and applied shear rates. These dependencies are left undetermined 

in the present consideration.  

Let a small amount of clusters, ,...3,2,1, =<<Δ inn ii  be marked randomly in the 

whole volume of suspension. The suspension can be considered as a mixture of the marked 

clusters surrounded by a suspension of non-marked clusters. Volume concentrations of the 

marked clusters, ,...2,1, =Δ iiμ , are 

,...3,2,1,,
max,

=
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=Δ
Δ

=Δ i
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i
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i
i γ

μ ,                                (7) 

Concentrations of non-marked clusters in the rest of the suspension are 
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Marked clusters are surrounded by the rest of the suspension, which is assumed to be a 

homogenous liquid with viscosity ,...],,,[ 332211
0 ξγξγξγη Δ−Δ−Δ−Ψ , where small volume 

fractions Δξi, i=1,2,3,… in the latter expression are given by Eq (8). Hence, viscosity of 

suspension can be expressed in two ways: according to Eq (4) and considering the suspension 

as a mixture of marked and non-marked clusters: 

[ ][ ],...,,,,...,,, 3213322110 μμμξγξγξγηη ΔΔΔΔ−Δ−Δ−ΨΨ=                 (9) 

Right hand sides of Eqs (4) and  (9) should be equal, this gives 

[ ]=Ψ ,...,,, 3210 γγγη [ ][ ],...,,,,...,,, 3213322110 iμμμξγξγξγη ΔΔΔΔ−Δ−Δ−ΨΨ    (10) 
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A transformation of Eq (10) is given in APPENDIX. The result is the following differential 

equation for dependence of viscosity of concentrated suspension, η, on volume concentration 

of particles γ 
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Solution of Eq (11) should satisfy boundary condition, which follows from Eq (5) 

0)0( ηη =                       (12) 

Let us introduce the following averaged values 
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which are an averaged resistance coefficient and averaged packing density of all clusters. 

Using Eq (3) and definition of maxγ (according to Eq (13)) we can conclude 

,
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i
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results in 
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Let us assume that A  is independent of volume concentration γ. In this case the latter 

equation takes the following form 
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with boundary condition (12).  

 It is important to emphasise that maxγ is not supposed to retain a constant value, 

independent of volume concentration γ. 

Solution of Eq (15) with boundary condition (12) is 
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Eq (16) almost coincides with Douherty-Krieger’s equation [14,15] 
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where [η] is an intrinsic viscosity. However, it is important to emphasize that γmax in 

Douherty-Krieger’s equation (16) is constant, whereas maxγ  can not be.  

It is easy to conclude that Eqs (16) and (17) coincide if we adopt 
max

maxmax
5.2][,

γ
ηγγ A

== . 

It is necessary to stress here that in spite of a striking similarity of Eqs (16) and (17) a 

physical meaning of parameters included in Eq (16) is quite different form those used in Eq 

(17). According to the theory developed above viscosity dependence on concentration is 

connected with cluster formation and this physical phenomenon is incorporated in Eq (16).  

If particles do not form clusters, that is, ,...4,3,2,0;1 === iiγγγ and, hence, 

1max == Aγ should be adopted in Eq (16), which gives  

( )
η γ
η γ

( )
.

0
2 5

1

1
=

−
          (18) 

The latter equation coincides with earlier obtained solution for the same case (8, 9): 

suspension of particles, which do not form clusters. 

Let us consider in more detail merits and demerits of the suggested method. 

Merits: 

(a) it takes into account clusters formation, 
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(b) it takes into account a simplest particle-particle interaction, that is, hard core interaction; 

(c) it gives a clear physical meaning of parameters, which are present in Eq(11); 

(d) a striking simplicity of this method. 

Demerits: 

the main demerit of this method is a hypothesis that suspension of non-marked particles can 

be considered as a homogeneous liquid (mean field approximation). Marked particles (the 

same as «non-marked ones»!) feel «non-marked particles» as a continuous medium. 

However, a reasonable agreement of ions’ diffusion coefficients calculated according to the 

Einstein’s relation can be considered as a justification of this hypothesis. 

 

COMPARISON WITH KNOWN EXPERIMENTAL DATA 

A comprehensive review of experimental data on viscosity of concentrated 

suspensions is presented in [16]. In Fig.1 comparison of experimental data with predictions 

according to Eq (18) (curve 1), and Eq (16) (curves 2-4) is presented. Experimental points 

used in Fig. 1 are specified in ref. [16]. Fig.1 shows that the whole array of experimental data 

can be described using Eq (16) at different but reasonable parameters maxγ and A : curve 4 

( maxγ =0.56, close to a simple cubic packing density; A  = 0.72); curve 3 ( maxγ = 0.65, close to 

a cubic centered packing density; A  =0.67), curve 2 ( maxγ = 0.73, close to hexagonal packing 

density; A  = 0.61).  

 

EXPERIMENTAL METHOD 
 

This part presents results of rheological experiments and comparison with theoretical 

predictions. Yeast suspensions at different cell concentrations are used. 

Suspension 

The suspension under investigation was made of active dry baker’s yeast 

Saccharomyces Cerevisiae (Lesaffre, France) suspended in physiological solution (8 g/l 

NaCl). Yeast particles are of 5 µm average diameter. The particle density is 1.13 g/cm3. 

Volume fraction of the suspension is used below.  

Volume fraction determination 

Since yeast cells allow water transfer through the cell's membrane, the determination 

of the volume fraction is not straightforward. The conversion of a dry weight into the volume 

fraction has been a source of errors in literature on the concentration dependence of yeast 
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viscosity [17]. A particular attention is given here to the determination of the volume fraction, 

γ, of yeast suspensions. Reuss et al. [17] proposed a dye dilution technique to determine a 

volume fraction as a function of a dry weight at several osmotic pressures: a fixed quantity of 

a dye (Naphtol green B) solution is mixed with the yeast suspension. External water is then 

determined by measuring the dilution effect. 

In this study, the determination of the volume fraction is carried out according to the 

following procedure: 2-3 drops of concentrated Naphtol green B solution are added to the 

thoroughly mixed yeast suspension in a 200 ml (Vo) centrifuge tube, which is centrifuged at 

5000 rpm for 30 min. The volume of the sediment (Vse) and the extinction value (710 nm) 

(E1) of the supernatant are then determined. The sediment is re-suspended in the supernatant 

of the original suspension in order to ensure constant osmotic pressures. After mixing and 

centrifuging, volumetric determination of the sediment and measurement of the extinction 

(E2) are repeated. This procedure gives the following value of the volume fraction 

0
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=γ          (19) 

The results obtained are compared with two other techniques of determination of 

volume fraction: thermogravimetric (Mettler-Toledo) and conductimetric analysis (Coulter). 

There is a good agreement with data obtained by the three different methods confirming the 

validity of the experimental results. 

The volume fraction γ is obtained as a linear function of yeast concentration C (% dry 

w/w) expressed as follows: 

CA∗=γ           (20) 

The values of A determined by the three different methods are presented in the Table 1. 

Table 1. Experimental values of A using different experimental methods 

Experimental methods A / (%dry w/w) -1 

Dye dilution 2.1 

Conductimetric 1.8 

Thermogravimetic 2.0 

 A average : 2.0 ±0.2 
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Rheological measurements and observation of cluster formation 

Rheological measurements utilized a controlled strain rate rheometer (Rheomat 115 – 

Contraves) with concentric cylinder geometry. Temperature of the suspension in the 

rheometer was maintained and controlled at 20 °C in all measurements. 

Determination of physical parameters describing the rheological properties of the 

suspension requires steady state conditions. Experiment shows that at volume fractions higher 

than 0.3 the rheological behavior becomes non-Newtonian because viscosity value depends 

on the shear rate.  

A linear increasing-decreasing shear rates sequences 10-1000-10 s-1 are performed 

during 2000s including a step at 1000 s-1 for 200 s to reach a steady state. 

For a direct determination of cluster formation a drop of yeast suspension is placed on 

the support of the sample and is observed by optical microscope (Zeiss). The number of single 

particles (N1), clusters (N2), triplets (N3), four and more particle clusters (N4&+) are 

calculated.   

 

RESULTS AND DISCUSSION 

The number of single particles (N1), clusters (N2), triplets (N3), four and more 

particle clusters (N4&+) at γ=0.002 volume concentration are presented in Table 2. 

 Table 2. 

 N tot N 2 N 3 N4&+  N1 

Result 100 6 1 0 85 

 

Yeast suspensions at different low concentration were observed under microscope. 

Results are presented in Fig. 2 (a, b, c). All used concentrations are low enough (γ=0.002, 

Fig.2a) and (γ=0.02 and γ=0.04 Fig. 2b and 2c respectively). It is usually assumed at 

theoretical considerations that suspensions are monodisperse at such low concentrations, 

which is in an obvious contradiction with our observations. 

Fig.3 presents comparison of the measured relative viscosity versus volume fraction of 

yeast suspension (points) and theoretical Eq (16) (solid line, fitted parameters are maxγ =0.73 

and A =1). Base fluid is physiological suspension (8 g/l NaCl).  

It is worth to remind that according to our derivation parameters maxγ and A  are 

complex functions of (a) interparticle interaction potential, (b) hydrodynamic interactions 
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between clusters. Both interactions are unknown in the case of yeast suspensions. In spite of 

this a reasonable agreement with experimental data are achieved using fitting procedure with 

these two parameters.  

 

CONCLUSIONS 

A new method is suggested for derivation of viscosity dependence on a concentration 

of dispersed particles taking into account cluster formation. We assume that viscosity of 

concentrated suspension is completely determined by cluster size distribution, no matter if 

clusters form under the action of colloidal, hydrodynamic interactions or shear rates. Based on 

this assumption an equation, which describes dependency of viscosity on a concentration of 

dispersed particles taking into account cluster formation, is deduced.  Under special 

restrictions the deduced dependency coincides with the well-known Douherty-Krieger’s 

equation except for a clear physical meaning of entering parameters. Our consideration shows 

that Douherty-Krieger’s equation has deeper physical background than it has been supposed 

earlier. Observations of yeast suspensions prove a presence of clusters even at low 

concentrations of dispersed particles. Viscosity dependency of yeast suspension on 

concentration is in a good agreement with the deduced theoretical equation and gives 

reasonable value of parameters. 
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APPENDIX 

Everywhere below only first order terms are kept in the consideration. Using Eq (6) the right 

hand side of Eq (10) can be transformed as 
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Further transformation of right hand side of Eq (A1) keeping only first order terms gives  

[ ]=Δ−Δ−Δ−Ψ ,...,,, 3322110 ξγξγξγη i
i i

ξ
γ

γγγη Δ
∂
Ψ∂

−Ψ= ∑
∞

=1
3210 ,...),,,(            (A2) 

Using Eqs (A1) and (A2) Eq (10) transforms into 
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 Substitution of expressions for Δξi from Eq (8) into the latter equation and collecting all 

terms proportional to iμΔ  gives 
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Let Eq (A3) be multiplied by jγ  and summarised over j=1,2,3… this gives 
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Substitution of the latter expression for jj j
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FIGURE LEGENDS 
 

Fig. 1 Relative viscosity as a function of volume concentration of dispersed particles. 

Experimental points from review [16], solid lines according to Eq(16) with different values of 

maxγ and A  

curve 1 maxγ =1, A =1 (particles do not form clusters) 

curve 2 maxγ =0.73 (close to hexagonal packing of particles inside clusters), A =0.61 

curve 3 maxγ =0.65 (close to cubic centered packing of particles inside clusters), 

A =0.67 

curve 4 maxγ =0.56 (close to simple cubic packing of particles inside clusters), A =0.72 

 

Fig. 2 Photographs of yeast suspensions at different concentrations 

a γ=0.002 

b γ = 0.02 

c γ = 0.04 

 

Fig. 3 Comparison of measured and predicted relative viscosity on concentration of yeast 

suspension. Solid curve according to Eq(16). Fitted parameters are maxγ =0.73 and A =1. 
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Fig.1 
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50 µm 

Fig.2a Yeast 
suspension, volume 
concentration 0.002 

100 µm 

Fig.2b Yeast  
suspension, volume 
concentration 0.02 

100 µm 

Fig.2c Yeast  
suspension, volume 

concentration  γ=0.04 
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Fig. 3 
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