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Abstract 

 

This study reports a numerical approach for modeling the hydraulic resistance of 

a filter cake of deformable cells. First, a mechanical and osmotic model that describes 

the volume fraction of solids in a bed of yeast cells as a function of the compressive 

pressure it experiences is presented. The effects of pressure on the compressibility of 

yeast cells beds were further investigated both by filtration experiments and by 

centrifugal experiments based on the multiple speed equilibrium sediment height 

technique. When comparing the latter measurements with compression model 

calculations, we observed that the method based on centrifugal experiments suffers 

from rapid relaxation of the compressed bed. Concerning the filtration experiments, 
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specific resistance of well defined bed of cells were calculated by a combination of the 

compression model with a formulation for hydraulic resistivity developed using the 

Lattice Boltzmann method. We further explain the experimental values observed for the  

hydraulic resistance of cell beds, assuming that the first layer of cells in contact with the 

membrane partially blocks the membrane area open to flow. In such a case, the blocked 

area seems to be a constant fraction of the normal cell-cell contact area. 
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1. Introduction 

 

Microfiltration is an economical and efficient technique for separating, from a 

liquid medium, particles ranging from one tenth of a micrometer up to a few 

micrometers in size. This technique is used for concentrating slurries in the food, 

beverage and cosmetic industries and for separation of cells in the biotechnology 

industry. Although this method is widely used to separate deformable or soft particles in 

such various chemical and biochemical processes, the factors that affect the filtration 

rate such as hydrodynamics, surface chemistry at particle surfaces and compressibility 

of cakes or particles are still not well understood or documented and significant error in 

the estimation of filtration rate occurs when conventional filtration theory is applied.  

The cake that builds up on the membrane surface plays a major role in operating 

performance as it controls the transient flux decline. This latter is usually approximated 

by dead-end filtration theory (Redkar & Davis, 1993), with the rate of flux decline 

correlated to the amount deposited via the hydraulic resistance associated with the cake 

buildup.  

A large number of papers have been published that report the hydraulic 

resistance of filter cakes formed from biological suspensions such as microbial 

suspensions, yeast suspensions or red-blood-cell suspensions. Rushton & Khoo (1977), 

Ofsthun (1989), Nakanishi, Tadokoro & Matsuno (1987), Nomura (1989), Piron, René 

& Latrille  (1995), Ogden & Davis (1990) have all measured the hydraulic resistance of 

deposits of baker’s yeast (Saccharomyces cerevisiae). Collected data vary in a finite 

range where variations can be ascribed to the differences in particle size, state of 

agglomeration, age, pH of liquors or the concentration of extra-cellular compounds. 
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Despite these differences, much useful knowledge can be acquired by examining results 

from all these different studies carried out with the same type of suspension. Fig. 1 

gathers together some of these data for the specific resistance of baker’s yeast filtered in 

the pressure range 0 - 400 kPa. We have also compared these data with values 

calculated using the traditional Carman-Kozeny equation assuming Stokes flow through 

a granular bed of 5 μm diameter particles (which is close to the mean diameter for yeast 

particles) and a void fraction of 0.27 corresponding to the maximum packing of a face-

centered cubic array. As illustrated in Fig. 1, the experimental cake resistances for yeast 

are more than a hundred times higher than the values predicted. Experimental values 

also show a pressure dependence which is not accounted for by this simple equation.  

Most authors invoke the compressible nature of biological cells to explain the 

discrepancy between Carman-Kozeny predictions and experimental data, the calculated 

value being the lower limit when no compressive pressure is applied to the bed (Piron, 

René & Latrille, 1995). 

Indeed, developments in filtration theory have aimed at providing detailed 

descriptions of fluid motion though a filter cake due to a pressure gradient. This 

gradient causes an interfacial momentum transfer in the form of a viscous drag at the 

particle-fluid interfaces. If the shape or strength of the particles is such that the packing 

arrangement cannot sustain this drag without further movement occurring then the cake 

is regarded as compressible. The modeling approaches involved to describe the 

influence of cake compressibility on flow properties and volume fraction gradient in the 

cake have been well described in several papers, for example Tiller (1975), Shirato, 

Murase & Iwata (1986), Tiller, Yeh & Leu (1987), Sorensen, Moldrup & Hansen 

(1996). 



 5

If the compressible nature of many cakes is recognized in most of these works, 

the physical description of the forces acting on the packing re-arrangement is still not 

really understood nor described. For the case of biological cells, two mechanisms can 

count as major sources of the increase in hydraulic resistance with pressure: an increase 

in area-contact between the particles due to deformation or re-orientation by frictional 

drag ,  and formation of a compact skin layer next to the membrane surface due to the 

mass of particles.  

This article is concerned with the physical interpretation of the values of specific 

resistance measured during filtration experiments of yeast suspensions for different 

operating pressures. 

 

This study treats the following points: 

• experimental observation of the behavior of yeast suspensions (model 

suspensions) under compressive loads 

• development of a realistic model for the mechanical properties of a bed of yeast 

cells and their impact on its hydraulic resistance for low porosity, with incorporation of 

a modified Carman-Kozeny equation, established by the Lattice Boltzmann method, 

• integration of this model into an overall filtration model and comparison with the 

experimental results 

• discussion of the relative importance of cake and surface-layer contributions in 

controlling the hydraulic resistance. 

 

2. Theoretical development 

The model developed here has a certain similarity with a two-dimensional model 

for red blood cells proposed by Zydney, Saltzman & Colton (1989). They assumed that 



 6

the cells could be represented by hexagonally packed discs with cell deformation by 

flattening in the regions of cell-cell contact. This deformation was further assumed to 

occur by stretching of the cell membrane at constant cell volume. In the present case, a 

three-dimensional structure is assumed and deformation involves not only stretching of 

the membrane but also osmotic equilibrium. 

 

2.1.  Geometry of cells as a function of mechanical load and osmotic stress 

In a series of recent publications, Smith, Moxham & Middelberg (1998, 2000) and 

Smith, Zhang & Thomas (2000) studied the mechanical properties of yeast cells. A 

slightly simplified version of their model is used here with the aim of providing a 

realistic description of the compressive deformation of yeast in the filter cake; the 

content of this model is briefly presented in Eqs.(1) to (8). These authors found that the 

cell membrane is sufficiently permeable for an isolated cell to reach osmotic 

equilibrium in about 5 s. As we are interested in long-term behavior of the filter cake, 

we assume here that the cells are continually in osmotic equilibrium: 0pΔ − ΔΠ = , 

where c lp p pΔ = −  is the turgor pressure, i.e. the pressure difference between the cell 

interior and the surrounding liquid. This can be written as: 

0l cpΔ + Π − Π =  (1) 

If the osmotic pressure outside the cells lΠ is increased, their volume diminishes 

and the situation is finally reached where Δp is abolished, i.e. the cell membrane is no 

longer under tension and then we have: 0 0c lΠ = Π . According to Smith, Zhang & 

Thomas (2000), the value of 0cΠ  is 2.1 MPa. Under these conditions, the cell volume is 

Vc0 , its surface area Sc0 and r0 (2.51 µm) is the radius of a sphere having the same 

volume and surface area.  
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A common hypothesis, also adopted by Smith, Zhang & Thomas (2000), is that 

the osmotic pressure inside the cells follows a form of the van't Hoff equation: 

0 0( ) ( )c c n c c nV V V VΠ − = Π −  (2) 

Here Vn is a non-osmotic volume, which is an important fraction of the volume 

Vc0: 0n cV Vβ=  and β = 0.65 according to Smith, Zhang & Thomas (2000). 

By combining these equations, it is possible to obtain a relationship giving the 

cell volume that is fixed by the osmotic equilibrium: 

0 0
1

c c c
l

V V
p

ββ
⎛ ⎞−

= + Π⎜ ⎟Δ + Π⎝ ⎠
 (3) 

On the other hand, the cell membrane is considered as extensible. The 

relationship between the tension T of the membrane (assumed isotropic), the turgor 

pressure and the radius of curvature r is given by the Laplace equation: 

2Tp
r

Δ =  (4) 

The membrane is assumed to be perfectly elastic, so the tension is proportional 

to the surface deformation: 

0

0

c c

c

S ST K
S
−

=  (5) 

Here K is the surface modulus, whose value was determined by Smith, Zhang & 

Thomas (2000) to be 11.4 N m–1. Though these authors also studied a three-dimensional 

model of the cell membrane, we restrict our treatment here to the two-dimensional 

version and neglect any tension produced by membrane shear and flexion. 

In this way it is possible to arrive at a relationship for the surface area of the cell 

as it is fixed by the elastic stretching of the membrane: 
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0 1
2c c
r pS S
K
Δ⎛ ⎞= +⎜ ⎟

⎝ ⎠
 (6) 

Before considering the compressed cells, it is important to determine the internal 

pressure of a non-compressed spherical cell of radius r. We define the ratio 0r rλ = . As 

3
0c cV V λ=  Eq. 3 can be put into the form: 

0 3
1

c lp β
λ β

−′Δ = Π − Π
−

 (7) 

 

Also as 2
0c cS S λ=  Eq. 6 becomes: 

( )2

0

2 1Kp
r

λ
λ

′Δ = −  (8) 

The value of λ is determined so that the two Eqs. 7 and 8 give the same turgor 

pressure c lp p p′ ′Δ = − , corresponding to the value for non-compressed cells. 

We assume that in the case of compressed cells the total internal pressure is the 

sum of this initial pressure and the compressive pressure ps : 

c c sp p p′= +  (9) 

The geometry of the compressed cells is then established by considering that the 

cells have a roughly spherical form, are of uniform size and are arranged in face-

centered cubic packing. We assumed that under a compressive load, the surface of 

contact between two cells will no longer be spherical but flat, while the untouched part 

of the cell retains a spherical shape: one can also think of the cells as represented by 

overlapping or interpenetrating spheres.  

To calculate the surface area and volume fraction of these cells we consider a 

spherical envelope from which segments are removed and replaced by flat areas: each 



 9

sphere has 12 neighbors and will ‘lose’ 12 segments. If the distance between the centers 

of two neighboring cells is 2a and r is the radius of curvature, then r/a can be thought of 

as a stretch ratio: it is equal to 1 for non-deformed cells and increases with increasing 

deformation. The volume of each cell Vc is related to this ratio in the following manner: 

2 3
34 9 5 3

3c
r rV a
a a

π
⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (10) 

The surface area of each cell is found in a similar way: 

2
24 6 2 3c

r rS a
a a

π
⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (11) 

Face-centred cubic packing can be represented by a repeating cube of side 2 2a  

that contains the volume of 4 cells. So the volume fraction of cells in this compressed 

packing is related to the stretch ratio as follows: 

 

2 353 1
32

r r
a a

πφ
⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (12) 

In the same way, the liquid-solid interface area per unit volume can be 

calculated: 

2

6 5
2

r rS
a aa

π ⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (13) 

This geometry remains permeable for values of r/a at which the ‘triangular’ 

openings remain open: 1 / 2 3r a≤ < . 

It is worth noting that the model of Smith, Zhang & Thomas (2000) contains four 

parameters 0cΠ , r0, β and K that were determined by these authors. Though their 
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measurements did not claim to reach a high accuracy, we have used their values in the 

rest of this work. 

 

2.2.  Hydraulic resistivity of a porous medium at low porosity 

 

Even though cell membranes are found to be moderately permeable, the cells 

will be taken as constituting an impermeable solid phase. The hydraulic resistivity of 

this porous medium can be represented using the Carman-Kozeny equation: 

( )
( )

2

0 31h
Sr K φ

φ
=

−
 (14) 

It is know that at high volume fraction φ the value of K0 increases strongly with φ 

(Dullien, 1979) and it is quite inaccurate to use the traditional value for a bed of 

spherical particles. The hydraulic resistivity of this porous geometry was calculated by 

the Lattice Boltzmann method (Succi, 2001). This numerical technique for calculating 

flow patterns is particularly well adapted to the complex geometries that are found in 

porous media. For this calculation, the 3-dimensional image of the pore structure was a 

cube, 104 voxels in length. Periodic boundary conditions were imposed on all opposing 

faces, with a pressure jump between the two faces on the flow direction. It was found 

that the results of this numerical calculation could be represented by a simple function 

in which the Kozeny coefficient K0 varies with φ in the following way (Meireles, 

Clifton & Aimar,2002): 

1
0 0

lim

aK a
φ φ

⎡ ⎤
= +⎢ ⎥−⎣ ⎦

 (15) 

Here φlim is the volume fraction of solid phase for which the narrowest openings 

between cells are closed, so that the cake resistance tends towards infinity. 
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Fig. 2 is a flow diagram showing how Equations 3 and 6 – 15 can be used to 

determine rh and φ  as a function of ps. The numbers in the diagram are the equation 

numbers and the presence of several numbers in a single block indicates a simultaneous 

solution; the values in the upper left-hand corner are parameters of the problem (yeast 

properties and the osmotic pressure of the filtrate). Because of the non-linearity of the 

system of equations a direct calculation is not possible: instead the ratio /r a  is varied 

over the range of possible values (from 1 up to a value for which the structure is almost 

closed) and this allows calculation of φ , rh and ps. These values are tabulated and in 

subsequent calculations spline interpolations are used to calculate φ  and rh from ps. 

 

2.3.  Model for permeation 

 

The model for the mechanics of cell deformation and its effect on hydraulic 

resistivity has been incorporated into a permeation model that applies Darcy's law: 

l
h

dp r u
dx

η= −  (16) 

Here pl is the liquid pressure, x is the distance in the flow direction, rh is the 

hydraulic resistivity, u  is the superficial velocity of the liquid (an imposed value) and 

η its viscosity. 

On the basis of a force balance, the drop in liquid pressure is usually considered 

to be compensated by an increase in the compressive pressure in the solid:  

0 s lp p p= +  (17) 

The hydraulic resistivity is a function of the compressive pressure, which is 

related to the liquid pressure by Eq. 17.  



 12

The specific resistance of the cake α is calculated according to the equation: 

( )
0

m

pu
R mη α

=
+

 (18) 

The specific resistance is related to the mass of “solids” in the cake (including 

the water in the cells). The mass m of filter cake per unit membrane area is given by the 

integral: 

 (19) 

This integration is performed numerically simultaneously with the resolution of Eq. 16 

taking account of Eq. 17 and of the variation of rh and of φ with ps.  

The limiting conditions for Eq. 16 are as follows: at the upper surface of the 

cake, at x = 0, lp  is equal to the filtration pressure 0p and at the cake-membrane 

interface, at dx X= , l mp u Rη= . Here Rm is the effective hydraulic resistance of the 

membrane and Xd, the cake thickness determined by integrating Eq. (16) for increasing 

x values until the experimental value for the mass of filter cake is reached.  

 

3. Materials and methods 

 

3.1. Yeast suspensions 

 

Suspensions of baker’s yeast Saccharomyces Cerevisiae were prepared from 

commercially available Active Dry Yeast (Lessaffre) which were suspended in isotonic 

saline water (8 g/L NaCl, pH = 6.0). During the rehydratation process, soluble 

compounds can be released in the suspension.  Rehydrated suspensions are thus 

centrifuged at 4000 rpm for 15 minutes at 20°C (Centrikon T-124, Kontron 

A/dxm
Xd

c φρ∫=
0
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Instruments). The sediment is then collected and resuspended in isotonic saline water. 

This operation is repeated three times in order to remove the released soluble species. 

The final sediment is then collected and resuspended in isotonic saline water. The final 

solution, designed as “washed solution”, free from soluble compounds is then 

constituted from yeast cells suspended in saline water.The density of washed rehydrated 

yeast cells  ρc  is equal to 1130 kg/m3. 

Yeast cells are ovoid particles: their mean particle diameter was determined 

using a Disk Centrifuge Particle Analyzer (Brookhaven Instruments Corporation, USA). 

A mean diameter of 5± 3 μm was found. Observations with an optical microscope 

(Axiolab A- Reflected Light Microscope, Zeiss, Germany) revealed that “washed” cells 

are close to spherical particles, the size distribution observed being the result of some 

daughter cells  present at the surface of a few yeast cells. Observations also confirm that 

using the washing procedure, all the cell debris had been removed.  

 

3.2. Filtration experiments and determination of specific resistance 

 

For a given hydrostatic pressure, we measured the specific resistance of filtration 

cakes of a well defined mass. This was done by monitoring the permeate volume over 

time during filtration of the suspension and by measuring the flux at steady state with an 

isotonic saline solution. 

The experimental set-up consists of a pressurized reservoir (Amicon), a 0 - 600 

kPa pressure gauge (AGA) and a dead-end unstirred cell (Amicon 8050, Millipore) 

which is a cylindrical vessel with a porous bottom plate acting as a membrane support. 

We used a 0.1 μm acetate microfiltration membrane, 13.4 cm2 in area (Orelis, Saint 

Maurice de Beynost, France). Pressure was set in the range 30 - 300 kPa by means of 
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compressed air and permeate mass was recorded on an electronic balance (Precisa 1600 

C – Oerlikon – 5/1600 g).  

A yeast suspension of known volume and initial concentration (1 g/L or 20 % 

v/v) was placed in the filtration cell and saline solution was continuously fed from the 

reservoir to the cell under constant pressure. The suspension then forms a cake layer on 

the membrane. The optical clarity of the fluid above the cake was checked to be sure 

that all the particles were deposited onto the cake. Each run consisted in setting the 

pressure drop across the membrane, measuring the permeate volume every 2 minutes 

during the cake build-up on the membrane and then measuring the permeate flux when 

saline solution was filtered through the cake layer.  

 

Permeate flux decreased with time and reached a steady-state value once all the 

yeast had accumulated in the cake on the membrane. The superficial permeation 

velocity is related to the variation in permeate volume according to: 

1 dVu
A dt

=  (20) 

Then the specific resistance of the rehydrated cells cake can be calculated from 

the rate of variation in permeate volume using a variant of Eq. 18: 

          (21) 

 

 

Here mR  is the hydraulic resistance of the clean membrane and α  is the 

experimentally determined specific resistance; it is worth noting that α  is an average 

value that includes both bed deformation effects and surface layer effects. If the average 

resistance α  is constant throughout the experiment, then Eq. 21 is valid both during the 

)m.R(
pA

dt
dV

m αη +
= 0
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stationary phase when the cake is completely formed (    is then a constant) and during 

the initial phase of cake formation (when       is variable). 

The mass       of rehydrated cells that has accumulated on the membrane per unit 

area can be calculated from the mass of dry yeast in the initial suspension C,       = κ C 

V / A where κ a proportionality constant (κ = 1.8 as determined experimentally by 

Starov & al., 2002) used to convert the  yeast cell dry weight into the yeast cell 

rehydrated weight.  

Substitution of the latter expression  in equation (21) gives the following 

relationship: 

 (22) 

 

Integration of Eq. 22 gives the relationship for the transitory phase: 

 (23) 

This is the traditional filtration equation for constant pressure filtration , very 

similar to Ruth's equation (Ruth, 1935). Eq. 23 was used to determine the specific 

resistance of yeast cakes from experimental data in the transitory phase. 

Furthermore, Eq. 21 was used to calculate the value of the specific resistance 

during the stationary phase (i.e. when all the yeast cells have accumulated in the cake) 

where  the mass of deposited cells is known from the initial weight of cells according to                    

   =  κ C.Vf / A with Vf is equal to the total volume of permeate collected during 

the cake formation phase.               

In this work the values determined from the transitory phase were found to be 

consistent with the steady-state values, and the latter are considered for the discussion. 

 

m

)V.C.A.R(
pA

dt
dV

m καη +
= 0

2

V
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R

V
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3.3. Compressibility: centrifugal measurement procedure 

 

The compressibility of the yeast cells was studied through a multiple-speed 

equilibrium sediment height (MSESH) technique first developed by Buscall and White 

(1987). This technique has been mainly used to determine in an accurate way the 

compression characteristics of mineral flocculated suspensions (Miller, Melant & 

Zukoski, 1996) or to examine consolidation mechanisms during dewatering of fine 

tailings (deKretser, Scales & Boger, 1997). In the MSESH technique a centrifuge is 

used to determine the compressive yield stress function ( )sp φ , i.e. the force or pressure 

a network can sustain without undergoing a re-arrangement. In this approach, the 

compressive yield stress is assumed to be an explicit function of solid volume fraction 

and an implicit function of the interparticle bridging force. The latter implicit function 

can be determined through different experimental procedures (Miller, Melant & 

Zukoski, 1996). In this work, we have retained a MSESH technique that we briefly 

describe here. 

  Samples of cell suspensions of known initial volume and solids content are 

placed in cylindrical, transparent, flat-bottomed centrifuge tubes and the equilibrium 

height heq is measured for various increasing values of centrifugal acceleration at the 

bottom of the tube Rω2 = Ng. The initial volume fraction of the suspension is assumed 

to be uniform throughout the tube. Raw data required are the initial height of the 

suspension, the density difference between solid and liquid phases and the centrifuge 

radius from the center to the base of the tube.  

A typical plot of heq(Ng) is shown in Fig. 3. The curves are linear when plotted 

on semi-logarithmic coordinates. The conversion of this raw data to a ( )sp φ  curve is not 

trivial. Buscall & White (1987), Landman, White & Buscall (1988), and Green, Eberl & 
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Landman (1996) after considerable work have developed a procedure to estimate such 

constitutive equations for compressible beds. 

There are two routes to process the data: a full iterative algorithm and an 

approximate solution. It was shown that the approximate solution is acceptable if a 

limited number of data are available. The theory for these techniques is fully detailed in 

the above references and the basic equations for the approximate solution are given in 

the Appendix. As reported by Green & Boger (1997) a certain minimum centrifuge tube 

diameter must be used to minimize any possible wall effects, as narrow tubes may 

restrict the compressibility of the suspensions and generate unrealistically low results. A 

tube diameter of 24 mm was used for all experiments, the widest practical tube diameter 

for the results presented here. This does not mean that the wall effect is entirely 

eliminated using this tube diameter, but possible wall effects on the compressive 

behavior of the suspensions are minimized. 

 

4. Results  

 

4.1. Deformation of yeast cells under mechanical load 

 

We have measured the compressive yield stress for different solid fractions in 

the range 0.5 - 0.9. It is seen in Fig. 4 that a solids fraction as high as 85% can be 

reached for compressive yield stress in the range of 10 to 50 kPa. These results are in 

good agreement with those discussed by Zydney, Saltzman & Colton (1989) for red 

blood cells who found a solids fraction as high as 98% for a compressive yield stress of 

12 kPa. Yeast cell deformation has been observed during a slow drying process on a 

microscope slide through an optical microscope. Fig. 5 illustrates the deformation of 
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yeast cells used in our study during such a drying process: this creates a hexagonal 

arrangement similar to that observed by Zydney, Saltzman & Colton (1989). 

 

4.2. Filtration results 

 

We determined the specific resistance of the cake α  from the variation of t/V 

versus the permeate volume V as detailed above. The membrane resistance Rm during 

the experiment was obtained from the extrapolation of the data for V = 0. The average 

specific resistance of the cake α could also be determined from final resistance mα , 

that is observed when all the solid material in the suspension has accumulated on the 

membrane. The specific resistance values measured in both ways are consistent. 

Specific resistance data obtained from experiments are plotted in Fig. 6 as a function of 

applied pressure. The α  values are close to the values previously measured by others. 

A power law is found to fit the pressure dependency, as frequently reported. This power 

law does have some defects: in particular it implies a zero specific resistance at zero 

pressure. However as it is a standard analysis technique, it has been applied in the 

present work. Here the compressibility index  n was close to 0.8  (Fig. 7) to be 

compared with usual values ranging from 0 for incompressible material to 0.9 for highly 

flocculated compressible sludge and to compressibility index found in the literature.  

For rehydrated yeasts or cultivated yeasts  compressibility index lying between 0.25 and 

0.9 have been reported depending on the range of the applied pressure, of the 

composition of the suspending media and of the rinsing procedure. 

 

5. Discussion 
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5.1. Deformation of yeast cells under mechanical load 

 

Fig. 7 shows a comparison between the deformation of yeast cells measured 

using centrifugal experiments based on the MSESH technique and the model described 

above with the values of the parameters determined by Smith, Zhang & Thomas (2000) 

for 0cΠ , r0, β and K. The experimental data (points) show less compression than is 

predicted by the model when using the published values of the parameters (the 

continuous curve). A first possibility to explain this, is the uncertainty in the 

determination of the four parameters of the model: indeed the published values have 

only a moderate precision. But  we have tested that the behavior of the model is 

relatively insensitive to the values of these parameters; this is illustrated by the dotted 

curve in Fig. 7 which was calculated after multiplying the surface modulus K by a factor 

of 2. 

A more likely explanation lies in the fact that the cell deformation is largely 

reversible. So the bed of cells initially compressed in the centrifuge may have time to  

expand osmotically between the time when the centrifuge is stopped and the time when 

the measurement is made: a matter of several minutes. As mentioned previously Smith, 

Zhang & Thomas (2000), found that isolated cells reached osmotic equilibrium in about 

5 s. For cells incorporated into a compressed bed, the transfer of water would be slowed 

by the small area of contact between cells and the aqueous phase and by the low 

permeability of the medium. Even so, it is possible that the expansion of the bed could 

be rapid enough to cause the difference in compression shown in Fig. 7. Indeed, 

McCarthy, O’Shea, Murrau, Walsh & Foley (1999) discussed the existence of a 

reversible mechanism in the compression of microbial cakes through centrifugation 



 20

experiments suggesting that measurements made when the pellet has relaxed to a zero-

compressive pressure state would underestimate cell compressibility. 

 

Finally, we also mentioned that there are two ways of treating the raw data: a full 

iterative algorithm and the approximate solution that was used in this work. The use of 

the numerical procedure would certainly improve the precision of the treatment, but this 

improvement is unlikely to cause important differences in the results. 

 

5.2. Specific hydraulic resistance 

 

In Fig. 6, the calculated specific resistances are plotted against the filtration 

pressure and compared with the experimental data. As shown the calculated values are 

almost two orders of magnitude lower than the experimental ones. Also the calculated 

values show almost no variation with the pressure and at first sight this can seem 

surprising for a compressible cake. The model presented above does in fact predict 

values of α in the  same range as the experimental values, but the compressive pressure 

in the cake would have to be quite high (ps ≈ 0.9 bar). It is important to note that the 

compressive pressure is zero at the upper cake surface: so the top layer of cells is not 

compressed. Then deeper into the bed of cells and closer to the membrane, the 

compressive pressure increases as the hydraulic pressure in the liquid declines, 

according to Eq. 17. The hydraulic resistance of the uppermost cells is not high enough 

to create a sufficient pressure drop for there to be a strong compression of the cells 

closer to the membrane. In this way, the overall pressure drop calculated for this system 

is much lower than is observed experimentally. 
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There is one point however that has not been included so far in our model: the 

effect of the first cell layer, the one that is closest to the membrane. If we consider the 

results of our calculations as presented so far, the liquid pressure at that point is still 

quite high, with very little loss in the filter cake up to that point. The cells in the first 

layer experience this hydraulic pressure everywhere except on the surface where they 

are in contact with the membrane: through that surface there is no flow and no pressure 

drop, so the pressure they experience there is in fact the permeate pressure. Thus the 

cells in the first layer experience a much higher compressive pressure than the other 

cells, a compressive pressure equal to the hydraulic pressure near the membrane surface 

( )l dp X . Also part of their contact area is on the membrane, and this part of the 

membrane becomes impermeable. Already Zydney, Saltzman & Colton (1989)  

considered a mechanism by which cells would block pores on the membrane surface, 

the extent of the blockage being almost independent of the compressive pressure for the 

red blood cells they were working with. In the present case, the yeast cells are more 

nearly spherical so it would not be surprising if their contact area varied with the 

compressive pressure. 

The fraction of open membrane area ξ can be calculated as the ratio of the 

resistance of the clean membrane to the apparent membrane resistance: 

( )
mm

m l d

R uR
R p X

η
ξ = =  (24) 

It should be noted here that because of the low resistance of the filter cake, the 

hydraulic pressure at the membrane is almost equal to the applied filtration pressure: 

( ) 0l dp X p≈ . Calculations performed on the basis of Eq. 24 give values that decrease 

regularly with the applied pressure (Table I): so the contact area of the cells with the 

membrane increases with increasing pressure. This can be put in parallel with the fact 
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that cell-cell contact area also increases with increasing compressive pressure. For the 

cells in the first layer part of the cell-cell contact should be replaced by cell-membrane 

contact, so the area of membrane blocked by cells should be proportional to their cell-

cell contact area. 

The membrane area occupied by each cell in face-centered cubic packing 

depends on the orientation assumed by the packing. As shown in Fig. 8 for a 'hexagonal' 

plane lying on the membrane it would be 22 3a  whereas for a 'square' plane it would 

be 24a : the two values are not very different. The cell-cell contact area per cell is 

( )2 212 r aπ − . So the cell-cell contact per unit membrane area is ( )2 22 3 1r aπ − for 

the 'hexagonal' arrangement and ( )2 23 1r aπ − for the 'square' arrangement: let us 

assume an intermediate value of ( )2 210 1r a − . The ratio of this quantity to the 

calculated fraction of membrane area blocked by cells gives the fraction of cell-cell 

contact. As shown in Table 1, this fraction is independent of the compressive pressure 

(applied pressure) and is about 13%. This value seems reasonable to explain the major 

part of the cake resistance can be accounted for by membrane-blocking mechanism in 

which the layer of cells in contact with the membrane experiences a compressive 

pressure almost equal to the filtration pressure and the resulting cell-membrane contact 

area is simply a moderate fraction of the cell-cell contact area that the same cells would 

have in a uniform bed. 

 

6. Conclusion 

 

While there has been a large number of studies devoted to dead-end microbial 

filtration in recent years, most of these have focused on empirical relations between rate 
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of filtration and operating pressure and arrive at the conclusion that compressibility 

should be invoked. However no such effects have been explicitly taken into account 

through a particle stress balance equation in the formulation of the problem. In the 

present work, experimental data on filtration through yeast filter cakes have been 

compared with a mechanical model developed to describe the behavior of such a bed of 

deformable cells. 

We have also explored the possibility of using a multiple speed equilibrium 

sediment height technique to determine a compressive yield stress function. Here the 

comparison between the experimental data and the mechanical model suggests that the 

centrifugal technique suffers from problems related to the fairly rapid relaxation of the 

cell bed once compression is stopped. This technique could give better results with a 

centrifuge optically equipped to measure sediment height during compression. 

Unlike previous studies, the present work uses a mechanical model based on 

independent measurements to gain insight into the role of compressive pressure in 

packing arrangement and flow properties of the filter cake. A modeling approach based 

on established theories for flow in porous media and particle stress balance shows that 

the behavior of yeast-cell beds in terms of compressibility and hydraulic resistance can 

be taken into account. The results show that simply including a plausibly compressible 

bed is not sufficient to explain the hydraulic resistance observed. However the high 

compressive pressure experienced by the first layer of cells in contact with the 

membrane can explain the results if it is assumed that a constant fraction (around 13%) 

of the contact area of the cells acts to reduce the membrane area open to flow. Future 

work on flow through cell beds of widely varying thickness would be valuable in testing 

this hypothesis as well as evaluating the influence of membrane porosity and cell 
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surface properties one factor not discussed in this work but also known to change the 

compressibility of cells. 
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7. Appendix 

Beginning with a force balance on a differential element of the cell bed in the 

tube as depicted in Fig. 9, and continuity equations on the solid and liquid phases, the 

underlying differential equation relating the compressive yield stress P at equilibrium to 

the acceleration may be determined: 

 

2( )s
c l

dp r
dr

ρ ρ φ ω= −         (A.1) 

Where ps is the compressive pressure on the solid in the differential element of the bed. 

Noting  r = R – x with γ = Ng = Rω2, yields  

 

( ) ( ) 1s
c l

dp xx
dx R

γ ρ ρ φ ⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

       (A.2) 

Buscall & White (1987) suggest applying this general equation (A.2) to the 

particular case of x = 0, i.e. at the bottom of the tube as detailed below. A function X(x) 

is defined: 

( )1 1
2

eqh eq
eqx

h xxX dx h x
R R

+⎛ ⎞⎛ ⎞= − = − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∫      (A.3) 

Equation (A.2) can then be written as: 

sdp dXργ
φ

= Δ          (A.4) 

and integrated to yield: 

( )

( )

0

( )
sp x

s

s

dp X x
p

ρ γ
φ

= Δ∫        (A.5) 

 

In particular at x = 0, equation (A.5) becomes: 
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(0)

0

(0)
( )

sp
s

s

dp X
p

ρ γ
φ

= Δ∫        (A.6) 

 

Differentiating (A.6) with respect to γ, we obtain 

 

(0) (0)(0) (0)sdp dXX
d d

φ ρ γ
γ γ

⎡ ⎤⎛ ⎞
= Δ +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
     (A.7) 

 

From equation (A.6), we can also put: 

 

1( ) sdpx
dX

φ
ρ γ

=
Δ

        (A.8) 

 

The mass balance 0 00

eqh dx hφ φ=∫ can therefore be written as: 

 

0 00

eqh sdp dx h
dX

ρ γ φ= Δ∫        (A.9) 

 

Integrating this equation by parts we obtain: 

 

0 0(0) ( )sp hρ γ φ γ= Δ − Λ        (A.10) 

with: 

 

( )20

( )1( )
1

eqH sp x dx
R x R

γΛ =
−∫        (A.11) 

 



 27

Differentiating equation (A.10) with respect to γ, we obtain: 

 

0 0
(0)sdp dh
d d

ρ φ
γ γ

Λ
= Δ −        (A.12) 

 

Substituting this result in equation (A.7), we obtain: 

 

0 0
(0)1(0) (0) dXdh X

dg d
φ φ γ

ρ γ
⎛ ⎞ ⎛ ⎞Λ

= − +⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠⎝ ⎠
    (A.13) 

 

Equations (A.11) and (A.13) provide a way of determining the compressive 

pressure ps(0) and the volume fraction φ(0) at the bottom of the tube from the quantity 

Λ. 

Buscall & White (1987) suggested an approximate solution to equations (A.10) 

and (A.13). It allows the compressive pressure and the volume fraction at the bottom of 

the tube to be calculated from the variation in the steady-state pellet height as a function 

of centrifugal acceleration: 

 

0 0(0) 1
2
eq

s

h
p h

R
ρ φ γ

⎛ ⎞
≈ Δ −⎜ ⎟

⎝ ⎠
       (A.14) 

 

0 0

2

11
2

(0)
1

2

eq
eq

eq eq eq
eq

dh
h h

R d
dh h h

h
d R R

φ γ
γ

φ
γ

γ

⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦≈
⎛ ⎞⎛ ⎞

+ − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

        (A.15) 
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For a set of initial volume fractions φ0 and volumes h0 in the tube, we have 

determined the variation of heq with centrifuge acceleration γ as shown in Fig. 8. The 

quantity eqdh dγ   is therefore defined as the slope of that curve for a given set of data. 

Green, Eberl & Landman (1996) have shown that this variation of heq with 

γ when normalized with respect to initial conditions 0 0h φ  follows a polynomial law. 

Here the best adjustment is obtained with a polynomial function of the type: 

 

( ) ( )2 3
0 1 2 3

0 0

ln ln ln lneqh a a a a
h

γ γ γ
φ

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
    (A.16) 

with a0 = – 0.671; a1 =  0.427; a2 = – 4.68 ×10-2; a3 =  1.39 ×10-3 

 

Applying equation (A.16) to each set of data (heq, γ), we could estimate the 

variation of eqdh dγ  for a large range of initial conditions (φ0, h0).  
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9. Notation  

 A membrane area (m2) 

 a half-distance between centers of two neighboring cells (m) 

 C concentration of dry solid in the suspension (kg m-3) 

 g acceleration due to gravity (m s-2) 

h0 initial sediment height (m) 

 heq equilibrium sediment height (m) 

 K surface modulus (N m–1) 

 K0  Kozeny coefficient (-) 

 m mass of rehydrated cells cake per membrane area (kg m–2) 

 n  compressibility index  

 N gravity number 

 p hydrostatic pressure (Pa) 

 p0 applied filtration pressure (Pa) 

 ps compressive pressure on solid phase (Pa) 

r radius of curvature, radial distance (m) 

rh hydraulic resistivity (m–2) 

 R radius of the centrifuge rotor (m) 

Rm membrane resistance (m-1) 

mR  apparent membrane resistance (m–1) 

S surface area per unit volume (m–1) 

Sc surface area per cell (m2) 

T membrane tension (Pa) 

t time (s) 

u  superficial liquid velocity in porous medium (m s–1) 



 34

 V permeate volume (m3) 

 Vc volume of a cell (m3) 

 Xd cake thickness (m) 

x space coordinate (m) 

 

Greek symbols 

α specific resistance per mass of wet cake (m kg-1) 

α  average specific resistance per mass of wet cake (m kg-1) 

β non-osmotic fraction of cell volume (-) 

Δ difference between inside and outside of cell 

κ coefficient to convert dry cell weight into rehydrated cell weight 

η  viscosity (Pa s) 

ξ  fraction of membrane blocked by cells (-) 

Π osmotic pressure (Pa) 

ρ  density (kg m-3) 

φ  volume fraction of solid (-) 

ω angular velocity (rad s-1) 

Subscripts 

c cell, cell interior 

l liquid phase 

s solid phase 

0 value at zero cell membrane tension, value at x = 0 

' value for uncompressed cell 
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10. Figure Captions 

 

Fig. 1. Specific resistance of yeast cakes as a function of operating pressure. 

Data from Piron, René & Latrille (1995), Nomura et al. (1984), Nakanishi et al. (1987), 

Rushton et al. (1977). Shown for comparison is the resistance calculated using the 

Carman-Kozeny equation (Eq. 14) with a cell density ρc of 1130 kg/m3, a cell diameter 

of 5 μm and a solids volume fraction of 0.74. 

Fig. 2. Flow diagram showing how Equations 3 and 6- 15 can be used to 

determine hydraulic resistivity and solid cake fraction. 

Fig. 3. Typical raw data generated by multiple-speed equilibrium sediment 

height technique for the determination of compressive yield stress. 

Fig. 4. Deformation of yeast cells under mechanical load from MSESH values 

experiments.  Compressive pressure as a function of volume fraction of solids for 

pellets formed from rehydrated yeasts . 

Fig. 5. Micrograph of a yeast suspension during a slow drying process. Cells are 

deformed by flattening in regions of cell-cell contact while remaining rounded 

elsewhere. 

Fig. 6. Specific resistance of a  bed formed from washed rehydrated yeasts as a 

function of pressure. Black dots are experimental data and white dots calculated values  

Fig. 7. Deformation of yeast cells under mechanical load. Black dots are 

experimental MSESH values, the continuous curve shows the prediction of the 

mechanical model with standard values for the yeast properties and the dashed curve is 

from the model with the membrane surface modulus K multiplied by 2. 

Fig. 8. Schematic representation of cell-cell contact area near the membrane. 
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Fig. 9.  Raw data curve fitting with a third-order polynomial law. 

 

11. Tables 
 

Table I. Calculated values of the fraction of membrane area blocked by cells 

from the ratio of clean membrane resistance to apparent membrane resistance (Eq. 24).
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Table I 

 

p0    (kPa) 50 50 75 100 150 200 

1210mR
−×   (m-1) 1.93 2.40 2.40 2.40 2.40 2.06 

610u ×   (m/s) 18.0 16.0 23.3 30.2 44.2 56.0 

   (g m-2) 49.4 60.0 58.0 50.2 56.5 60.0 

1210α −×   (m/kg) 10.4 11.3 13.1 14.7 17.4 25.6 

1210α −×   (m/kg) 0.167 0.169 0.172 0.174 0.184 0.191 

1 ξ−  0.300 0.226 0.248 0.270 0.287 0.419 

Cell-cell contact area  

per unit membrane area 

1.63 1.63 2.03 2.37 2.96 3.47 

Fraction of cell-cell contact area 

blocking the membrane (%) 

18.4 13.8 12.2 11.4 9.7 12.1 

 

m
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Figure 1  
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Figure 6 
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Figure 7 
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Figure 8 
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