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The three-dimensional classical dimer model with interactions shows an unexpected continuous phase tran-
sition between an ordered dimer crystal and a Coulomb liquid. A detailed analysis of the critical dimer and
monomer correlation functions points to a subtle interplay between the fluctuations of the crystal order param-
eter and the “magnetic” degrees of freedom present in the Coulomb phase. The distribution probability of the
crystal order parameter suggests an emerging continuous O�3� symmetry at the critical point.
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I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless transition1 is an ex-
ample of critical phenomenon which cannot be understood
from the conventional Landau-Ginzburg-Wilson �LGW�
point of view, based on spontaneously broken symmetries
and critical fluctuations of the associated order parameter.2

Many quantum systems in one-dimension and classical sys-
tems in two-dimension �2D� exhibit such type of continuous
phase transition, which is understood as a proliferation of
topological defects. The recent suggestion3 that some phase
transitions in D�2 could also be outside the LGW
framework triggered an important activity, both on the
field-theoretical4 and numerical5–7 sides.

The classical dimer model on the cubic lattice8,9 is one of
the simplest three-dimensional �3D� models with a transition
which does not seem to fit in the LGW picture,9 although the
field theory of the critical point has not yet been elucidated.
Configurations of the model are hard-core dimer coverings
of a cubic lattice.8 Each dimer occupies two sites and each
site belongs exclusively to one dimer. In addition, each con-
figuration has an energy equal to −1 times the number of
square plaquettes with two parallel dimers.9 At low tempera-
ture T, this interaction favors the sixfold degenerate regular
�crystalline� arrangements of dimers. At high T, the lattice
symmetries are restored �dimer liquid�, but dimer-dimer cor-
relations decay algebraically with distance �with the same r−3

dependence as the interaction energy of two magnetic
dipoles�.8 This so-called Coulomb phase has also been found
in other 3D models10 and is relevant to some pyrochlore
compounds �see for instance Ref. 11�.

The most intriguing properties of this dimer model con-
cern the phase transition between the low-T crystal and the
Coulomb phase. Previous simulations9 indicated that the
transition is continuous �second order�. This is already in
contradiction with the LGW approach, which generically
predicts a first-order transition in the present case. The main
question, still open at present, is to understand what are the
fields needed for a description of the long-distance properties
at the critical point, and what is the associated field theory. In
this Rapid Communication, we report on numerical investi-
gations of correlation functions and order parameters in the
vicinity of the critical temperature Tc. We show that the di-

polar character of the dimer correlations is gradually lost
when approaching the transition, and find an unexpected
probability distribution of the order parameter, with a pos-
sible emerging continuous symmetry. Related to rotations of
a three-component order parameter, this O�3� symmetry is
not present at the microscopic level. Terms which make the
symmetry group discrete at the lattice scale �a dimer can only
take six orientations� may be irrelevant in the renormaliza-
tion group �RG� sense at the critical point, but clearly rel-
evant in the ordered phase. This finding is a step toward a
description of the transition in the continuum limit, and es-
tablishes a tight connection with previous models �quantum6

and classical5� discussed in the context of non-LGW
transitions.

II. DIMER CORRELATIONS: FROM DIPOLAR
TO SPIN-SPIN FORM

In Coulomb phases, it is useful to introduce a magnetic
field8 defined on each bond by Bij =−Bji=1 if a dimer sits
between sites i�A and j�B �A and B are the two sublat-
tices� and Bij =0 otherwise. When considered as a vector
field B, its lattice divergence satisfies � ·B= �−�r= �1, as
each site is occupied by exactly one dimer. Coarse graining
over a large number of sites, the contributions of both sub-
lattices cancel out to give � ·B=0. In the continuum limit, B
is thus written using a vector potential: B=��A. At high T
and long distances, this zero-divergence constraint captures
the essential aspects of the dimer hardcoreness.8 The Cou-
lomb phase is then described by the simplest action compat-
ible with the gauge invariance A→A+�� �� is an arbitrary
function�, that is S= K

2 �d2r���A�2�r�. Here the rigidity K−1

depends on T. This effective action leads to dipolar long-
distance correlations:8

�B��0�B��r��c �
1

K�T�
3r�r� − 	��r2

r5 . �1�

K−1 can be measured numerically through LK−1= ��
z�2�; the
fluctuations of the total flux 
z=�dxdyBz�r= �x ,y ,z0�� going
through the sample �independent of z0�. Reference 9 showed
that K−1 vanishes continuously when approaching the transi-
tion at Tc	1.675, as magnetic-field fluctuations are costly
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when approaching the crystal. Although the dipolar form
dominates at high T, we find that this contribution to the
dimer-dimer correlations �Eq. �1�� progressively disappears
when approaching Tc. In Fig. 1�a�, the correlations �d0

xdr
y�c

for r= �i , i ,0� are multiplied by 
r
3 to highlight the dipolar
contribution and its strong reduction when going from T=4
to T=1.68 �just above Tc�. This is expected since K−1 van-
ishes when approaching Tc. However, the magnetic action
does not account for an important qualitative feature. Setting
�=�=x in Eq. �1�, the prefactor a of the dipolar contribution
a /r3 depends on the lattice direction �for instance a=0 for
r= �i , i , i� and a=1 /2 for r= �i , i ,0��, whereas the actual cor-
relations close to Tc appear to be almost isotropic �see Fig.
2�a���.

Equation �1� misses an important physical ingredient: the
crystal-like dimer correlations associated to the order param-
eter of the symmetry-breaking phase. At each site, we define
a three-component vector n� by n��r�= � �−1�r�

if the dimer
sitting in r points in the direction ��, and 0 otherwise. This
ensures that n� is “ferromagnetically” correlated in the crystal
phase ��n��= �e�x , �e�x , �e�y in the six ground states�. Mak-

ing the assumption that long-distance fluctuations of n� are
described by a three-component “spin” model �i.e., absence
of coupling between real space r� and internal spin ni indi-
ces, as in O�n� models�, the angular dependence of the cor-
relations become �n��0�n��r��c�	��. It turns out that in a
wide temperature range around Tc, the connected dimer-
dimer correlations �d��0�d��r��c are well approximated by a
dipolar contribution, plus a “spinlike” contribution:

�− 1�r

K

3r�r� − 	��r2

r5 + �− 1�r�
g�
r
�	��. �2�

Taking �=x ,�=y, and r= �i , i ,0� �Fig. 1�a���, the “spin”
term vanishes and only the dipolar part remains, whereas for
�=�=x and r= �i , i , i� the dipolar part vanishes and one is
left with g�r�. The latter is displayed in Fig. 2�b�, where
strong and slowly decaying correlations are found close to
Tc. At Tc, g�r� is very likely algebraic and compatible with
�1 /r, although it is difficult to give an error bar on the
exponent.

A more quantitative analysis can be done on the monomer
correlator Z�r ,T�, defined as the ratio of the partition func-
tion with two fixed test monomers at distance r, by the bare
partition function. In the Coulomb phase, Z�r ,T� converges
to a finite value when r→�.9 As shown in Fig. 3,
Z�r ,T� /Z�� ,T� is well fitted by a function F�x� of the single
parameter x=r�T−Tc, suggesting the existence of a length
��T�	�T−Tc�−1/2, diverging at Tc with an exponent  com-
patible with 0.5. By construction F�x→��=1, and we ob-
serve F�x��1 /x for x�1, indicating that for distances r
���T�, Z�r ,T� decays in a way consistent with �1 /r. At
distances large compared to the lattice spacing, but small
compared to some �diverging� correlation length ��T�, the
correlations are thus qualitatively not of Coulomb type, al-
though T�Tc. Below �, the correlations �of both dimers and
monomers� are compatible with an exponent � close to zero.
Noteworthy, these values are those obtained from indepen-
dent thermodynamic measurements.9

It is instructive to compare these results with the correla-
tions of a simpler model: the integer current loop model
�ICLM�.13,14 There, the allowed configurations are integer-
valued currents Jij =−Jji�Z defined on each bond �ij� of the
cubic lattice �analogous to the dimer magnetic field B�, with
the constraint that the net current arriving at each site is zero:

div J� =0. The energy of each configuration is E= 1
2��i,j��Jij�2.

This model also has a Coulomb phase at high T, with large

(a) (b)

FIG. 1. �Color online� �a� Dimer correlations �d0
xdr

y� as a func-
tion of 
r
 and multiplied by 
r
3 for a few selected T above Tc

�system size L=64�. For this orientation, the spin contribution van-
ishes. �b� Current correlations �J0

xJr
x� of the ICLM as a function of


r
 and multiplied by 
r
3 at T=0.5 �in the Coulomb phase� and Tc

=0.333 05 �system size L=64�. Correlators at Tc have been multi-
plied by 50. Simulations of the dimer model �ICLM� were per-
formed with the algorithm of Ref. 12 �Ref. 14�.

(a) (b)

FIG. 2. �Color online� Dimer correlations �d0
xdr

x�c. �a� T	Tc and
just above, for different orientations of r �L=128�. �b� A few se-
lected T above Tc �L=64�. The lattice direction r= �i , i , i� is such
that the dipolar contribution vanishes.

FIG. 3. �Color online� Monomer correlation as a function of r /�
in log-log scale for a few T just above Tc, assuming
�= �T−Tc�−1/2 and Tc	1.6743 �L=128�.
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current fluctuations and dipolar �J�J�� correlations. At low T,
small current loops dominate and eventually Jij =0 every-
where at T=0 �a state which does not have a dimer analog�.
Through a standard duality transformation,15 the ICLM maps
exactly onto an O�2� spin model with Villain interaction.16 In
contrast to the dimer model, the phase transition of the ICLM
�Tc

ICLM	0.333 05 �Ref. 14�� is known to belong to the
3D-XY universality class. The Coulomb phase of the ICLM
corresponds to the ordered phase in the angular variables �r,
and the dipolar correlations are a direct consequence of the
Goldstone mode for these dual spins. At high T, this dictio-
nary works also well for the dimer model: K−1 is the stiffness
of a dual O�2� ferromagnet. The monomer correlation Z�r�
corresponds to the spin-spin correlation �exp�i�0− i�r��, and
Z��� �finite in the Coulomb phase and vanishing at Tc� to the
square of the order parameter �magnetization� 
�ei�0�
2. The
crucial difference with the dimer model is the absence of
spontaneously broken symmetry in the low-T phase of the
ICLM, and thus the absence of an order parameter similar to
n� . This does not only make the critical exponents of the
dimer model different from that of 3D XY,9 but marks a
qualitative difference concerning the correlation in the Cou-
lomb phase close to Tc �for r���T��. The current correla-
tions of the ICLM remain dipolar down to Tc. Both in the
Coulomb phase and at Tc, they decay as �1 /r3 with a geo-
metric prefactor which does depend on the direction of r �see
the large-
r
 behavior in Fig. 1�b���. The ICLM obeys Eq. �1�
without the need for an additional spinlike contribution. Only
the overall amplitude is reduced close to Tc, with 1 /K�Tc�
�1 /L �see renormalization factor in Fig. 1�b���. The fact that
dimer correlations are dominated by nondipolar contribu-
tions close to Tc gives additional support for this transition
not being of 3D XY nature, as naively expected from the
high-T side.

III. SYMMETRY IN THE CRYSTAL ORDER
PARAMETER AT Tc

The results above point to the importance of fluctuations
of the crystal order parameter n� at the transition. We there-

fore looked at the distribution probability of N� =L−3�rn��r�
close to Tc. For large systems, the probability distribution of
�Nx ,Ny ,Nz	0� is almost circular �see the distribution for L
=128 and T=1.673 in Fig. 4�b���. Some small squarelike
anisotropy is still detectable but we argue below that it could
be a finite-size effect and the asymptotic form of the distri-
bution spherically symmetric in the thermodynamic limit. To
quantify this, we define

C4 =
1

2
�cos�4 arg�Nx + iNy�� + cos�4 arg�Ny + iNz��

+ cos�4 arg�Nz + iNx��� , �3�

which measures the O�3� character of the angular distribu-

tion of N� . If N� is distributed isotropically, C4 vanishes in the

thermodynamic limit. If N� preferentially points along the
axis directions, one expects C4�0. In the crystal phase
C4→1 when L→�, signaling that the direction of the order

parameter N� is locked along one crystal axis �see the C4
�T=1.66� and the associated distributions in Figs. 4�a� and

4�b��. In the Coulomb phase, N� is typically very small

��N� 2��L−3� and distributed in a Gaussian way, thus with
spherical symmetry. The nontrivial result is the behavior of
C4 at Tc. Figure 4�a� suggests that C4�T=Tc ,L�→0 when
L→�, and thus indicate an O�3� symmetric distribution of
the order parameter.17

For T slightly below Tc, Fig. 4�a� reveals that C4�T ,L� has
a minimum for a system size L0�T�. This minimum shifts to
larger size when approaching Tc from below. L0�T�Tc� thus
defines a length scale, diverging at Tc, up to which the dis-
crete symmetry breaking becomes weaker at long distances.

This is similar to the 3D XY model with Zq�4
anisotropy,15,18 where the q-fold anisotropy is dangerously
irrelevant and makes the �two-component� order parameter
apparently U�1� symmetric in the ordered phase, up to some
length scale diverging at Tc. A crucial difference here is that
the order parameter n� has three components, and a RG analy-
sis of the O�3� model predicts that cubic anisotropies, such
as �nx�4+ �ny�4+ �nz�4, should be relevant.19 The latter aniso-
tropic O�3� model is however qualitatively different from the
model studied here, as its high-T phase is a featureless para-
magnet. From this point of view, the classical spin model of
Ref. 5 �where a constraint equivalent to div B=0 is enforced
on spin configurations� may be closer to our study since it
also possesses a high-T Coulomb phase. Discrete anisotro-
pies seeming irrelevant for the dimer critical point, both
models would be predicted from the symmetry point of view
to share the same universality class. However, based on the
values of the critical exponents, this is not the case.

IV. DISCUSSION

The numerical observations of this Rapid Communication
emphasize the unconventional nature of the Coulomb-crystal
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FIG. 4. �Color online� �a� Spherical character of the order pa-

rameter N� distribution �C4� as a function of 1 /L for different T. The
data for T=1.6 have been divided by 2. �b� Probability distribution
P�Nx ,Ny , 
Nz
�0.03� as a function of Nx and Ny for several tem-
perature and system sizes. The range is Nx,y � �−0.3,0.3� for
L�128 and �−0.2,0.2� for L=128.
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phase transition. On one side, the presence of a diverging
length scale below which correlations are not Coulomb-like
cannot be interpreted by the sole high-T magnetic point of
view. From the ordered side, we exhibited a length scale
below which the crystal order parameter seems to fluctuate in
an unexpected O�3� symmetric way. Besides the difficulty to
build a LGW theory from the corresponding order
parameters,9 those are clear qualitative indications that indi-
vidual �magnetic or crystalline� descriptions cannot capture
the physics involved at the transition. This points to the ex-
istence of a critical regime where the interaction between the
magnetic degrees of freedom at play in the Coulomb phase
and the spin degrees of freedom which order in the crystal
dominates the long-distance physics. This phenomenology is
similar to that of a non-compact CP1 �NCCP1� model,3,5

which precisely couples spin and gauge degrees of freedom.
The NCCP1 theory is characterized by two continuous sym-
metries: SU�2� for spin rotations and U�1� associated to the
magnetic-flux conservation. In our case, the flux conserva-
tion is implemented at the lattice level and we argued that

continuous spin rotations emerge at the critical point. This is
similar to the 2D quantum spin system studied in Ref. 6, but
there the spin rotation symmetry is explicit and a gauge flux
conservation is argued to emerge dynamically at the critical
point. Despite all these common ingredients between NCCP1
theories and our dimer model, there is a clear mismatch be-
tween our critical exponents and those attributed so far to
NCCP1 critical points.5,6 So, the actual field theory describ-
ing the dimer model transition remains to be uncovered. Be-
sides its theoretical importance, the issue of the universality
class of this transition will also become experimentally rel-
evant if a Coulomb-crystal phase transition was observed in
nature, as in a frustrated �icelike� magnet for instance.

ACKNOWLEDGMENTS

G.M. acknowledges K. S. Kim for useful discussions.
Calculations were performed at CCRT/CEA �project 575�
using the ALPS libraries.20

*gregoire.misguich@cea.fr
1 V. L. Berezinskii, Sov. Phys. JETP 32, 493 �1971�; J. M. Ko-

sterlitz and D. J. Thouless, J. Phys. C 6, 1181 �1973�; J. M.
Kosterlitz, ibid. 7, 1046 �1974�.

2 See, e.g., L. D. Landau and E. M. Lifshitz, Statistical Physics,
3rd ed. �Pergamon, New York, 1980�.

3 T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A.
Fisher, Science 303, 1490 �2004�; T. Senthil, L. Balents, S.
Sachdev, A. Vishwanath, and M. P. A. Fisher, Phys. Rev. B 70,
144407 �2004�.

4 D. L. Bergman, G. A. Fiete, and L. Balents, Phys. Rev. B 73,
134402 �2006�; O. I. Motrunich and T. Senthil, ibid. 71, 125102
�2005�; P. Ghaemi and T. Senthil, ibid. 73, 054415 �2006�; K.
Gregor and O. I. Motrunich, ibid. 76, 174404 �2007�; T. Grover
and T. Senthil, Phys. Rev. Lett. 98, 247202 �2007�; O. I. Motru-
nich and A. Vishwanath, arXiv:0805.1494 �unpublished�.

5 O. I. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104
�2004�.

6 A. W. Sandvik, Phys. Rev. Lett. 98, 227202 �2007�; R. G. Melko
and R. K. Kaul, ibid. 100, 017203 �2008�.

7 A. Kuklov, N. Prokof’ev, and B. Svistunov, Phys. Rev. Lett. 93,
230402 �2004�.

8 D. A. Huse, W. Krauth, R. Moessner, and S. L. Sondhi, Phys.
Rev. Lett. 91, 167004 �2003�.

9 F. Alet, G. Misguich, V. Pasquier, R. Moessner, and J. L. Jacob-
sen, Phys. Rev. Lett. 97, 030403 �2006�.

10 J. Villain, Solid State Commun. 10, 967 �1972�; S. V. Isakov, K.

Gregor, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett. 93,
167204 �2004�; A. Banerjee, S. V. Isakov, K. Damle, and Y. B.
Kim, ibid. 100, 047208 �2008�; T. S. Pickles, T. E. Saunders,
and J. T. Chalker, arXiv:0708.3791 �unpublished�.

11 S. T. Bramwell, M. J. Harris, B. C. den Hertog, M. J. P. Gingras,
J. S. Gardner, D. F. McMorrow, A. R. Wildes, A. Cornelius, J.
D. M. Champion, R. G. Melko, and T. Fennell, Phys. Rev. Lett.
87, 047205 �2001�; C. L. Henley, Phys. Rev. B 71, 014424
�2005�; S. V. Isakov, R. Moessner, and S. L. Sondhi, Phys. Rev.
Lett. 95, 217201 �2005�.

12 A. W. Sandvik and R. Moessner, Phys. Rev. B 73, 144504
�2006�.

13 M. Wallin, E. S. Sørensen, S. M. Girvin, and A. P. Young, Phys.
Rev. B 49, 12115 �1994�.

14 F. Alet and E. S. Sørensen, Phys. Rev. E 67, 015701�R� �2003�.
15 J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,

Phys. Rev. B 16, 1217 �1977�.
16 J. Villain, J. Phys. �Paris� 36, 581 �1975�.
17 Since T=1.675 may be slightly below the actual Tc,

C4�T=1.675� may start to increase for L�128.
18 J. Lou, A. W. Sandvik, and L. Balents, Phys. Rev. Lett. 99,

207203 �2007�.
19 J. M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev. B 61,

15136 �2000�.
20 A. F. Albuquerque et al., J. Magn. Magn. Mater. 310, 1187

�2007�; M. Troyer, B. Ammon, and E. Heeb, Lect. Notes Com-
put. Sci. 1505, 191 �1998�; See http://alps.comp-phys.org

MISGUICH, PASQUIER, AND ALET PHYSICAL REVIEW B 78, 100402�R� �2008�

RAPID COMMUNICATIONS

100402-4


