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Non-linear stability analysis of a complex rotor/stator
contact system

J.-J. Sinou*, F. Thouverez, L. Jezequel

Laboratoire de Tribologie et Dynamique des Systémes, Equipe Dynamique des Structures et des Systémes,
Ecole Centrale de Lyon, Batiment E6, 36 avenue Guy de Collongue, 69134 Ecully, France

In this paper, a non-linear strategy, based on the centre m anifold, the rational approxim ants and the
alternating frequency/time domain method has been developed, in order to study the non-linear dynamical
behaviour of a system in the neighbourhood of a critical steady state equilibrium poirt. The stability
analysis and the non-linear dynamics of a complex braking system with a non-linear rotor/stator contact
are presented. Moreover, one of the most im portant steps of this paper is the determination of the non-
linear behaviour and the limit cycle amplitudes of this complex system. In order to conduct this study, the
dynamic response is evaluated by using applying the centre manifold, the rational approximants and the
alternating frequency/tim e dom ain m ethod that permitto obtain rapidly and efficiently the non-linear
behaviour of the system. The dynamic response obtained by applying this method is com pared with that
evaluated through numerical integration.

1. Introduction

Non-linear dynamical structures depending on control parameters are encountered in many
areas of science and engineering. These systems have to be described by non-linear models due to
the fact that they depend strongly on the non-linearities. Under certain conditions, the associated
equilibrium point of the non-linear dynamical systems loses stability and small oscillations grow
with time. In this case, the non-linearities limit the oscillation growth, and the periodic solutions,
called limit cycles, appear. Mathematically speaking, this phenomenon is due to the crossing of
the complex plane imaginary axis by a pair of pure imaginary eigenvalues while all other
eigenvalues have negative real parts. This type of bifurcation is named Hopf bifurcation [1]. In the
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study of non-linear dynamical systems depending on a given control parameter, the Hopf
bifurcation is one of the most important.

If the conditions and the values of the parameters which cause instability can be investigated
with a linear stability theory, there is the need to take into account the complete non-linear
expressions in order to obtain the behaviour of the non-linear system and the limit cycle
oscillations. Moreover, the understanding of the behaviour of the non-linear models with many
degrees of freedom usually requires a simplification and a reduction of the equations; effectively,
the non-linear analysis can be rather expensive and consumes considerable resources both in terms
of computation time and of data storage requirements. The principal idea for the studies of these
dynamical systems is to use simplification methods for reducing the order of the system and
eliminating as many non-linearities as possible in the system of equations. One of the frequently
used reduction methods is the centre manifold approach. The principle of this non-linear method
is based on the reduction of the dimension of the original system: the essential non-linear dynamic
system characteristics in the neighbourhood of an equilibrium point are governed by the centre
manifold associated with the part of the original system characterized by the eigenvalues with zero
real parts at the Hopf bifurcation. Usually, the centre manifold can have complex non-linear
terms. In this case, the non-linear system can be simplified by using further non-linear co-ordinate
transformations [I-11]. The normal form theory is often applied after the centre manifold
approach. The main objective in the method of normal forms is to obtain a simplest possible non-
linear system by the use of successive non-linear co-ordinate transformations. At the end of these
non-linear transformations, only the resonant terms are retained: they cannot be eliminated and
are essential to the non-linear system dynamics. Moreover, there exist methods which combine the
centre manifold and the normal form theories into one uniformed procedure [10].

In this paper, the authors choose the use of the rational approximants [12] after applying the
centre manifold approach. Moreover, one of the advantages of the rational polynomial
approximants can be that they have a greater range of validity than the polynomial one in any
case [12—-15]. In this paper, the Padé approximants are used in order to simplify the non-linear
system. They appear very interesting in regard to computational time; they also necessitate very
few computer resources.

In this paper, the authors firstly introduce a non-linear model for brake system with non-linear
rotor/stator frictional contact. Secondly, the general mechanisms for friction-induced vibrations
are presented in order to find the most suitable mechanism to describe the self-excited vibrations
considered in this study. Next, results from stability and parametric studies associated are
developed; stability is investigated by determining eigenvalues of the linearized perturbation
equations about each steady state operating point. The brake friction coefficient is used as an
unfolding parameter of the fundamental Hopf bifurcation point. Finally, the study is concerned
with the non-linear dynamic and the determination of the limit cycle amplitudes of the rotor/
stator contact system. The centre manifold theory is used in order to reduce the order of the non-
linear model in the neighbourhood of an equilibrium point upon bifurcation; the method of the
rational polynomial approximants is applied in order to simplify the non-linear equations.
Finally, one uses the alternating frequency—time harmonic balance [16] to expand the response of
the non-linear dynamical system in their Fourier series. Limit cycles oscillations from centre
manifold, rational approximants, and AFT harmonic balance method are compared with the limit
cycle oscillations obtained by the integration of the complete set of non-linear dynamics



equations. The main objective is to illustrate the use of non-linear methods for a non-linear system
of large dimension in order to obtain rapidly the limit cycles amplitudes of the non-linear system
and to show the computational efficiency of these methods. Then, parametric studies for various
brake pressure are presented to illustrate the use of the non-linear strategy in order to obtain the
evolution of the limit cycles amplitudes.

Therefore, the purpose of this model is the understanding and the detection of the whirl
vibration and the associated frictional mechanism. At first, the whirl vibration with the non-linear
frictional forces is explained; the non-uniform compression of the stator and the rotor, as well as
the frictional force variation on the rubbed stator/rotor interface are concerned. The complex
non-linear rotor/stator contact system model related to the whirl vibration will then be discussed.

2. Model of non-linear rotor/stator contact system

The problem of unstable vibrations in disks brakes has received the attention of a number of
investigators. Whirl and squeal [17] of disk brake are typical brake vibrations modes and are
potentially hazardous types of vibrations which have been observed in several generations of
aircraft [17,18]. Whirl can be defined as a wobbling motion between the brake’s stationary and the
rotating parts. Stationary disks are called stators and rotating disks are called rotors. Whirl
vibration usually occurs around 200-500 Hz range. Squeal is a torsional vibration of non-rotating
parts of the braking system around the axle. The frequency spectrum of squeal is in the range
100-1000 Hz.

Moreover, a serious difficulty in the study of the dynamic stability of a brake system is the
determination of the frictional mechanism. Different types of vibrations induced by friction have
been studied in the past by several researchers [19-22]. The different mechanisms of friction-
induced vibration fall into four classes: stick-slip, variable dynamic friction coefficient, sprag-slip
[23], and geometric coupling of degrees of freedom. The first two approaches rely on changes in
the friction coefficient with the relative sliding speed to affect the system stability [24]. The latter
two approaches utilize kinematic constraints, and modal coupling to develop instability when the
friction coefficient is constant [25-29]. In this study, the authors will consider the latest two
approaches that use modal coupling in order to develop instability when the friction coefficient is
constant.

In a previous work, Feld and Fehr [30] presented the model defined in Fig. 1, in order to explain
the whirl vibration. In this treatment, the instability mechanism is produced by normal force
variations that result from dynamic interactions and relative movement of the system degree-of-
freedom. The disks are compressed by the hydraulic pressure applied to the brake. Without
vibration, the normal pressure is distributed uniformly over the rubbed surface between rotating
and stationary disks. When vibration is present, disks in the brake system are subjected to out-of-
plane rotation called accordion motion. Then, the uniform normal pressure over the disk interface
is altered by this accordion motion: the normal pressure increases over half of the interface and
relaxes over the other half. Moreover, the friction force varies proportionally to this normal
pressure and produces the whirl motion, as illustrated in Fig. 1.

One assumes that the non-linear normal stress N acting at the interface surface between the
rotor and the stator is expressed as a polynomial in the relative displacement normal to the
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Fig. 1. Friction force variation on rubbed surface.

friction surface. This non-linear normal stress is given by
3
N(r,0) =Y Kilx(r,0), (1)
i—1

where x represents the relative displacement between the rotor and the stator at the point M(r, 0).
K, K> and Kj are the linear, quadratic and cubic coefficients of the non-linear contact between the
rotor and the stator. The non-linear relationship between load and deflection has been verified by
experimental tests conducted on a rotor—stator assemblies [17].

One assumes that the tangential stress 7 is generated by the brake friction coefficient g,
considering the Coulomb friction

T(r,0) = uN(r, 0). )

In this study, the brake friction u is assumed to be constant. This is due to the fact that there is
only a very small variation of the brake friction coefficient during a whirl vibration event, as
described by Liu et al. [17]. So the variation of the brake friction coefficient can be assumed to be
negligible in this case, although this is not always the case for modelling brake systems. This
context is complex enough to be qualitatively predictive and simple enough to allow sensitivity
analysis. Here, the retained mechanism to explain the whirl vibration is a classical mechanism;
whirl is modelled as a flutter instability due to the non-conservative aspect of Coulomb’s friction.
Moreover, it is assumed that the rotor and stator friction surfaces are always in contact. For any
point M(r,0) on the rotor and stator, and by considering small displacements, the normal
displacement of the rotor and the stator are

Xrotor(r,0) = X, —rsin0sin 0, — rcos 0 siny, ~x, — r0, sin 0 — rfs, cos 0,
Xstator(ry 0) = x5y — rsin 0 sin 0y — rcos 0 sin =~ x; — rlssin 0 — rf; cos 0, (3)

where xy, X, 05, 0,, ¥, and . are the stator and the rotor lateral displacement, and the stator and
rotor rotations, as illustrated in Fig. 2.
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Fig. 2. Dynamic model of rotor/stator braking system.

Then, for any point M (r,0) on the disc surface, the normal displacement is

x(ra 0) = xstator(rs 0) — Xyotor(T, 0) = (xs — X)) — T sin 0(05‘ - Gr) — rcos B(I/IY - lpl)

4)

The normal force Fy due to the normal contact between the rotor and the stator friction surface,

and the moment My, My and My are given by

2n R()
Fy = / N(r,0)rdrdo,
o JR

27‘( R() 27[ Ro
o= [ [T reorarao— [ [T uve o ard
0 R; 0 R;

2n R()
My:—/ N(r, 0)r* sin 0 dr do,
0 R;

2n Ro
My = —/ N(r, 0)r* cos 0 dr do.
0o Jr

By considering the previous expressions and expressions (1) and (4), one obtains
Fy = Ky Ax(x; — %) + Kao(A2(xs — )7 + 5 Aa(O; = 0, + § AW, — )
+ K3(Aa(vs = x0)* 3 Aa(0s = 0, (x5 — x0) + 3 s, — Y (xs — X)),
My = —1Ki(0;— 0,) — L K2 A4(0; — 0,)(x5 — x;)
— K3G Aa(05 — 0,)(xy — x,)° + § A6(05 — 0,)° + 1 A6(05 — 0)(fs — ,)°),
My = uG KiA3(x; — x,) + KoG A3(xg — x)° + 3 450, — 0,)° + L A5, — ,))
+ K3G A3y — x0)° 4+ 2 A5(x — x)(0; — 0,)° + 2 As(xy — x) (s — ),
Mz = — JKiAs(Wy — ) — 5 Ko As(rg — W,)(oxs — X1)
— K3GAa(, — )5 = x0)° + g AsWr, — 9,0 + g (W5 — )05 — 0,))
with A, = n(ng — RF) for 2<k<e6.

©)

(6)

(7)

®)

©)

(10)

(11)

(12)



Then, one considers the simple rotor/stator model defined in Fig. 2. It consists of a rigid rotor, a
rigid stator, a rotor shaft rigid in torsion, and a stator shaft rigid in torsion. The equations of
motion are given in Appendix A and the parameter values in Appendix B.

By considering the non-linear equations of motion in Appendix A, the general form of this non-
linear 15-degree-of-freedom system can be expressed in the following way:

Mx + Cx + KX =F+ FCO}’I[LZCI(X)’ (13)

where X, X and x are the acceleration, velocity, and displacement response 15-dimensional vectors
of the degrees of freedom, respectively. M is the mass matrix, C is the damping matrix and K is the
stiffness matrix. F is the vector force due to net brake hydraulic pressure. Feouqe: contains the
linear and non-linear contact force terms at the stator and rotor interface.

3. Stability analysis

To study the stability of the non-linear system modelled in the previous section, the non-linear
equations of motion are first linearized about each steady state equilibrium position; then the
eigenvalues of these linearized equations of motion are examined. The equilibrium point x; is
obtained by solving the non-linear static equations for a given net brake hydraulic pressure. This
equilibrium point satisfies the following conditions:

I,\(XO =F+ Fcontact(X0)~ (14)

One can notice that there can be more than one steady state operating point at a given net brake
hydraulic pressure. The stability is investigated on the linearized equations by assuming small
perturbations X about the equilibrium point xy, where

X =X +X. (15)

The linearized equations for small perturbations about the equilibrium can be written as
follows:

Mx% + Cx + Kz =FL (%) (16)
with
15 -

R (1)

The components of F~  are given by
Fiontac(1) = —Feouae5) = —F, (18)
Feonacd®) = —Fioae(6) = =My, (19)
Fiomaer3) = ~Fooniael ) = = M7, (20)
Foonaa(®) = My, 21
wm(,(z) =0 for 8<i<l15, (22)



with
FY(R) = (K1 Ay + 2Kr As A + 3K3 Ao A} + 3 K3 A A + 3 K3 Aad))(%s — X))
+ G KrAsdy +3 K3As Ay A0) s — W) + G KoAsdg + 3 K3 AsAy A9) (0, — 0,),  (23)

4
My(R) = u(GKiAs + 3 Kods A + 2K A58 + $ K3 Asdf + 3 Ks AsAG)(R, — %)

+ BKaAsAg + S K3AsAgA)(0s — 0,) + B Ko AsAy + S K3 AsAy AWy — ), (24)
MLR) = (—L KaAsdy +3 K3 A4y A% — %) — 1 K3 AgAy A9(0; — 0,)
+ LKAy — S Ko Ag Ay — K3 A4} — L K3 Ao Af — 3 K3 Ae 43005 — 1)), (25)
MY(R) = ([~ KaAsdg + 3 K3 A3 AgAN(Xs — ) — § KsAe Ay Ao — 1)
+ [§Kids = Ko Ay Ay — 3 K3 Au A — S KAy, — 3 K3 AaA5)0s — 0,) - (26)
with
A = (R} — R¥)  for 2<k<6,

Ay = Xg0 — X0,

AH - 950 - GrO,
A‘P - lpsO - er'
By considering the relation
Ffontact(i) = Kfontacti’ (27)
the linearized system (16) is given by
Mk + Cx + (K —KE )x = 0. (28)

Now, stability analyses can be performed on the linearized equations for small perturbations at
the operating point of the non-linear systems. As long as the real part of all the eigenvalues
remains negative, the system is stable. When at least one of the eigenvalues has a positive real part,
the dynamical system is unstable. The imaginary part of this eigenvalue represents the frequency
of the unstable mode.

Using the base parameters defined previously, simulations have been performed in order to
investigate the stability of the non-linear system, with respect to the brake friction coefficient.
Moreover, the Hopf bifurcation point, defined by the following conditions:

Re(/lcentre(ﬂ))|x:x0,u:u0 =0 and Re(/lnon-centre(:u))|x:x0,,u:,u0 #0,

d

d—(Re(ﬂv(H))) #0 (29)
K X=X U=

occurs at py = 0.41. The first condition implies that system (28) has a pair of purely imagi-
nary eigenvalues A...., While all of the other eigenvalues ,,.cenne have non-zero real parts at



(x = xq, it = ). The second condition of Eq.(29), called a transversal condition, implies a
transversal or non-zero speed crossing of the imaginary axis.

The evolution of frequencies and the evolution of the associated real parts associated when the
brake friction coefficient is used as a control parameter are shown in Figs. 3 and 4. As shown in
Fig. 3, the system is unstable for u> yu,, and stable for u<y,. Therefore, it is possible to
characterize the stability properties of the linearized system by representing the evolution of the
eigenvalues with respect to u in the complex plane, as illustrated in Fig. 5.

This stability analysis indicates that the instability can occur with a constant friction coefficient.
Moreover, the frequency wy of the unstable mode, obtained for u = y is near 480 Hz. There is a
perfect correlation with experiment tests, whirl vibration being observed in the 200-500 Hz range.

Next, stable and unstable regions versus two parameters can be performed. As illustrated in
Figs. 6-10a, stability analysis is a complex problem and can be altered by changes in the brake
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Fig. 6. Stable and unstable regions as a function of the friction coefficient and the pressure.

friction coefficient, the sprag-slip angle, the pressure, or the non-linear rotor/stator contact
stiffness. The associated evolutions of the eigenvalues in the complex plane are shown in Figs. 6b
to 10b.

4. Non-linear analysis

In order to obtain time-history responses, the complete set of non-linear dynamic equations
may be integrated numerically by using the Runge—Kutta method (fourth order), as illustrated in
Figs. 11 and 12. But this procedure is both time consuming and costly to perform when
parametric design studies are needed. So it is necessary to use non-linear analysis: the centre
manifold approach, the rational approximants and the alternate frequency time domain method
are used in order to obtain rapidly the limit cycle of the non-linear system.
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The complete non-linear expressions of the non-linear forces are expressed in order to conduct
this complex non-linear analysis. The complete non-linear equations can be written as follows:

M}_( + C}_( + IA(}_( — Fcontact(i)’ (30)

where X, X and X are the acceleration, velocity, and displacement response 15-dimensional vectors
of the degrees of freedom, respectively. M is the mass matrix, C is the damping matrix and K is the
stiffness matrix. Fepuqe+(X) is the non-linear stiffness due to the friction and the rotor/stator
contact:

F(f()nluct(i) = FcL(mmct(i) + F?f)ﬁzacz(i)’ (31)

where the vector F£ defined in Egs. (18)—(22), contains the linear terms of Fey/u;. The vector

contact?

FYL  represents the non-linear terms of Fyuq and is given by
contact
Fg}%tact(l) = _Fg])ﬁtact(s) = _F)](VL’ (32)
Fi‘\:)ﬁtact(z) = _Fi\(i)ﬁtact(6) = _MIIYL’ (33)
Fi’\(’)ﬁtact(:s) = _F?(/)itact(7) = _MIZVL’ (34)
Fllaa@® = My", (35)
FlL (i) =0 for 8<i<15 (36)
with

FYHR) = (Kady + 3K3A24,)(%, — %) + 3 K3 A4 40(0; — 0,)(%s — X))
+ 3K As Ay (s — )y — %) + G KoAs + 3 K3 AaA0) (s — )
+ QKA +3 K430 — 0,0 + K3 Ax(%, — %)’
+ 3 K3 A4(0; — 0. (%5 — %) + 3 KsAa(s — ) (X — X)), (37)

11
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MYHR) = u(2 Ko As + 2K3 A3 AR — %)7 + [L KoAs + 2 K3 A54,](0; — 0,)
+ R Kods + 2 K3 AsA s — ) + S KaAsAo(%, — %,)(0, — 0,)
+ $K3AsAy(% — X) (W5 — Y1) + 3 Kz As (%, — %)
+ 1K3A45(0; — 0,°(%; — %) + 2 K3 As(fs — ) (X — %), (38)

MYHR) = — 3 K3Aado(%s — X)° — 3 K3 As40(05 — 0,) — L K3 AgAo(ls — 1,)
- (% KyAq + %K3A4Ax)(~)—€s - xr)(gs - 9_1) - %K3A6Al//(0_s - gr)(lps - lpr)
+ %K3A6(0_S - 0_1’)3 + %K3A4(0_s - gl)(xs - )_Cr)z + % K3A6(0_S - 0_}’)(‘;3 - lpr)za (39)

12



MYHR) = — 3 K3A4dy (%, — %) — 3 K3AeAy (s — v — + K3A644(0, — 0,)
- (% K2A4 + %K3A3Ax)(xs - )_Cr)(l;s - ll;l) - %K3A6Al//(0_5 - éz)(‘pv - l/;l)
+ %KSAG(I/;S - lpr)3 + %K3A4(lps - l/;r)()_cs - Xr)z + %K3A6(lﬁs - l/;r)(g? - 9_1')2 (40)

with
A = n(RX — Ry for 2<k<6,
Ax = Xs0 — Xr0,
A() - BSO - 61‘0,
Ay =V — ¥y
By considering expressions (37)—(40), the non-linear equations can be expressed as
15 15 15 15 15

= - it - - j = = ijk = = =
MX + CX + (K - KLL'()nta(ft)X = Fi'\(l)ﬁta(ft(x) = Z Z q(]2)xij + Z Z Z q(]3)xixjxk’ (41)
=1 j=I i=1 j=1 k=1

where the vectors qéé) and qégk) are the coefficients of the quadratic and cubic terms due to the non-
linear stiffness about the equilibrium point, respectively.

In order to use the non-linear methods (the centre manifold approach and the rational
approximants), one writes the non-linear equation in state variables y = {Xx x}'

30 30 30 30 30
Y=AYED D Pyt D D Payive (42)
=1 =1 =1 =1 k=1

where y; defines the ith term of y - A, pfé) and szSk) are the 30 x 30 matrix, quadratic and cubic non-
linear terms, respectively. One has

0 ! (43)
N Mil(f{ - Kfontact _Milc ,
0
Po) = M_lq(z) ) (44)
0

5. The centre manifold approach
Reduction to lower dimensional problem by means of the centre manifold theory is now

considered. The centre manifold approach is based on the idea that all essential non-linear
stability and dynamic system characteristics in the neighbourhood of an equilibrium point are

13



governed by the dynamics on the centre manifold, when some eigenvalues have zero real parts and
all other eigenvalues have negative real parts.

In a first step, one will express the non-linear system (42) in the new modal linear basis of its
eigenvectors, and consider the coefficient of friction as a new variable in order to be able to carry
out some sensitivity analysis. One obtains

‘.'c = Jc(ﬂ)vc + G(V(;, Vss ﬂ),
“’S — Jé(la)vé + H(VCJ VSa :l’/i’)’
a=0, (46)

where v.eR? and v,eR"? (with n =30 in this case). System (46) depends on the control
parameter . By considering the physically interesting case of the stable equilibrium loosing
stability, one can assume that v, contains the two variables associated to the eigenvalues A with
zero real parts, while vy contains those with negative real parts. G and H are polynomial non-
linear functions. At (v, vy, i) = (0,0,0), this system has a three-dimensional centre manifold
tangent to (v, fi) space. The centre manifold theory allows the expression of the variables v,
as a function of v.: vy = h(v., ). This (n — 2)-dimensional function h is substituted into the
second equation of Eq. (46); then these results are combined with the first equation of Eq. (46).
By considering the tangency conditions at the fixed point (0,0,0) to the centre eigenspace,
one obtains

Dv(,ﬁ(h(vc, ﬂ))(J(?Vc + G(VC’ h(vC’ ﬂ): /1)) - Jsh(vc, /1) - H(Vc’a h(vCa :d)a :d) = 0:

h=0,

D, hi(0) =0 for I<i<n-—2,

ch

— =0 47
o (47)

where /; (1<i<n—2) are the scalar components of h. To solve Eq.(47), one defines an
approximate solution of h by a power expansion: one assumes vy = h(v., fi) as a power series in
(v, 1) of degree m, without constant and linear terms (m>=2):

m P P

ve=hove D= > > agulvhi, (48)

p=itjti=2 j=0 1=0

where a;; are vectors of constant coefficients. Substituting the assumed polynomial approxima-
tions into Eq. (47), one obtains a system of algebraic equations for the coefficients of the
approximate solution of h. The analytical expressions for the coefficients of second and third
order polynomial approximation of vy = h(v,., i) are given in Appendix C.

After the identification of h, it is resubstituted into the first equation of Eq. (46) in order to
obtain the reduced order structural dynamic model, which is only a function of v.:

vc = JC'(Id)vC + G(Vca h(vc, :a)a ﬂ)5

f=0. (49)
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This reduced system is easier to study than the original one. In this centre manifold analysis,
one reduces the dynamics of the considered 31-dimensional system to the dynamics on the three-
dimensional centre manifold.

In this study, one will obtain the limit cycles only near the Hopf bifurcation point (u = yy + f,
where p is the friction coefficient at the Hopf bifurcation point and g = e, with ¢ very small). In
this case, one observes numerically that the expressions of vy = h(v., ) can be approximated by
the expression of vy = h(v.) with negligible errors. This approximation amounts to the expression
of v, at the Hopf bifurcation point g, (a;; = 0 for /#0). It is not necessary, but nevertheless it
allows the simplification of the expression of v,. Therefore, the non-linear terms are approximated
by their evaluation at the bifurcation point u = y, provided that none of the leading non-linear
terms vanish here; so one has G(v., h(v.), 1) = G(v,, h(v.), i) with negligible error due to the fact
that ¢ is very small.

Finally, the dynamics of the system is described, with small errors, by the system

Ve = Jc(.u)vc + G(Vc, Vs, ,uo):
p=0,

v, = h(v,) = Zm: Zp: a,jvi]v!z. (50)

p=itj=2 j=0

Using an approximation of h up to the second order is sufficient in order to obtain the evolutions
of limit cycle amplitudes. In Figs. 13-15, the limit cycle amplitudes obtained via the centre
manifold approach are compared with the ones obtained via the integration of the full system.
The comparison of the two approaches shows a good and sufficient correlation. Consequently, the
centre manifold approach is validated and reduces the number of equations of the original system
from 31 to 3 in order to obtain a simplified system.

dXy/dt (m/s)
[=]

-0.01

-0.02
-0.03 . :
45 5 55 [ 6.5
-5
X, (m) x10
Fig. 13. X,-limit cycle amplitudes by using the centre manifold approach (u = 1.1y,); — original system, --- center

manifold approach.
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dX,/dt (m/s)
(=]

-0.01 -

-0.02 -
-0.03 L L ' L
4 6 8 10 12 14
-6
X, (m) x 10
Fig. 14. X,-limit cycle amplitudes by using the centre manifold approach (1 = 1.1y,); — original system, --- center
manifold approach.
x107°
5
@ 25
<
£
5 qo
k]
ot
bs
-2.51
-5 ‘ ‘ ‘
7.7 7.8 7.9 8 8.1 8.2
8, (rad.) x107
Fig. 15. 0,-limit cycle amplitudes by using the centre manifold approach (u = 1.1y,); — original system, --- center

manifold approach.

6. Rational polynomial approximants

In this section, one will use the rational approximants in order to simplify the non-linear
system, without losing the dynamics of the original system, as well as the contributions of non-
linear terms. The use of the rational approximants allows one to obtain limit cycles more easily
and rapidly. The Padé approximants appear very interesting in regard to computational time; they

also necessitate very few computer resources.
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The main objective in the rational approximants is the approximation of the non-linear terms
by using rational polynomial approximants [12,13]. Moreover, one of the interesting things about
these rational approximants is that they need less terms than the associated Taylor series in order
to obtain an accurate approximation of the limit cycle amplitudes: they allow the computation of
an accurate approximation of the non-linear function f(v.) even at values of f for which the
Taylor series of f(v.) diverge. In any case, the rational approximation has a greater range of
validity than the polynomial one.

Let f(x,y) be a function of 2-variables defined by a formal power series expansion

0 0
S =YD eyl = Y epxy, (51)
=0 j=0 (i,))eS
where S = {(i, j)|ieN™", jeNT}.

In this paper, on considers symmetric-off-diagonal (SOD) rational approximants [12,15] to
f(x,y) of the form

26 e sy XY
> jyesy dixiyT”
where Sy ={({, ))|0<i<M,0<j<M} and Sy ={( ))|0<i<N, 0<j<N}. There are
(M + 1)> + (N + 1)* unknown coefficients in Eq. (52). doy can be normalised to unity and the
other coefficients n; and d; are then related by matching terms in Eqs. (51) and (52). By

multiplying the difference between f(x, y) and [M/N],(x,y) by the denominator of [M/N],(x, ),
one obtains

[M/N](x,y) = (52)

> dijxiyj) Xy Cijxiyj> = > =) ey, (53)

(i, ))eSn (i.)esS (i, ))eSu (i, j)es

where as many coefficients e; as possible are equal to zero. The equations obtained by matching
coefficients in Eq. (53) are

doo = 1, (54)
o B
S dycyipj=ny for 0<a<M, 0<B<M, (55)
i=0  j=0
o N
> dycyipj=0 for 0Sa<M, M<B<M+N —o, (56)
i=0 j=0
N B
dijca,i;ﬁ,j:O for M<a<M+ N —f, 0<f<M, (57)
i=0 =0
4 N
Z Z (dijCo—izMiN+1—0—j + djjCrsN+1-6—-io—) = 0 for ISo<N. (58)
i=0 j=0
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After normalizing dy to unity, the computation of the coefficients dj; can be achieved by
solving the linear equations which arise from Egs. (56)—(58). Next, the linear equations given
by Egs. (55) enable the determination of the coefficients n;, with the coefficients dj; found
previously.

If one considers that the expressions G(v,, h(v.), iy) of Eq. (50) are power series in v, of degree
3m respectively, then the dynamic of Eq. (50) can be rewritten in the following way:

3m

Ve =f(ve) = Z Z Cip— IUL] 52 > (59)

where m defines the degree of the power series h in Eq. (50).
By using the SOD rational approximants, the previous system can be written as follows:

M M o,
2 izo Zj:O N1ijUe Uz

N N .
> im0 Zj=0 d U Vs

M M P
im0 ijo 2.V Uiy

N N i )
> im0 ijo iU Uy

The determinations of the coefficients ny ;, ny; (for 0<i< M and 0<j< M) and d, j;, d»; (for
0<i<N and 0<j<N) are obtained using the procedure defined previously.

In addition, one uses the alternate frequency/time (AFT) harmonic balance method. The vector
v.(?) can be expanded as a truncated Fourier series

ve(t) = Vo + Z(sz | cos<27;{ ) + Vysin <27{t>> (61)

where T is the period of the system, Vo, V1 and V,; the vectors of Fourier coefficients. The
number of harmonic coefficients H will be selected in order to consider only the significant
harmonics expected in the solution. By considering Eqs. (60) and the Fourier expansion (61), one
obtains the linear algebraic equations

Ve = fNL(V(f) = (60)

AVF = —(A — )" (FM + (A — D)V, (62)
VAL — vk L AVK (63)
where V¥ = {{Vlg} {V l} {V 3T ..,{VIZ‘H}T}T. V¥ defines the k-incremental vector of

Fourier coefficients of Ve. A and J are the Jacobian matrices associated with the linear and
non-linear parts of the equation of motion (60), respectively. F'F represents the vector of
the Fourier coefficients of the non-linear function f*, defined in Appendix D. The vector of the
Fourier coefficients F is calculated by an iteration process [16], by considering the discrete
Fourier transform (DFT). This process can be sketched as

VO, vt — V() 2T FVE (64)
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The error vector R is given by
R = AVA!T — FM (65)

and the associated convergences are given by

5 = \/ R} + Zj'i [R5, +R}) and 6, = \/ AV + Z]'i L(AV3 +AV3). (66)

The complete scheme of the computer program using the alternate frequency/time domain (AFT)
method with the DFT is expressed in Fig. 16.

The [3/2]/(v.) symmetric-off-diagonal rational approximants are applied in order to simplify
the non-linear expression of the non-linear equation (59), that is a power series in v, of degree 6.
An [M/N];(v.) approximation with L<2 and M <2 is not sufficient: effectively, in some cases,
computations diverge since the retained non-linearities are not sufficient, and in other cases, the
obtained limit cycle amplitudes are not acceptable due to the same reasons.

In addition, the first order of harmonic coefficients (H = 1) allows one to obtain the same
limit cycle amplitudes as those obtained by the integration of the system defined with the

Vv=Vv*
DFT! ] )
D/i?\'l. (7"1.\‘1
B VI N ey s-en| o Ta gy
» V.= - f- (V‘.) —J =1 o NI 67"»'\7‘ \ }_
v
OFT-1 DFT
FNL _ gNL
V=V

R=AV-F" 44V =(A-1)'(F" - (A-T)V)

J,z¢ l

Convergence Criterion

3, =JR,§ +i(R§, | +R3)
L

52 - \/AVOZ + i(Avi’f' + szzf )
il

J, <¢

J, <¢

A 4

— T
Final solution T
Ho
v (r)=V, + Z(VIH cos(ior) +V,,sin (i(m‘)) >
\’:‘_//’/

Fig. 16. Description of the AFT method.
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Table 1
Vectors of the harmonic coefficients

Vector of the harmonic Case 1 (H=1) Case 2 (H =2)

coefficient

Vo —0.0005 — 0.00041 —0.0005 — 0.00041
—0.0005 + 0.00041 —0.0005 4 0.0004i

Vi 0.4918 — 0.4924i
0.4927 + 0.4933i

0.4927 — 0.4933i
0.4918 + 0.4924i

0.4923 — 0.4916i 0.4932 — 0.4925i

\E 0 0.0001 }

0.0001

V4 0
—0.0001i

vV, { 0.4923 + 0.4916i } { 0.4932 + 0.4925i }

0.00011 }

0.03 0.03
0.02 /,/ ’ S 0.02
4 AN
4 N
7 oot /i \ g 0.01
E E
B 0 ) = 0
s || N
= 001} \\ // = oot
—0.02 \ . / _0.02
-0.0 -0.08
15 5 55 6 6.5 4 6 3 10 12 14
s -6
X, (m) x10 X, (m) x10
-3
015 x 10
4"‘-—\
R
0.1 | pmemmmeen s N\
,:«/ \\\\\g\
0.05 / \
- , \ —
£ i " o 25
T 0 Q ) 2
= N /,' = A
T N Al = i :
;u* ' 0.08 \\\ // Q_ ¢ t ;
T s o] 3 X
® o1 i S =] y /
o5} \\ /
-0.15
\B\&,ﬁ,_.f
0.2 -5
2.4 26 28 3 32 77 7.3 7.8 8 8.1 8.2
-4 -5
0 (rad) x10 9, (rad.) x 10

Fig. 17. X;, X,, 0, and 0,-limit cycles by using the centre manifold, the rational approximants and the alternating
frequency/time method (u = 1.1y,); — original system, - -- non-linear mathods.
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[3/2]/(vc) symmetric-off-diagonal rational approximants. The Padé¢ approximants appear
very interesting in regard to computational time; they also necessitate very few computer
resources.

The values of the harmonic coefficients for one and two harmonics are given in Table 1.
Moreover, the values of the harmonic coefficients are complex, since they defined the unknown
functions in time of v. by their Fourier components in the centre manifold base. Using the reverse
transformation in order to go from the centre manifold space (with complex variable) to the
physical space (with real variable), one obtains the limit cycle amplitudes of the non-linear
physical system.

As illustrated in Figs. 17-20, good correlations between the limit cycles of the integrated system,
and those of the [3/ 2](vc) rational approximants and the AFT method are obtained.
Consequently, the rational approximants approach is validated and allows the reduction of the
number of non-linear terms of the system.

Moreover, the determination of the limit cycle amplitudes by the integration of the differential—
algebraic equations of the system is faster using the multivariable approximants. These non-linear
methods are ideal for parametric studies.

Some indications have been observed by varying the pressure parameter, as illustrated in
Figs. 21 and 22. The friction coefficient is used as the control parameter and the limit cycles are

0.3 0.015 —
P L //"’Hq\
e SN
02 001} // R
4 N
N L7 \,
2 0 . . 2 0005 \
= = \
) \
R : i = of :( !
= N v 4 ' .
= i ' < K i
N JF g :
Z-01 N\ 1 F -eoos /
N\ o R
02 \\ / -0.01f //
RN e T A
0.3 T 0.015 B
5 -05 0 0.5 1 T 4 6 8 10 12
v, (rad.) x107 W, (rad.) x107
0.15
e 5
0.1 e

deg/dt (rad /s)

Fig. 18. ¥, ¥, and ¢,-limit cycles by using the centre manifold, the rational approximants and the alternating
frequency/time method (u = 1.1y,); — original system, - -- non-linear mathods.
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dya/dl (m/s)
dvy/dt (m/s)
(=]

4 & 8 10 0 0.2 04 0.6 0.8 1
—6

¥p (m) x 10

x10°

dz,/dt (mis)
dryfdt (mis)
(=]

15 -4

g -1.5 -1 -0.5 ] 0.5 1 15
- b
z, (m) x10 24, (m) %107

Fig. 19. y,, y», z4 and zp-limit cycles by using the centre manifold, the rational approximants and the alternating
frequency/time method (1 = 1.1y,); — original system, - -- non-linear mathods.

defined near the Hopf bifurcation point. The Hopf bifurcation points are given in Table 2. An
evolution of the equilibrium point is observed and the evolution of limit cycles appears to be a
complex problem.

7. Summary and conclusion

In this study, the stability analysis and the non-linear behaviour, with the determination of the
limit cycle amplitudes, of a system with a non-linear rotor/stator contact are presented. The centre
manifold theory and the rational approximants allow the reduction of the number of equations of
the original system and the simplification of the non-linear terms in order to obtain a simplified
system, without losing the dynamics of the original system, as well as the contributions of the non-
linear terms. One of the advantages of the rational approximants is that they appear very
interesting in regard to computational time; they also necessitate very few computer resources.

This procedure of using successively the centre manifold approach, the rational polynomial
approximants, and the alternating frequency/time domain method is applicable for #n-dimensional
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Fig. 20. 6,, 65, Y, and ,-limit cycles by using the centre manifold, the rational approximants and the alternating

frequency/time method (1 = 1.1p,); — original system, - -- non-linear mathods.

Table 2

Values of the friction coefficient at the Hopf bifurcation point

Pressure (bar) Friction coefficient u, at the
Hopf bifurcation point

10 0.41

15 0.33

20 0.47

systems with polynomial non-linearities. An application of these combined non-linear methods is
proposed for a complex non-linear system with many degrees of freedom. The results from these
non-linear methods are compared with those obtained by integrating the full original system.
Excellent agreements are found between the original and the reduced system. Moreover, the
methods require few computer resources and appear to be particularly interesting in the cases of
large non-linear systems.
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Fig. 21. Parametric studies for the Xj, X,, 0, and 0,-limit cycles amplitudes (u = 1.1419); — Phydrautic =10 bars, ---

Phydraulic =15 bars, --- Phydraulic =20 bars.
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Appendix A. Equations of motion for the non-linear rotor/stator contact system

The equations of motion for the non-linear rotor/stator contact system are

mgXs + CxsXs = Feoupte/x + Fiyasx — Fx,
Ios0; + Cus(05 — 0,) + Koy0s + Kus(05 — 04) = Frpupte/x Re + Feoupie)zde + My,
LysWs + Cas(Wrs — Wra) + Ky + Kas(Wy — W) = Frouple) yde + Mz,
Losps + CopsPs = —Feoupte) y Re + My,

mrxr + erxr + Krrxr = FX,
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10, + Cpr(0, — 0p) + K (0, — 0) = — My, (A.6)

Ly + Co(fr — i) + KW, — 1) = — M7, (A7)

mpip + Co1196 + Cyas(Vp — Va) + K113 + Kp120p + Kyap(vp — ya) = 0, (A.3)
L0y + Cona0p + Corl(0p — 0,) + Coas(05 — 04) + Kio1ys + Kpaa0Op + Kpr(0 — 0,)

+ Koap(0p — 04) = 0, (A.9)

mpZy + Con1Zp + Coap(Zo — Za) + Kpr12o + Koo, + Kean(zp — 24) = 0, (A.10)

Iy, + Cooothp + Corrs — W) + Cpan(Wip — Ya) + Kio1zp + Koot
+ KWy, = ¥,) + Ky, — b)) = 0, (A.11)
Maja + Ca1Va + Crap(Va — ¥5) + Kat1Ya + Ka1204 + Kyap(ya — yp) = 0, (A.12)

Iaéa + CaZZQa + Cas(éa - 05) + C@ab(éa - Qb) + KaZlya + Ka22011
+ Kas(ea - Bs) + Kﬁab(ea - Qb) = O, (A13)
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MgZg + Callza + Czab(Z'a - Zb) + Kallza + KalZ‘//a + Kzab(za - Zb) = 0, (A14)

Ia’ﬁa + Ca22lp.a + Cas(lp.a - lps) + Cz//ab(lp.a - l//b) + KaZIZa + Ka22‘pa
+ Kas(l//a - lps) + Kl//ah(lpa - lpb) = 0: (Als)

where Xy, Xy, Oy, 0, Vg, Vyo @5 Vas Zas Oas Yo Vb 2, Op and , are the stator and the rotor lateral
displacement, the stator and rotor rotations, the piston torsional rotation and the axle deflections
and rotations of the stator and rotor shaft, respectively. The stator and the shaft of the stator
interact via notches on the inner perimeter of the disk. The rotor and the shaft of the rotor interact
via drive keys on the outside of the disk. K,; and C,; define the stiffness and the damping between
the stator and the shaft of the stator, called torque tube, via notches on the inner perimeter of the
disk. K3, and C, define the stiffness and the damping between the rotor and the shaft of the rotor,
via drive keys on the outside of the disk. Kyap, Koap, Kyap, K-ap and Cyap, Cpap, Cyap, C-ap represent
the contact stiffness and the contact damping between the rotor’s and stator’s shaft, respectively.
K., represents the stiffness of the backplate of the brake. K,; (i, j = 1,2) and C,; (i, j = 1,2) are
the axle bend stiffness and axle bend damping for the stator’s shaft, respectively. K; (i, j = 1,2)
and Cp; (i, j = 1,2) are the axle bend stiffness and axle bend damping for the rotor’s shaft,
respectively. d, and R, represent the brake rod lateral offset and the distance axle to brake rod
axis. Fy, My, My and M, are the normal contact between the rotor and the stator friction
surfaces and the associated moments, respectively. These expressions are given in Egs. (9)—(12).
Feoupte) x> Feouptesy and Fegypie/7z represent the load due to the brake rod. One has

Feoupte)x = KroaRe® sin o0 + Kioq X Sin o + Kypq Rely sin o,

Feoupte)y = KroaReths €08 00 — Kipqde0y cOS 0,

Feoupie)z = Kroa Re@p; €08 00 — Kipqdelf s cOS o, (A.16)
where K,,; defines the axial stiffness of the brake rod and o the sprag-slip angle due to the brake

rod angle offset with the rotor/stator interface.
Fjya)x 1s the brake force due to the hydraulic pressure. It is given by

2 2
(Rpiston/outer - Rpiston/inner)
thd/X = Phydraulicnpiston R2_R2 5 (A17)
(Ro — RY)

where nyisions Rpision jouters Rpision/inner ar€ the number of pistons, the outer and inner radius of the
piston surface in contact with the stator, respectively. Ry and R; define the outer and inner radius
of the rotor/stator interface, respectively.

The vector Feyue: defines the linear and non-linear rotor/stator friction contact. It is
given by

Feontact(1) = —Fcontace(5) = —Fx, (A.18)
Feontact(2) = —Fcontacr(6) = =My, (A.19)
Feontac(3) = —Feontaet(7) = —Mz, (A.20)

Feontaci(4) = M, (A.21)
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Fcontact(i) =0 for 8<i<I15s.

The vector F defines the hydraulic brake command. It is given by

F(l) = _thdraulic:
Fcontact(i) =0 for 2<i<l15.

The vector F,. defines the hydraulic brake command. It is given by

Fcoupl@(l) = Fcouple/Xa
wupk (2) couplc/Zde 5
couple(3) u)upk/ Ydez

F, “ouple (4) wup/e/ y Re,

Fcontact(i) =0 for 5<i<Il15s.

This non-linear 15-degree-of-freedom system has the form

MX + CX + KX = F + Fcouple(x) + Fcontacl(x)a

(A.22)

(A.23)
(A.24)

(A.25)
(A.26)
(A.27)
(A.28)
(A.29)

(A.30)

where X, X and x are the acceleration, velocity, and displacement response 15-dimensional vectors
of the degrees of freedom, respectively. M is the mass matrix, C is the damping matrix and K is the
stiffness matrix. F is the vector force due to net brake hydraulic pressure. Fe,uqe; contains the
linear and non-linear contact force terms at the stator and rotor interface and Fy,, define the
brake rod load, respectively. Finally, the general form of the equation of motion for the non-
linear system can be expressed in the following way:

with

Mx + Cx + KX =F+ Fconract(x)

Fcouple (X) = KX'

Appendix B. Brake parameters

Ry

R;

npiswn
Rpistan Jouter
Rpiston /inner

e

R,

K;

K

K3

n

outer radius of the rotor/stator interface (= 0.076 m)

inner radius of the rotor/stator interface (= 0.024 m)

number of pistons (= 6)

outer radius of the piston surface in contact with the stator (= 0.015 m)
inner radius of the piston surface in contact with the stator (= 0.0075 m)
brake rod lateral offset (= 0.01 m)

distance axle to brake rod axis (= 0.064 m)

linear coefficient of the non-linear rotor/stator contact (= 4.6 x 10% N/m )

(A.31)

(A.32)

quadratic coefficient of the non-linear rotor/stator contact (= 4.8 x 10! N/m )

cubic coefficient of the non-linear rotor/stator contact (= 9.5 x 10! N/m )
mass of the stator (= 5 kg)
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Iy
P hydraulic
KHS

s

on

S

Cyar = Coup

Cyab =

Cal1
Ca

zab

mass of the rotor (= 5 kg)

moments of inertia for the rotor (= 0.35 kg m?)

moments of inertia for the stator (= 0.28 kg m?)

p-moment of inertia for the stator (= 0.35 kg m?)

equivalent mass of the stator shaft (= 67.5 kg)

equivalent mass of the rotor shaft (= 185 kg)

axle moment of inertia for the stator shaft (= 1.2 kg m?)

axle moment of inertia for the rotor shaft (= 0.7 kg m?)

net brake hydraulic pressure (= 10 bars)

stator 0-stiffness (= 2.25 x 10° N m/rad)

stator y-stiffness (= 2.25 x 10° N m/rad)

stator torsional stiffness (= 2.8 x 107 N m/rad)

stator torsional damping (= 15 N m s/rad)

lateral stiffness between the stator and the shaft of the stator (= 3.3 x 10® N m/rad)
stiffness between the rotor and the backplate of the brake (= 1.2 x 107 N/m)
lateral damping coefficient for the stator (= 60 N/m s)

lateral damping coefficient for the rotor (= 120 N/m s)

damping between the stator and the shaft of the stator (= 1200 N/m s)
lateral stiffness between the rotor and the shaft of the rotor (= 3.3 x 108 N m/rad)
damping between the rotor and the shaft of the rotor (= 1500 N/m s)
-stiffness between the rotor and stator shaft (= 4.5 x 10 N m/rad)
0-stiffness between the rotor and stator shaft (= 4.5 x 10° N m/rad)
y-lateral stiffness between the rotor and stator shaft (= 3.25 x 103 N/m)
z-lateral stiffness between the rotor and stator shaft (= 3.25 x 103 N/m)
rotational damping between the rotor and stator shaft (= 1 N m s/rad)
lateral damping between the rotor and stator shaft (= 1500 N/m s)

y— stiffness and z—z stiffness of the stator shaft (= 1.8 x 10° N/m)

y-0 stiffness and z—y stiffness of the stator shaft (= 2.1 x 10% N/rad)
0-0 stiffness and y— stiffness of the stator shaft (= 4.3 x 10’ N m/rad)
y— stiffness and z—z stiffness of the rotor shaft (= 8.9 x 10" N/m)

y-0 stiffness and z—y stiffness of the rotor shaft (= 2.5 x 10’ N/rad)
0-0 stiffness and y— stiffness of the rotor shaft (= 9.6 x 105 N m/rad)
y—y damping and z—z damping of the stator shaft (= 6900 N/m s)

0—0 damping and y— damping of the stator shaft (=2 N m s/rad)

y—y damping and z—z damping of the rotor shaft (= 6900 N/m s)

0—0 damping and y— damping of the rotor shaft (=2 N m s/rad)
sprag-slip angle (= 0.005 rad)

Appendix C. Analytical expression of the coefficients «; ;; for the second and third orders

One determines the analytical expressions of h as a power series in (v, i) of degree 3, for a
n-dimensional differential equations with quadratic and cubic non-linear terms (z = 30 in this study).
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The developed expression of Eq. (46) has the form
Ve = Jove + Go(v) + G3(v) = Jeve + G/ )v®v + G(3)V®V®V

vy = Jovy + Ho(v) + Hi(v) = Jyvg + (2)v®v + H(3)v®v®v

=0 (C.1)

with v = {vI vI ol G (2), Géé‘), (’/2) and H* (3) are quadratlc and cubic non -linear terms of v,
respectively (with i=1,2, 1</<n-2, 1<]<(n+ 1 and 1<k<(n+1)’). ® defines the
Kronecker product. These notations will be used to define expressions for the coefficients of the
polynomial approximations v, = h(v,, ji) as a power series in (v, fi).

Firstly, one can express the stable variables by using second order polynomial approximations.
One recalls that the polynomial approximations contain no constant and linear terms. So, the
expressions of the stable variables v, as a power series in (v, fi) of degree 2 can be written as

2
Vs :h(l)(vc, ﬂ) = h(l)(vcla Uce2, /1) = Z Z Z alllvclvd.u

p=itj+I=2 j=
2 . 2
= 0007, + A11006102 + A0200% + A1010a1 [ + Ao1102/1 + Ag02/i7, (C2)
where a;; are unknown vectors of coefficients. The analytical expression of a;; can be determined

by equating (47), and by considering only second-order terms. The simplified expression of
Eq. (47) has the form

Dvc,ﬁ(h(l)(va ﬁ))vac - Jsh(l)(vc: ﬂ) - HZ(VC, ﬂ) = 0. (C3)

One notes that this system is the exact system for second-order polynomial approximations. It is
possible to obtain an analytical expression of the coefficients g ;; by solving Eq. (C.3). One
obtains

k,1
k200 = —H(z)
' (2Jc1 - sk),
k 2 k42
o — Hpy + Hp)
, (Jcl + Jc2 sk)
kn+3
Ak,020 = 4H<2)
' (2Jc2 sk),
kn+1 kn(n+1)+1
o — _Hp "+ Hg,
’ Je1 — Js) ’
k,2(n+1) k,n(n+1)+2
011 = H(z) * H(z)
’ Je2 — Js) ’
N I_I(k2 )(n+1)'
Aag,002 = J—k,
S
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where k defines the kth degree of freedom of stable variables (1<k<n —2). J.; and J,, are the
first and second terms of the diagonal matrix J. as defined in Eq. (C.1), respectively. Jy is the kth
term of the diagonal matrix J;. H(kz)’ defined the term of the kth line and ith column of the matrix
defined by Hs.

If the second order approximation is not sufficient, it is necessary to define the third-polynomial
approximation in order to describe correctly the dynamics of the system. Then, the expressions of
the stable variables vy, as a power series in (v, (i) of degree, can be defined by adding third order
polynomial terms in the first second order polynomial approximation defined in Eq. (C.2). These
expressions have the form

3 V4 V4

= D0 DY i = WO ) + WO )

p=itj+i=2 j=0 1=0
=hD(v,, i) + a30003; + 221002 V2 + 212006105 + 203007,

+ a1 03 fl + a1110a 0l + 202107 [ + a10001 2+ 01202/ + Ag03 L, (C4)
where a;; are unknown vectors of coefficients (for i+j+ /= 3). hD(v,, i) defines the first
approximation using second order polynomial approximation.

It is possible to obtain an analytical expression of the coefficients ay ;; by solving the simplified
expression of Eq. (47)
Dy, qhV Ve, AN[G2(Ve, ] + Dy, (02 (v, D) eve
= J¥s = Ho({ve, 0, 4} ® {(ve, WV (v, ), 3} — 10,00 (v, ), 03 ® (v, 0, 3}) — Hs(ve, ) = 0. (C.5)

One obtains

K -2 K2+ ke D)4
k200G — ak0Gp) + HE) + S0t aioo(Hg, T+ HE" D

3Jcl — Jsk ’

Ak 300 =

(~2ak200(G5 + G ™) = anano(Gs -+ Gy + G™) = awmo G + ) -+ HEG

k, 12+1 -2 K, it+2 k. Dii+1+1 o Kt it3 " R
+H(€3§n+ e aio(Hgy ™ + H(2;n+ AR T i aiz00(Hz) ™ + H(z)wr e ))

a = )
210 2+ Ja — g
20 | ons2 2143 12 L2 1+3 kot knt 1742
(—20020(G35 + G = @G + G5y + Gl ™) = 2aan Gl + ™ + HE
2 _ . . 3 . )
+H(k3,)(n+l) +n+2 + Z?:lzai,OZO(H(kz’)Hz + H(lcz,)(n+l)(l+l)+l) + 221:12 ai’llo(H(kz,)n+z+2 + H8§n+1)(1+1)+2))
[4) = y
o120 Jcl + 2Jc2 - Jsk
2143 1,n+3 k(n+1)>+n+2 -2 fen+i+3 ke (n+1)(i+1)+2
—2a41.00G5) " — aknoGy) " + H(3)(n LR aiooo(Hy ™ + H(z)(n D2y
030 =

3Jc2 - Jsk ’
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1, D+1 , ). Dl
(_ak’lmG(lé; = akon Gy — 2akan( Gy + G(zgl(’1+ " = akno(GE T+ G(z’f(n+ o
fen(nt1)+1 fen(n12+1 B ; o e
+H(3’;1(n+ )+ + H(k3’)n+1 + H(3)n(n+ )+ + Z?:l ai,lOl(H(kz)lH i H(z)(nJr Yit D+ )
-2 k DO+i k Daien
+2 00 ai,zoo(l"l(z’)(’“r &) H(z,;”(’H- )it )>
a pu—
k201 L

220141) | 2n(n+1)+2 120141 Ln(n+1)+2
(-Clk,lol Gy = akon Gy = 2ar,000(G3 "V + G ") — 410G Y + G U

3 _ . )
+ Hk,(n+1) 2(2n+1) + Z?: 12 ai,ozo( H(lcz,)(11+1)(2+z) + H(kz,)n(n+l)+z+2)

Qa3
+Z?;2 ai’OII(H(ICZ’)zn71+i + H(kz’)(”+1)(i+1)+2) + H(kB’)("+1)z+2(n+1) + H(k}’f(%l)z—"“)

021 = e ’
(_2ak,2ooG(12’§n+1)z _ ak,nonz’San - ak,ml(G(lz’;’“ + G(lz”;(”“)“) - ak,on(G(zz’;'H 4 Gé’S"* ety
+Hé’)(n+1)3_n ' Z?;lz ai’lol(Hé)(n+l)(2+i) + H(kz’)(n+1)n+z‘+2) + Z?j ai,ooz(Hé;+2 + H("z’)("+1)(f+1)+l)

’ 2
G103 = +H(k3a)(n+l) + H(kj),)n(n+1) +n+1) ’
’ Joa — Js

1(n+1)? 2,(n+1)? 1,2(n+1 1, )42 2.2(n+1 2, 1)+2
(-ak,lloG DT 2y g G — ak,lOl(G(g)(nJr )+ G(Z;'(H "y - ak,ou(G(z)("+ )+ G(z';(w ")

() [}
k.2(n+1)° -2 ke (n+1)(2+i kn(n+1)+i+2 -2 k2n—1+i k(n1)(i+1)+2
FHE "+ S aon(H ™+ H T £ S agenn(HG M+ H D)
k(1) +2(n+1) k(1) —n+1
+H(3) + H<3) )
k012 = P ’
C. Si

1,2 1,n+2 1,n+1 Ln(n+1)+1 1,2(n+1 Ln(n+1)+2
(_a"’ml(GO) + G ) = akno(Gy !+ G+ G+ G )

1,2(n+1 1, +2 k, 1)+2 , 2, 1)+1 2,2 2,n+2
—2ak,200(G(2)(nJr ) + G(zi)i(nJr " ) + ]_1(3;1(”Jr — 2ak,020(G(22;l+1 + G(zgl(nJr " ) - ak,Oll(G(z) + G(zgl+ )

k2(n+1) 2(n+1)*—n ke (n+1)*+n+1 fen(n+1)*+n—2 fen(n+1)*+n+2
+H(3) + H(3) + H(3) + H(3) + H(3)

-2 k,(n+1)(i+2 k, +i+2 -2 k2n—1+i k,(n+1)(i+1)+2
+Z?:l ai,]lO(H(2;’1+ )(i+2) + H(z)n(n+ )+i+ )_|_ Z?:l ai,lOl(H(zfn 1+i + H(z)(n+ )i+1)+ )
-2 kit2 k(DG 1)+1
+Z:‘1:1 ai,Oll(H(;’;+ + H(z)(n+ i+ 1)+ )>
a =
i Jcl +J¢'2_Jsk

L(n+1)? 2,(n+1)? k,(n+1)° -2 k(n+1)(2+i k, D+i+2
ak,102G(2§n+ =t ak,012G(2§n+ = H(3)(n+ o ai,002(H(2)(n+ Gy H(zf(% e
Aj,003 = T >
S

where k defines the kth degree of freedom of stable variables. J.; and J, are the first and second
terms of the diagonal matrix J.. Jy is the kth term of the diagonal matrix Jj. H(kzi) and Hg) deﬁnec_l
the terms of the kth line and ith column of the matrix defined by H, and Hj, respectively. Gf‘z’)
defined the term of the kth line and ith column of the matrix defined by Go.
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Appendix D. Definition of the terms for the AFT method

The k-incremental vector of Fourier coefficients are arranged as follows:
VE = (VT VS VA VT T

The Jacobian matrices A and J are given by

0 -
A
A= A0
AU
and
aleL aleL
_ ov,l  Ove -1
J=U®I 8f2NL 8f2NL ' 0,
avcl ach
where
) 0O jol ) 1 0 0 0
AY) = ) (forj=1,...,H), I= and O = .
—jol O 0 1 0 0

By considering the expressions

ok 0]
Z(i, eSy Naijle1Ven
d ]
Z(i, J)eSy . jj0 Vi

with Sy = {(i, j))|0<i<M, 0<j<M} and Sy = {(i, j))|0<i<N, 0<j< N}, the expressions
of Nt /o,y and OfNE /Ov., (for o = 1,2) are given by

SN, y) = (for o = 1,2)

N D)) ol iy V)

N QG pesy Mri¥er U X X e sy FuitirVer = Do esy MVl X D pesy il Ve
= i J 2

OV¢| (Z(i,j)eSN d%ijvclvd)

and

NL : i =D i A i D

of, 71(2(1', NeSy MoijleV X Z(i, jeSy dy.ijUe Uy Z(i, jyesy Moijlei Ve X Z(z’, jeSy Ay iU Uy )
= i 7 \2

OV (Z(i,_j)eSN d%ijvclv&)
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The DFT from time to frequency domain is given by

1
for i=1
2H + 1 orr=n
2 (j— Din .
= f =2,4,...,2H =
I'; 2H+ICOS<2H—|—1> or ! I forj=1,2,....,2H +1,
2 . (G—D(E - D= ,
f =13,...,2H+1
2H+lsm< SH 1 or i ,3, .., +
and from frequency time domain:
1 for j=1,
(i—1l)yn .
r;' = COS<2H+1 forj=2,4,....2H for i=1,2,...,2H + 1,
. — DG —1
Sln(%) for]:1,3,,2H—|—l

Appendix E. Nomenclature

scalar
vector
vector of velocity
vector of acceleration
equilibrium point
small perturbation
damping matrix
stiffness matrix
mass matrix
vector force due to the net hydraulic pressure
Feontaer  vector of linear and non-linear terms due to the rotor/stator contact
Fioupie  vector of the brake rod load
L vector of linear terms due to the rotor/stator contact
FNL

conace VECtor of non-linear terms due to the rotor/stator contact
a;; vector of the coefficients of the centre manifold
vector of centre variables
vector of stable variables
vector of the polynomial approximation of stable variables in centre variables
Jacobian matrix of stable variables
Jacobian matrix of centre variables
vector function of quadratic and cubic terms for the centre variables
vector function of quadratic and cubic terms for the stable variables
coefficients of the denominator of the rational approximants
coefficients of the numerator of the rational approximants

o ot T T
S

"HZNQW

contact

- -
“ oA

ST TQ&ESF
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Vi vector of Fourier coefficients

X lateral displacement of the stator

X, lateral displacement of the rotor

0, rotation of the stator

0, rotation of the rotor

v rotation of the stator

v, rotation of the rotor

0, the axle deflections and rotations of the stator and rotor shaft
Va axle deflection of the stator shaft

Zg axle deflection of the stator shaft

0, axle rotation of the stator shaft

v, axle rotation of the stator shaft

Vb axle deflection of the rotor shaft

Zp axle deflection of the rotor shaft

0p axle rotation of the rotor shaft

I/ axle rotation of the rotor shaft

o sprag-slip angle

u brake friction coefficient

Uo brake friction coefficient at the Hopf bifurcation point
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