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Non-linear stability analysis of a complex rotor/stator
contact system

J.-J. Sinou*, F. Thouverez, L. Jezequel

Laboratoire de Tribologie et Dynamique des Syst"emes, Equipe Dynamique des Structures et des Syst "emes, 
Ecole Centrale de Lyon, Batiment E6, 36 avenue Guy de Collongue, 69134 Ecully, France

In this paper, a non-linear strategy, based on the centre manifold, the rational approximants and the 
alternating frequency/time domain method has been developed, in order to study the non-linear dynamical 
behaviour of a system in the neighbourhood of a critical steady state equilibrium point. The stability 
analysis and the non-linear dynamics of a complex braking system with a non-linear rotor/stator contact 
are presented. Moreover, one of the most important steps of this paper is the determination of the non-
linear behaviour and the limit cycle amplitudes of this complex system. In order to conduct this study, the 
dynamic response is evaluated by using applying the centre manifold, the rational approximants and the 
alternating frequency/tim e dom ain m ethod, that perm it to obtain rapidly and efficiently the non-linear 
behaviour of the system. The dynamic response obtained by applying this method is compared with that 
evaluated through numerical integration.

1. Introduction

Non-linear dynamical structures depending on control parameters are encountered in many
areas of science and engineering. These systems have to be described by non-linear models due to
the fact that they depend strongly on the non-linearities. Under certain conditions, the associated
equilibrium point of the non-linear dynamical systems loses stability and small oscillations grow
with time. In this case, the non-linearities limit the oscillation growth, and the periodic solutions,
called limit cycles, appear. Mathematically speaking, this phenomenon is due to the crossing of
the complex plane imaginary axis by a pair of pure imaginary eigenvalues while all other
eigenvalues have negative real parts. This type of bifurcation is named Hopf bifurcation [1]. In the
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study of non-linear dynamical systems depending on a given control parameter, the Hopf
bifurcation is one of the most important.
If the conditions and the values of the parameters which cause instability can be investigated

with a linear stability theory, there is the need to take into account the complete non-linear
expressions in order to obtain the behaviour of the non-linear system and the limit cycle
oscillations. Moreover, the understanding of the behaviour of the non-linear models with many
degrees of freedom usually requires a simplification and a reduction of the equations; effectively,
the non-linear analysis can be rather expensive and consumes considerable resources both in terms
of computation time and of data storage requirements. The principal idea for the studies of these
dynamical systems is to use simplification methods for reducing the order of the system and
eliminating as many non-linearities as possible in the system of equations. One of the frequently
used reduction methods is the centre manifold approach. The principle of this non-linear method
is based on the reduction of the dimension of the original system: the essential non-linear dynamic
system characteristics in the neighbourhood of an equilibrium point are governed by the centre
manifold associated with the part of the original system characterized by the eigenvalues with zero
real parts at the Hopf bifurcation. Usually, the centre manifold can have complex non-linear
terms. In this case, the non-linear system can be simplified by using further non-linear co-ordinate
transformations [1–11]. The normal form theory is often applied after the centre manifold
approach. The main objective in the method of normal forms is to obtain a simplest possible non-
linear system by the use of successive non-linear co-ordinate transformations. At the end of these
non-linear transformations, only the resonant terms are retained: they cannot be eliminated and
are essential to the non-linear system dynamics. Moreover, there exist methods which combine the
centre manifold and the normal form theories into one uniformed procedure [10].
In this paper, the authors choose the use of the rational approximants [12] after applying the

centre manifold approach. Moreover, one of the advantages of the rational polynomial
approximants can be that they have a greater range of validity than the polynomial one in any
case [12–15]. In this paper, the Pad!e approximants are used in order to simplify the non-linear
system. They appear very interesting in regard to computational time; they also necessitate very
few computer resources.
In this paper, the authors firstly introduce a non-linear model for brake system with non-linear

rotor/stator frictional contact. Secondly, the general mechanisms for friction-induced vibrations
are presented in order to find the most suitable mechanism to describe the self-excited vibrations
considered in this study. Next, results from stability and parametric studies associated are
developed; stability is investigated by determining eigenvalues of the linearized perturbation
equations about each steady state operating point. The brake friction coefficient is used as an
unfolding parameter of the fundamental Hopf bifurcation point. Finally, the study is concerned
with the non-linear dynamic and the determination of the limit cycle amplitudes of the rotor/
stator contact system. The centre manifold theory is used in order to reduce the order of the non-
linear model in the neighbourhood of an equilibrium point upon bifurcation; the method of the
rational polynomial approximants is applied in order to simplify the non-linear equations.
Finally, one uses the alternating frequency–time harmonic balance [16] to expand the response of
the non-linear dynamical system in their Fourier series. Limit cycles oscillations from centre
manifold, rational approximants, and AFT harmonic balance method are compared with the limit
cycle oscillations obtained by the integration of the complete set of non-linear dynamics
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equations. The main objective is to illustrate the use of non-linear methods for a non-linear system
of large dimension in order to obtain rapidly the limit cycles amplitudes of the non-linear system
and to show the computational efficiency of these methods. Then, parametric studies for various
brake pressure are presented to illustrate the use of the non-linear strategy in order to obtain the
evolution of the limit cycles amplitudes.
Therefore, the purpose of this model is the understanding and the detection of the whirl

vibration and the associated frictional mechanism. At first, the whirl vibration with the non-linear
frictional forces is explained; the non-uniform compression of the stator and the rotor, as well as
the frictional force variation on the rubbed stator/rotor interface are concerned. The complex
non-linear rotor/stator contact system model related to the whirl vibration will then be discussed.

2. Model of non-linear rotor/stator contact system

The problem of unstable vibrations in disks brakes has received the attention of a number of
investigators. Whirl and squeal [17] of disk brake are typical brake vibrations modes and are
potentially hazardous types of vibrations which have been observed in several generations of
aircraft [17,18]. Whirl can be defined as a wobbling motion between the brake’s stationary and the
rotating parts. Stationary disks are called stators and rotating disks are called rotors. Whirl
vibration usually occurs around 200–500 Hz range. Squeal is a torsional vibration of non-rotating
parts of the braking system around the axle. The frequency spectrum of squeal is in the range
100–1000 Hz:
Moreover, a serious difficulty in the study of the dynamic stability of a brake system is the

determination of the frictional mechanism. Different types of vibrations induced by friction have
been studied in the past by several researchers [19–22]. The different mechanisms of friction-
induced vibration fall into four classes: stick-slip, variable dynamic friction coefficient, sprag-slip
[23], and geometric coupling of degrees of freedom. The first two approaches rely on changes in
the friction coefficient with the relative sliding speed to affect the system stability [24]. The latter
two approaches utilize kinematic constraints, and modal coupling to develop instability when the
friction coefficient is constant [25–29]. In this study, the authors will consider the latest two
approaches that use modal coupling in order to develop instability when the friction coefficient is
constant.
In a previous work, Feld and Fehr [30] presented the model defined in Fig. 1, in order to explain

the whirl vibration. In this treatment, the instability mechanism is produced by normal force
variations that result from dynamic interactions and relative movement of the system degree-of-
freedom. The disks are compressed by the hydraulic pressure applied to the brake. Without
vibration, the normal pressure is distributed uniformly over the rubbed surface between rotating
and stationary disks. When vibration is present, disks in the brake system are subjected to out-of-
plane rotation called accordion motion. Then, the uniform normal pressure over the disk interface
is altered by this accordion motion: the normal pressure increases over half of the interface and
relaxes over the other half. Moreover, the friction force varies proportionally to this normal
pressure and produces the whirl motion, as illustrated in Fig. 1.
One assumes that the non-linear normal stress N acting at the interface surface between the

rotor and the stator is expressed as a polynomial in the relative displacement normal to the
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friction surface. This non-linear normal stress is given by

Nðr; yÞ ¼
X3
i¼1

Ki½xðr; yÞ�i; ð1Þ

where x represents the relative displacement between the rotor and the stator at the pointMðr; yÞ:
K1; K2 and K3 are the linear, quadratic and cubic coefficients of the non-linear contact between the
rotor and the stator. The non-linear relationship between load and deflection has been verified by
experimental tests conducted on a rotor–stator assemblies [17].
One assumes that the tangential stress T is generated by the brake friction coefficient m;

considering the Coulomb friction

Tðr; yÞ ¼ mNðr; yÞ: ð2Þ

In this study, the brake friction m is assumed to be constant. This is due to the fact that there is
only a very small variation of the brake friction coefficient during a whirl vibration event, as
described by Liu et al. [17]. So the variation of the brake friction coefficient can be assumed to be
negligible in this case, although this is not always the case for modelling brake systems. This
context is complex enough to be qualitatively predictive and simple enough to allow sensitivity
analysis. Here, the retained mechanism to explain the whirl vibration is a classical mechanism;
whirl is modelled as a flutter instability due to the non-conservative aspect of Coulomb’s friction.
Moreover, it is assumed that the rotor and stator friction surfaces are always in contact. For any
point Mðr; yÞ on the rotor and stator, and by considering small displacements, the normal
displacement of the rotor and the stator are

xrotorðr; yÞ ¼ xr � r sin y sin yr � r cos y sin crExr � ryr sin y� rcr cos y;

xstatorðr; yÞ ¼ xs � r sin y sin ys � r cos y sincsExs � rys sin y� rcs cos y; ð3Þ

where xs; xr; ys; yr; cs and cr are the stator and the rotor lateral displacement, and the stator and
rotor rotations, as illustrated in Fig. 2.

Fig. 1. Friction force variation on rubbed surface.
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Then, for any point Mðr; yÞ on the disc surface, the normal displacement is

xðr; yÞ ¼ xstatorðr; yÞ � xrotorðr; yÞ ¼ ðxs � xrÞ � r sin yðys � yrÞ � r cos yðcs � crÞ: ð4Þ

The normal force FX due to the normal contact between the rotor and the stator friction surface,
and the moment MX ; MY and MZ are given by

FX ¼
Z 2p

0

Z R0

Ri

Nðr; yÞr dr dy; ð5Þ

MX ¼
Z 2p

0

Z R0

Ri

Tðr; yÞr2 dr dy ¼
Z 2p

0

Z R0

Ri

mNðr; yÞr2 dr dy; ð6Þ

MY ¼ �
Z 2p

0

Z R0

Ri

Nðr; yÞr2 sin y dr dy; ð7Þ

MZ ¼ �
Z 2p

0

Z R0

Ri

Nðr; yÞr2 cos y dr dy: ð8Þ

By considering the previous expressions and expressions (1) and (4), one obtains

FX ¼K1A2ðxs � xrÞ þ K2ðA2ðxs � xrÞ
2 þ 1

4
A4ðys � yrÞ

2 þ 1
4

A4ðcr � csÞ
2Þ

þ K3ðA2ðxs � xrÞ
3 þ 3

4
A4ðys � yrÞ

2ðxs � xrÞ þ 3
4

A4ðcs � crÞ
2ðxs � xrÞÞ; ð9Þ

MY ¼ � 1
4

K1ðys � yrÞ � 1
2

K2A4ðys � yrÞðxs � xrÞ

� K3ð34A4ðys � yrÞðxs � xrÞ
2 þ 1

8
A6ðys � yrÞ

3 þ 1
8

A6ðys � yrÞðcs � crÞ
2Þ; ð10Þ

MX ¼ mð23K1A3ðxs � xrÞ þ K2ð23A3ðxs � xrÞ
2 þ 1

5A5ðys � yrÞ
2 þ 1

5A5ðcs � crÞ
2Þ

þ K3ð23A3ðxs � xrÞ
3 þ 3

5
A5ðxs � xrÞðys � yrÞ

2 þ 3
5

A5ðxs � xrÞðcs � crÞ
2ÞÞ; ð11Þ

MZ ¼ � 1
4

K1A4ðcs � crÞ �
1
2

K2A4ðcs � crÞðxs � xrÞ

� K3ð34A4ðcs � crÞðxs � xrÞ
2 þ 1

8
A6ðcs � crÞ

3 þ 1
8

A6ðcs � crÞðys � yrÞ
2Þ ð12Þ

with Ak ¼ pðRk
0 � Rk

i Þ for 2pkp6:

Fig. 2. Dynamic model of rotor/stator braking system.
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Then, one considers the simple rotor/stator model defined in Fig. 2. It consists of a rigid rotor, a
rigid stator, a rotor shaft rigid in torsion, and a stator shaft rigid in torsion. The equations of
motion are given in Appendix A and the parameter values in Appendix B.
By considering the non-linear equations of motion in Appendix A, the general form of this non-

linear 15-degree-of-freedom system can be expressed in the following way:

M .xþ C ’xþ #Kx ¼ Fþ FcontactðxÞ; ð13Þ

where .x; ’x and x are the acceleration, velocity, and displacement response 15-dimensional vectors
of the degrees of freedom, respectively.M is the mass matrix, C is the damping matrix and #K is the
stiffness matrix. F is the vector force due to net brake hydraulic pressure. Fcontact contains the
linear and non-linear contact force terms at the stator and rotor interface.

3. Stability analysis

To study the stability of the non-linear system modelled in the previous section, the non-linear
equations of motion are first linearized about each steady state equilibrium position; then the
eigenvalues of these linearized equations of motion are examined. The equilibrium point x0 is
obtained by solving the non-linear static equations for a given net brake hydraulic pressure. This
equilibrium point satisfies the following conditions:

#Kx0 ¼ Fþ Fcontactðx0Þ: ð14Þ

One can notice that there can be more than one steady state operating point at a given net brake
hydraulic pressure. The stability is investigated on the linearized equations by assuming small
perturbations %x about the equilibrium point x0; where

x ¼ x0 þ %x: ð15Þ

The linearized equations for small perturbations about the equilibrium can be written as
follows:

M .%xþ C ’%xþ #K %x ¼ FL
contactð %xÞ ð16Þ

with

FL
contactð %xÞ ¼

X15
i¼1

@Fcontactð %xÞ
@ %xi

����
x0

%xi: ð17Þ

The components of FL
contact are given by

FL
contactð1Þ ¼ �FL

contactð5Þ ¼ �FL
X ; ð18Þ

FL
contactð2Þ ¼ �FL

contactð6Þ ¼ �ML
Y ; ð19Þ

FL
contactð3Þ ¼ �FL

contactð7Þ ¼ �ML
Z ; ð20Þ

FL
contactð4Þ ¼ ML

X ; ð21Þ

FL
contactðiÞ ¼ 0 for 8pip15; ð22Þ
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with

FL
X ð %xÞ ¼ ðK1A2 þ 2K2A2Dx þ 3K3A2D2x þ

3
4

K3A4D2y þ
3
4

K3A4D2cÞð %xs � %xrÞ

þ ð1
2

K2A4Dc þ 3
2

K3A4DcDyÞð %cs � %crÞ þ ð1
2

K2A4Dy þ 3
2

K3A4DcDyÞð%ys � %yrÞ; ð23Þ

ML
X ð %xÞ ¼ mð½2

3
K1A3 þ

4

3
K2A3Dx þ 2K3A3D2x þ

3
5

K3A5D2y þ
3
5

K3A5D2c�ð %xs � %xrÞ

þ ½2
5

K2A5Dy þ 6
5

K3A5DyDx�ð%ys � %yrÞ þ ½2
5

K2A5Dc þ 6
5

K3A5DcDx�ð %cs � %crÞÞ; ð24Þ

ML
Zð %xÞ ¼ ð½�1

2
K2A4Dc þ 3

2
K3A3DcDx�ð %xs � %xrÞ � 1

4
K3A6DcDyð%ys � %yrÞ

þ ½�1
4

K1A4 � 1
2

K2A4Dx � 3
4

K3A4D2x �
1
7

K3A6D2y �
3
8

K3A6D2c�ð %cs � %crÞÞ; ð25Þ

ML
Y ð %xÞ ¼ ð½�1

2
K2A4Dy þ 3

2
K3A3DyDx�ð %xs � %xrÞ � 1

4
K3A6DcDyð %cs � %crÞ

þ ½�1
4

K1A4 � 1
2

K2A4Dx � 3
4

K3A4D2x �
1
7

K3A6D2c � 3
8

K3A6D2y�ð%ys � %yrÞÞ ð26Þ

with

Ak ¼ pðRk
0 � Rk

i Þ for 2pkp6;

Dx ¼ xs0 � xr0;

Dy ¼ ys0 � yr0;

Dc ¼ cs0 � cr0:

By considering the relation

FL
contactð %xÞ ¼ K

L
contact %x; ð27Þ

the linearized system (16) is given by

M .%xþ C ’%xþ ð #K� KL
contactÞ %x ¼ 0: ð28Þ

Now, stability analyses can be performed on the linearized equations for small perturbations at
the operating point of the non-linear systems. As long as the real part of all the eigenvalues
remains negative, the system is stable. When at least one of the eigenvalues has a positive real part,
the dynamical system is unstable. The imaginary part of this eigenvalue represents the frequency
of the unstable mode.
Using the base parameters defined previously, simulations have been performed in order to

investigate the stability of the non-linear system, with respect to the brake friction coefficient.
Moreover, the Hopf bifurcation point, defined by the following conditions:

ReðlcentreðmÞÞjx¼x0;m¼m0 ¼ 0 and Reðlnon-centreðmÞÞjx¼x0;m¼m0a0;

d

dm
ðReðlðmÞÞÞ

����
x¼x0;m¼m0

a0 ð29Þ

occurs at m0 ¼ 0:41: The first condition implies that system (28) has a pair of purely imagi-
nary eigenvalues lcentre; while all of the other eigenvalues lnon-centre have non-zero real parts at
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ðx ¼ x0;m ¼ m0Þ: The second condition of Eq. (29), called a transversal condition, implies a
transversal or non-zero speed crossing of the imaginary axis.
The evolution of frequencies and the evolution of the associated real parts associated when the

brake friction coefficient is used as a control parameter are shown in Figs. 3 and 4. As shown in
Fig. 3, the system is unstable for m > m0; and stable for mom0: Therefore, it is possible to
characterize the stability properties of the linearized system by representing the evolution of the
eigenvalues with respect to m in the complex plane, as illustrated in Fig. 5.
This stability analysis indicates that the instability can occur with a constant friction coefficient.

Moreover, the frequency o0 of the unstable mode, obtained for m ¼ m0 is near 480 Hz: There is a
perfect correlation with experiment tests, whirl vibration being observed in the 200–500 Hz range.
Next, stable and unstable regions versus two parameters can be performed. As illustrated in

Figs. 6–10a, stability analysis is a complex problem and can be altered by changes in the brake

Fig. 3. Coupling of two eigenvalues.

Fig. 4. Evolution of the real part of eigenvalues.
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friction coefficient, the sprag-slip angle, the pressure, or the non-linear rotor/stator contact
stiffness. The associated evolutions of the eigenvalues in the complex plane are shown in Figs. 6b
to 10b.

4. Non-linear analysis

In order to obtain time-history responses, the complete set of non-linear dynamic equations
may be integrated numerically by using the Runge–Kutta method (fourth order), as illustrated in
Figs. 11 and 12. But this procedure is both time consuming and costly to perform when
parametric design studies are needed. So it is necessary to use non-linear analysis: the centre
manifold approach, the rational approximants and the alternate frequency time domain method
are used in order to obtain rapidly the limit cycle of the non-linear system.

Fig. 5. Evolution of the eigenvalues in the complex plane.

Fig. 6. Stable and unstable regions as a function of the friction coefficient and the pressure.
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Fig. 7. Stable and unstable regions as a function of the friction coefficient and the sprag-slip angle.

Fig. 8. Stable and unstable regions as a function of the pressure and the sprag-slip angle.

Fig. 9. Stable and unstable regions as a function of friction coefficient and the non-linear stiffness K2:
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The complete non-linear expressions of the non-linear forces are expressed in order to conduct
this complex non-linear analysis. The complete non-linear equations can be written as follows:

M .%xþ C ’%xþ #K %x ¼ Fcontactð %xÞ; ð30Þ

where .%x; ’%x and %x are the acceleration, velocity, and displacement response 15-dimensional vectors
of the degrees of freedom, respectively.M is the mass matrix, C is the damping matrix and #K is the
stiffness matrix. Fcontactð %xÞ is the non-linear stiffness due to the friction and the rotor/stator
contact:

Fcontactð %xÞ ¼ FL
contactð %xÞ þ F

NL
contactð %xÞ; ð31Þ

where the vector FL
contact; defined in Eqs. (18)–(22), contains the linear terms of Fcontact: The vector

FNL
contact represents the non-linear terms of Fcontact and is given by

FNL
contactð1Þ ¼ �FNL

contactð5Þ ¼ �FNL
X ; ð32Þ

FNL
contactð2Þ ¼ �FNL

contactð6Þ ¼ �MNL
Y ; ð33Þ

FNL
contactð3Þ ¼ �FNL

contactð7Þ ¼ �MNL
Z ; ð34Þ

FNL
contactð4Þ ¼ MNL

X ; ð35Þ

FNL
contactðiÞ ¼ 0 for 8pip15 ð36Þ

with

FNL
X ð %xÞ ¼ ðK2A2 þ 3K3A2DxÞð %xs � %xrÞ

2 þ 3
2

K3A4Dyð%ys � %yrÞð %xs � %xrÞ

þ 3
2

K3A4Dcð %cs � %crÞð %xs � %xrÞ þ ð1
4

K2A4 þ 3
4

K3A4DxÞð %cs � %crÞ
2

þ ð14K2A4 þ 3
4K3A4DxÞð%ys � %yrÞ

2 þ K3A2ð %xs � %xrÞ
3

þ 3
4

K3A4ð%ys � %yrÞ
2ð %xs � %xrÞ þ 3

4
K3A4ð %cs � %crÞ

2ð %xs � %xrÞ; ð37Þ

Fig. 10. Stable and unstable regions as a function of the pressure and the non-linear stiffness K2:
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MNL
X ð %xÞ ¼mð½2

3
K2A3 þ 2K3A3Dx�ð %xs � %xrÞ

2 þ ½1
5

K2A5 þ 3
5

K3A5Dx�ð%ys � %yrÞ
2

þ ½1
5

K2A5 þ 3
5

K3A5Dx�ð %cs � %crÞ
2 þ 6

5
K3A5Dyð %xs � %xrÞð%ys � %yrÞ

þ 6
5

K3A5Dcð %xs � %xrÞð %cs � %crÞ þ 2
3

K3A3ð %xs � %xrÞ
3

þ 3
5K3A5ð%ys � %yrÞ

2ð %xs � %xrÞ þ 3
5K3A5ð %cs � %crÞ

2ð %xs � %xrÞÞ; ð38Þ

MNL
Y ð %xÞ ¼ � 3

4
K3A4Dyð %xs � %xrÞ

2 � 3
8

K3A6Dyð%ys � %yrÞ
2 � 1

8
K3A6Dyð %cs � %crÞ

2

� ð1
2

K2A4 þ 3
2

K3A4DxÞð %xs � %xrÞð%ys � %yrÞ � 3
8

K3A6Dcð%ys � %yrÞð %cs � %crÞ

þ 1
8

K3A6ð%ys � %yrÞ
3 þ 3

4
K3A4ð%ys � %yrÞð %xs � %xrÞ

2 þ 1
8

K3A6ð%ys � %yrÞð %cs � %crÞ
2; ð39Þ

Fig. 12. Evolution of the displacement XrðtÞ by using Runge–Kutta 4 ðm ¼ 1:1m0Þ:

Fig. 11. Evolution of the displacement XSðtÞ by using Runge–Kutta 4 ðm ¼ 1:1m0Þ:
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MNL
Z ð %xÞ ¼ � 3

4
K3A4Dcð %xs � %xrÞ

2 � 3
8

K3A6Dcð %cs � %crÞ
2 � 1

8
K3A6Dcð%ys � %yrÞ

2

� ð1
2

K2A4 þ 3
2

K3A3DxÞð %xs � %xrÞð %cs � %crÞ � 3
8

K3A6Dcð%ys � %yrÞð %cs � %crÞ

þ 1
8

K3A6ð %cs � %crÞ
3 þ 3

4
K3A4ð %cs � %crÞð %xs � %xrÞ

2 þ 1
8

K3A6ð %cs � %crÞð%ys � %yrÞ
2 ð40Þ

with

Ak ¼ pðRk
o � Rk

i Þ for 2pkp6;

Dx ¼ xs0 � xr0;

Dy ¼ ys0 � yr0;

Dc ¼ cs0 � cr0:

By considering expressions (37)–(40), the non-linear equations can be expressed as

M .%xþ C ’%xþ ð #K� KL
contactÞ %x ¼ FNL

contactð %xÞ ¼
X15
i¼1

X15
j¼1

q
ij
ð2Þ %xi %xj þ

X15
i¼1

X15
j¼1

X15
k¼1

q
ijk
ð3Þ %xi %xj %xk; ð41Þ

where the vectors q
ij
ð2Þ and q

ijk
ð3Þ are the coefficients of the quadratic and cubic terms due to the non-

linear stiffness about the equilibrium point, respectively.
In order to use the non-linear methods (the centre manifold approach and the rational

approximants), one writes the non-linear equation in state variables y ¼ f %x ’%xgT

’y ¼ Ayþ
X30
i¼1

X30
j¼1

p
ij
ð2Þyiyj þ

X30
i¼1

X30
j¼1

X30
k¼1

p
ijk
ð3Þyiyjyk; ð42Þ

where yi defines the ith term of y .A; pij
ð2Þ and p

ijk
ð3Þ are the 30� 30 matrix, quadratic and cubic non-

linear terms, respectively. One has

A ¼ �
0 I

M�1ð #K� KL
contactÞ �M�1C

" #
; ð43Þ

pð2Þ ¼
0

M�1qð2Þ

( )
; ð44Þ

pð3Þ ¼
0

M�1qð3Þ

( )
: ð45Þ

5. The centre manifold approach

Reduction to lower dimensional problem by means of the centre manifold theory is now
considered. The centre manifold approach is based on the idea that all essential non-linear
stability and dynamic system characteristics in the neighbourhood of an equilibrium point are
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governed by the dynamics on the centre manifold, when some eigenvalues have zero real parts and
all other eigenvalues have negative real parts.
In a first step, one will express the non-linear system (42) in the new modal linear basis of its

eigenvectors, and consider the coefficient of friction as a new variable in order to be able to carry
out some sensitivity analysis. One obtains

’vc ¼ Jcð #mÞvc þGðvc; vs; #mÞ;

’vs ¼ Jsð #mÞvs þHðvc; vs; #mÞ;
’#m ¼ 0; ð46Þ

where vcAR2 and vsARn�2 (with n ¼ 30 in this case). System (46) depends on the control
parameter #m: By considering the physically interesting case of the stable equilibrium loosing
stability, one can assume that vc contains the two variables associated to the eigenvalues l with
zero real parts, while vs contains those with negative real parts. G and H are polynomial non-
linear functions. At ðvc; vs; #mÞ ¼ ð0; 0; 0Þ; this system has a three-dimensional centre manifold
tangent to ðvc; #mÞ space. The centre manifold theory allows the expression of the variables vs

as a function of vc: vs ¼ hðvc; #mÞ: This ðn � 2Þ-dimensional function h is substituted into the
second equation of Eq. (46); then these results are combined with the first equation of Eq. (46).
By considering the tangency conditions at the fixed point ð0; 0; 0Þ to the centre eigenspace,
one obtains

Dvc; #mðhðvc; #mÞÞðJcvc þGðvc; hðvc; #mÞ; #mÞÞ � Jshðvc; #mÞ �Hðvc; hðvc; #mÞ; #mÞ ¼ 0;

h ¼ 0;

Dvc
hið0Þ ¼ 0 for 1pipn � 2;

@h

@ #m
¼ 0; ð47Þ

where hi ð1pipn � 2Þ are the scalar components of h: To solve Eq. (47), one defines an
approximate solution of h by a power expansion: one assumes vs ¼ hðvc; #mÞ as a power series in
ðvc; #mÞ of degree m; without constant and linear terms ðmX2Þ:

vs ¼ hðvc; #mÞ ¼
Xm

p¼iþjþl¼2

Xp

j¼0

Xp

l¼0

aijlv
i
c1v

j
c2 #m

l ; ð48Þ

where aijl are vectors of constant coefficients. Substituting the assumed polynomial approxima-
tions into Eq. (47), one obtains a system of algebraic equations for the coefficients of the
approximate solution of h: The analytical expressions for the coefficients of second and third
order polynomial approximation of vs ¼ hðvc; #mÞ are given in Appendix C.
After the identification of h; it is resubstituted into the first equation of Eq. (46) in order to

obtain the reduced order structural dynamic model, which is only a function of vc:

’vc ¼ Jcð #mÞvc þGðvc; hðvc; #mÞ; #mÞ;

’#m ¼ 0: ð49Þ
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This reduced system is easier to study than the original one. In this centre manifold analysis,
one reduces the dynamics of the considered 31-dimensional system to the dynamics on the three-
dimensional centre manifold.
In this study, one will obtain the limit cycles only near the Hopf bifurcation point (m ¼ m0 þ %m;

where m0 is the friction coefficient at the Hopf bifurcation point and %m ¼ em0 with e very small). In
this case, one observes numerically that the expressions of vs ¼ hðvc; %mÞ can be approximated by
the expression of vs ¼ hðvcÞ with negligible errors. This approximation amounts to the expression
of vs at the Hopf bifurcation point m0 (aijl � 0 for la0). It is not necessary, but nevertheless it
allows the simplification of the expression of vs: Therefore, the non-linear terms are approximated
by their evaluation at the bifurcation point m ¼ m0; provided that none of the leading non-linear
terms vanish here; so one has Gðvc; hðvcÞ; mÞEGðvc; hðvcÞ; m0Þ with negligible error due to the fact
that e is very small.
Finally, the dynamics of the system is described, with small errors, by the system

’vc ¼ JcðmÞvc þGðvc; vs; m0Þ;

’m ¼ 0;

vs ¼ hðvcÞ ¼
Xm

p¼iþj¼2

Xp

j¼0

aijv
i
c1v

j
c2: ð50Þ

Using an approximation of h up to the second order is sufficient in order to obtain the evolutions
of limit cycle amplitudes. In Figs. 13–15, the limit cycle amplitudes obtained via the centre
manifold approach are compared with the ones obtained via the integration of the full system.
The comparison of the two approaches shows a good and sufficient correlation. Consequently, the
centre manifold approach is validated and reduces the number of equations of the original system
from 31 to 3 in order to obtain a simplified system.

Fig. 13. Xs-limit cycle amplitudes by using the centre manifold approach ðm ¼ 1:1m0Þ; — original system, - 
 - center
manifold approach.
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6. Rational polynomial approximants

In this section, one will use the rational approximants in order to simplify the non-linear
system, without losing the dynamics of the original system, as well as the contributions of non-
linear terms. The use of the rational approximants allows one to obtain limit cycles more easily
and rapidly. The Pad!e approximants appear very interesting in regard to computational time; they
also necessitate very few computer resources.

Fig. 14. Xr-limit cycle amplitudes by using the centre manifold approach ðm ¼ 1:1m0Þ; — original system, - 
 - center
manifold approach.

Fig. 15. yr-limit cycle amplitudes by using the centre manifold approach ðm ¼ 1:1m0Þ; — original system, - 
 - center
manifold approach.
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The main objective in the rational approximants is the approximation of the non-linear terms
by using rational polynomial approximants [12,13]. Moreover, one of the interesting things about
these rational approximants is that they need less terms than the associated Taylor series in order
to obtain an accurate approximation of the limit cycle amplitudes: they allow the computation of
an accurate approximation of the non-linear function f ðvcÞ even at values of f for which the
Taylor series of f ðvcÞ diverge. In any case, the rational approximation has a greater range of
validity than the polynomial one.
Let f ðx; yÞ be a function of 2-variables defined by a formal power series expansion

f ðx; yÞ ¼
XN
i¼0

XN
j¼0

cijx
iy j ¼

X
ði; jÞAS

cijx
iy j; ð51Þ

where S ¼ fði; jÞ j iANþ; jANþg:
In this paper, on considers symmetric-off-diagonal (SOD) rational approximants [12,15] to

f ðx; yÞ of the form

½M=N�f ðx; yÞ ¼

P
ði; jÞASM

nijx
iy jP

ði; jÞASN
dijxiy j

; ð52Þ

where SM ¼ fði; jÞ j 0pipM; 0pjpMg and SN ¼ fði; jÞ j 0pipN; 0pjpNg: There are
ðM þ 1Þ2 þ ðN þ 1Þ2 unknown coefficients in Eq. (52). d00 can be normalised to unity and the
other coefficients nij and dij are then related by matching terms in Eqs. (51) and (52). By
multiplying the difference between f ðx; yÞ and ½M=N�f ðx; yÞ by the denominator of ½M=N�f ðx; yÞ;
one obtains X

ði; jÞASN

dijx
iy j

!
�

X
ði; jÞAS

cijx
iy j

!
�

X
ði; jÞASM

nijx
iy j ¼

X
ði; jÞAS

eijx
iy j; ð53Þ

where as many coefficients eij as possible are equal to zero. The equations obtained by matching
coefficients in Eq. (53) are

d00 ¼ 1; ð54Þ

Xa
i¼0

Xb
j¼0

dijca�i;b�j ¼ nab for 0papM; 0pbpM; ð55Þ

Xa
i¼0

XN

j¼0

dijca�i;b�j ¼ 0 for 0paoM; MobpM þ N � a; ð56Þ

XN

i¼0

Xb
j¼0

dijca�i;b�j ¼ 0 for MoapM þ N � b; 0pboM; ð57Þ

Xs
i¼0

XN

j¼0

ðdijcs�i;MþNþ1�s�j þ dijcMþNþ1�s�i;s�jÞ ¼ 0 for 1pspN: ð58Þ
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After normalizing d00 to unity, the computation of the coefficients dij can be achieved by
solving the linear equations which arise from Eqs. (56)–(58). Next, the linear equations given
by Eqs. (55) enable the determination of the coefficients nij ; with the coefficients dij found
previously.
If one considers that the expressions Gðvc; hðvcÞ;m0Þ of Eq. (50) are power series in vc of degree

3m respectively, then the dynamic of Eq. (50) can be rewritten in the following way:

’vc ¼ fðvcÞ ¼
X3m
p¼1

Xp

i¼0

ci;p�iv
i
c1v

p�i
c2 ; ð59Þ

where m defines the degree of the power series h in Eq. (50).
By using the SOD rational approximants, the previous system can be written as follows:

’vc ¼ fNLðvcÞ ¼

PM
i¼0

PM
j¼0 n1:ijv

i
c1v

j
c2PN

i¼0

PN
j¼0 d1:ijv

i
c1v

j
c2PM

i¼0

PM
j¼0 n2:ijv

i
c1v

j
c2PN

i¼0

PN
j¼0 d2:ijv

i
c1v

j
c2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð60Þ

The determinations of the coefficients n1:ij; n2:ij (for 0pipM and 0pjpM) and d1:ij; d2:ij (for
0pipN and 0pjpN) are obtained using the procedure defined previously.
In addition, one uses the alternate frequency/time (AFT) harmonic balance method. The vector

vcðtÞ can be expanded as a truncated Fourier series

vcðtÞ ¼ V0 þ
XH
j¼1

V2j�1 cos
2pjt

T

� �
þ V2j sin

2pjt

T

� �� �
; ð61Þ

where T is the period of the system, V0; V2j�1 and V2j the vectors of Fourier coefficients. The
number of harmonic coefficients H will be selected in order to consider only the significant
harmonics expected in the solution. By considering Eqs. (60) and the Fourier expansion (61), one
obtains the linear algebraic equations

DVk ¼ �ðA� JÞ�1ðFNL þ ðA� JÞVkÞ; ð62Þ

Vkþ1 ¼ Vk þ DVk; ð63Þ

where Vk ¼ ffVk
0g
T;y; fVk

2j�1g
T; fVk

2jg
T;y; fVk

2HgTgT: Vk defines the k-incremental vector of
Fourier coefficients of vc: A and J are the Jacobian matrices associated with the linear and
non-linear parts of the equation of motion (60), respectively. FNL represents the vector of
the Fourier coefficients of the non-linear function fNL; defined in Appendix D. The vector of the
Fourier coefficients FNL is calculated by an iteration process [16], by considering the discrete
Fourier transform (DFT). This process can be sketched as

V ���!DFT�1

vcðtÞ-fNLðtÞ �!DFTFNL: ð64Þ
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The error vector R is given by

R ¼ AVkþ1 � FNL; ð65Þ

and the associated convergences are given by

d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R20 þ

XH

j¼1
ðR22j�1 þ R

2
2j

r
Þ and d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DV20 þ

XH

j¼1
ðDV22j�1 þ DV22jÞ

r
: ð66Þ

The complete scheme of the computer program using the alternate frequency/time domain (AFT)
method with the DFT is expressed in Fig. 16.
The ½3=2�f ðvcÞ symmetric-off-diagonal rational approximants are applied in order to simplify

the non-linear expression of the non-linear equation (59), that is a power series in vc of degree 6.
An ½M=N�f ðvcÞ approximation with Lp2 and Mp2 is not sufficient: effectively, in some cases,
computations diverge since the retained non-linearities are not sufficient, and in other cases, the
obtained limit cycle amplitudes are not acceptable due to the same reasons.
In addition, the first order of harmonic coefficients ðH ¼ 1Þ allows one to obtain the same

limit cycle amplitudes as those obtained by the integration of the system defined with the

Fig. 16. Description of the AFT method.
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Table 1

Vectors of the harmonic coefficients

Vector of the harmonic Case 1 ðH ¼ 1Þ Case 2 ðH ¼ 2Þ
coefficient

V0 �0:0005� 0:0004i
�0:0005þ 0:0004i

� �
�0:0005� 0:0004i
�0:0005þ 0:0004i

� �

V1 0:4918� 0:4924i
0:4918þ 0:4924i

� �
0:4927� 0:4933i
0:4927þ 0:4933i

� �

V2 0:4923þ 0:4916i
0:4923� 0:4916i

� �
0:4932þ 0:4925i
0:4932� 0:4925i

� �

V3 0 0:0001
0:0001

� �

V4 0 0:0001i
�0:0001i

� �

Fig. 17. Xs; Xr; ys and ys-limit cycles by using the centre manifold, the rational approximants and the alternating

frequency/time method ðm ¼ 1:1m0Þ; — original system, - 
 - non-linear mathods.
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½3=2�f ðvcÞ symmetric-off-diagonal rational approximants. The Pad!e approximants appear
very interesting in regard to computational time; they also necessitate very few computer
resources.
The values of the harmonic coefficients for one and two harmonics are given in Table 1.

Moreover, the values of the harmonic coefficients are complex, since they defined the unknown
functions in time of vc by their Fourier components in the centre manifold base. Using the reverse
transformation in order to go from the centre manifold space (with complex variable) to the
physical space (with real variable), one obtains the limit cycle amplitudes of the non-linear
physical system.
As illustrated in Figs. 17–20, good correlations between the limit cycles of the integrated system,

and those of the ½3=2�f ðvcÞ rational approximants and the AFT method are obtained.
Consequently, the rational approximants approach is validated and allows the reduction of the
number of non-linear terms of the system.
Moreover, the determination of the limit cycle amplitudes by the integration of the differential–

algebraic equations of the system is faster using the multivariable approximants. These non-linear
methods are ideal for parametric studies.
Some indications have been observed by varying the pressure parameter, as illustrated in

Figs. 21 and 22. The friction coefficient is used as the control parameter and the limit cycles are

Fig. 18. cs; cr and js-limit cycles by using the centre manifold, the rational approximants and the alternating

frequency/time method ðm ¼ 1:1m0Þ; — original system, - 
 - non-linear mathods.
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defined near the Hopf bifurcation point. The Hopf bifurcation points are given in Table 2. An
evolution of the equilibrium point is observed and the evolution of limit cycles appears to be a
complex problem.

7. Summary and conclusion

In this study, the stability analysis and the non-linear behaviour, with the determination of the
limit cycle amplitudes, of a system with a non-linear rotor/stator contact are presented. The centre
manifold theory and the rational approximants allow the reduction of the number of equations of
the original system and the simplification of the non-linear terms in order to obtain a simplified
system, without losing the dynamics of the original system, as well as the contributions of the non-
linear terms. One of the advantages of the rational approximants is that they appear very
interesting in regard to computational time; they also necessitate very few computer resources.
This procedure of using successively the centre manifold approach, the rational polynomial

approximants, and the alternating frequency/time domain method is applicable for n-dimensional

Fig. 19. ya; yb; za and zb-limit cycles by using the centre manifold, the rational approximants and the alternating

frequency/time method ðm ¼ 1:1m0Þ; — original system, - 
 - non-linear mathods.
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systems with polynomial non-linearities. An application of these combined non-linear methods is
proposed for a complex non-linear system with many degrees of freedom. The results from these
non-linear methods are compared with those obtained by integrating the full original system.
Excellent agreements are found between the original and the reduced system. Moreover, the
methods require few computer resources and appear to be particularly interesting in the cases of
large non-linear systems.

Fig. 20. ya; yb; ca and cb-limit cycles by using the centre manifold, the rational approximants and the alternating

frequency/time method ðm ¼ 1:1m0Þ; — original system, - 
 - non-linear mathods.

Table 2

Values of the friction coefficient at the Hopf bifurcation point

Pressure (bar) Friction coefficient m0 at the
Hopf bifurcation point

10 0.41

15 0.33

20 0.47
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Appendix A. Equations of motion for the non-linear rotor/stator contact system

The equations of motion for the non-linear rotor/stator contact system are

ms .xs þ Cxs ’xs ¼ Fcouple=X þ Fhyd=X � FX ; ðA:1Þ

Iys
.ys þ Casð’ys � ’yaÞ þ Kysys þ Kasðys � yaÞ ¼ Fcouple=X Re þ Fcouple=Zde þ MY ; ðA:2Þ

Ics
.cs þ Casð ’cs � ’caÞ þ Kcscs þ Kasðcs � caÞ ¼ Fcouple=Y de þ MZ; ðA:3Þ

Ijs .js þ Cjs ’js ¼ �Fcouple=Y Re þ MX ; ðA:4Þ

mr .xr þ Cxr ’xr þ Krrxr ¼ FX ; ðA:5Þ

Fig. 21. Parametric studies for the Xs; Xr; ys and yr-limit cycles amplitudes ðm ¼ 1:1m0Þ; — Phydraulic ¼10 bars, - 
 -
Phydraulic ¼15 bars, - - - Phydraulic=20bars.
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Iyr
.yr þ Cbrð’yr � ’ybÞ þ Kbrðyr � ybÞ ¼ �MY ; ðA:6Þ

Icr
.cr þ Cbrð ’cr � ’cbÞ þ Kbrðcr � cbÞ ¼ �MZ; ðA:7Þ

mb .yb þ Cb11 ’yb þ Cyabð ’yb � ’yaÞ þ Kb11yb þ Kb12yb þ Kyabðyb � yaÞ ¼ 0; ðA:8Þ

Ib
.yb þ Cb22

’yb þ Cbrð’yb � ’yrÞ þ Cyabð’yb � ’yaÞ þ Kb21yb þ Kb22yb þ Kbrðyb � yrÞ

þ Kyabðyb � yaÞ ¼ 0; ðA:9Þ

mb .zb þ Cb11 ’zb þ Czabð’zb � ’zaÞ þ Kb11zb þ Kb12cb þ Kzabðzb � zaÞ ¼ 0; ðA:10Þ

Ib
.cb þ Cb22

’cb þ Cbrð ’cb � ’crÞ þ Ccabð ’cb � ’caÞ þ Kb21zb þ Kb22cb

þ Kbrðcb � crÞ þ Kcabðcb � caÞ ¼ 0; ðA:11Þ

ma .ya þ Ca11 ’ya þ Cyabð ’ya � ’ybÞ þ Ka11ya þ Ka12ya þ Kyabðya � ybÞ ¼ 0; ðA:12Þ

Ia
.ya þ Ca22

’ya þ Casð’ya � ’ysÞ þ Cyabð’ya � ’ybÞ þ Ka21ya þ Ka22ya

þ Kasðya � ysÞ þ Kyabðya � ybÞ ¼ 0; ðA:13Þ

Fig. 22. Parametric studies for the cs; cr and js-limit cycles amplitudes ðm ¼ 1:1m0Þ; — Phydraulic ¼10 bars, - 
 -
Phydraulic ¼15 bars, - - - Phydraulic ¼20 bars.
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ma .za þ Ca11 ’za þ Czabð’za � ’zbÞ þ Ka11za þ Ka12ca þ Kzabðza � zbÞ ¼ 0; ðA:14Þ

Ia
.ca þ Ca22

’ca þ Casð ’ca � ’csÞ þ Ccabð ’ca � ’cbÞ þ Ka21za þ Ka22ca

þ Kasðca � csÞ þ Kcabðca � cbÞ ¼ 0; ðA:15Þ

where xs; xr; ys; yr; cs; cr; js; ya; za; ya; ca; yb; zb; yb and cb are the stator and the rotor lateral
displacement, the stator and rotor rotations, the piston torsional rotation and the axle deflections
and rotations of the stator and rotor shaft, respectively. The stator and the shaft of the stator
interact via notches on the inner perimeter of the disk. The rotor and the shaft of the rotor interact
via drive keys on the outside of the disk. Kas and Cas define the stiffness and the damping between
the stator and the shaft of the stator, called torque tube, via notches on the inner perimeter of the
disk. Kbr and Cbr define the stiffness and the damping between the rotor and the shaft of the rotor,
via drive keys on the outside of the disk. Kcab; Kyab; Kyab; Kzab and Ccab; Cyab; Cyab; Czab represent
the contact stiffness and the contact damping between the rotor’s and stator’s shaft, respectively.
Krr represents the stiffness of the backplate of the brake. Kaij ði; j ¼ 1; 2Þ and Caij ði; j ¼ 1; 2Þ are
the axle bend stiffness and axle bend damping for the stator’s shaft, respectively. Kbij ði; j ¼ 1; 2Þ
and Cbij ði; j ¼ 1; 2Þ are the axle bend stiffness and axle bend damping for the rotor’s shaft,
respectively. de and Re represent the brake rod lateral offset and the distance axle to brake rod
axis. FX ; MX ; MY and MZ are the normal contact between the rotor and the stator friction
surfaces and the associated moments, respectively. These expressions are given in Eqs. (9)–(12).
Fcouple=X ; Fcouple=Y and Fcouple=Z represent the load due to the brake rod. One has

Fcouple=X ¼ KrodRefs sin aþ Krodxs sin aþ KrodReys sin a;

Fcouple=Y ¼ KrodRefs cos a� Kroddeys cos a;

Fcouple=Z ¼ KrodRefs cos a� Kroddecs cos a; ðA:16Þ

where Krod defines the axial stiffness of the brake rod and a the sprag-slip angle due to the brake
rod angle offset with the rotor/stator interface.

Fhyd=X is the brake force due to the hydraulic pressure. It is given by

Fhyd=X ¼ Phydraulicnpiston

ðR2piston=outer � R2piston=innerÞ

ðR20 � R2i Þ
; ðA:17Þ

where npiston; Rpiston=outer; Rpiston=inner are the number of pistons, the outer and inner radius of the
piston surface in contact with the stator, respectively. R0 and Ri define the outer and inner radius
of the rotor/stator interface, respectively.
The vector Fcontact defines the linear and non-linear rotor/stator friction contact. It is

given by

Fcontactð1Þ ¼ �Fcontactð5Þ ¼ �FX ; ðA:18Þ

Fcontactð2Þ ¼ �Fcontactð6Þ ¼ �MY ; ðA:19Þ

Fcontactð3Þ ¼ �Fcontactð7Þ ¼ �MZ; ðA:20Þ

Fcontactð4Þ ¼ MX ; ðA:21Þ
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FcontactðiÞ ¼ 0 for 8pip15: ðA:22Þ

The vector F defines the hydraulic brake command. It is given by

Fð1Þ ¼ �Fhydraulic; ðA:23Þ

FcontactðiÞ ¼ 0 for 2pip15: ðA:24Þ

The vector Fcouple defines the hydraulic brake command. It is given by

Fcoupleð1Þ ¼ Fcouple=X ; ðA:25Þ

Fcoupleð2Þ ¼ Fcouple=Zde; ðA:26Þ

Fcoupleð3Þ ¼ Fcouple=Y de; ðA:27Þ

Fcoupleð4Þ ¼ �Fcouple=Y Re; ðA:28Þ

FcontactðiÞ ¼ 0 for 5pip15: ðA:29Þ

This non-linear 15-degree-of-freedom system has the form

M .xþ C ’xþ Kx ¼ Fþ FcoupleðxÞ þ FcontactðxÞ; ðA:30Þ

where .x; ’x and x are the acceleration, velocity, and displacement response 15-dimensional vectors
of the degrees of freedom, respectively.M is the mass matrix, C is the damping matrix and K is the
stiffness matrix. F is the vector force due to net brake hydraulic pressure. Fcontact contains the
linear and non-linear contact force terms at the stator and rotor interface and Fcouple define the
brake rod load, respectively. Finally, the general form of the equation of motion for the non-
linear system can be expressed in the following way:

M .xþ C ’xþ #Kx ¼ Fþ FcontactðxÞ ðA:31Þ

with

FcoupleðxÞ ¼ #Kx: ðA:32Þ

Appendix B. Brake parameters

R0 outer radius of the rotor/stator interface ð¼ 0:076 mÞ
Ri inner radius of the rotor/stator interface ð¼ 0:024 mÞ
npiston number of pistons ð¼ 6Þ
Rpiston=outer outer radius of the piston surface in contact with the stator ð¼ 0:015 mÞ
Rpiston=inner inner radius of the piston surface in contact with the stator ð¼ 0:0075 mÞ
de brake rod lateral offset ð¼ 0:01 mÞ
Re distance axle to brake rod axis ð¼ 0:064 mÞ
K1 linear coefficient of the non-linear rotor/stator contact ð¼ 4:6� 108 N=m3Þ
K2 quadratic coefficient of the non-linear rotor/stator contact ð¼ 4:8� 1011 N=m4Þ
K3 cubic coefficient of the non-linear rotor/stator contact ð¼ 9:5� 1016 N=m5Þ
ms mass of the stator ð¼ 5 kgÞ
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mr mass of the rotor ð¼ 5 kgÞ
Iyr ¼ Icr moments of inertia for the rotor ð¼ 0:35 kg m2Þ
Iys ¼ Ics moments of inertia for the stator ð¼ 0:28 kg m2Þ
Ijs j-moment of inertia for the stator ð¼ 0:35 kg m2Þ
ma equivalent mass of the stator shaft ð¼ 67:5 kgÞ
mb equivalent mass of the rotor shaft ð¼ 185 kgÞ
Ia axle moment of inertia for the stator shaft ð¼ 1:2 kg m2Þ
Ib axle moment of inertia for the rotor shaft ð¼ 0:7 kg m2Þ
Phydraulic net brake hydraulic pressure (¼ 10 bars)
Kys stator y-stiffness ð¼ 2:25� 106 N m=radÞ
Kcs stator c-stiffness ð¼ 2:25� 106 N m=radÞ
Kjs stator torsional stiffness ð¼ 2:8� 107 N m=radÞ
Cjs stator torsional damping ð¼ 15 N m s=radÞ
Kas lateral stiffness between the stator and the shaft of the stator ð¼ 3:3� 108 N m=radÞ
Krr stiffness between the rotor and the backplate of the brake ð¼ 1:2� 107 N=mÞ
Cxs lateral damping coefficient for the stator ð¼ 60 N=m sÞ
Cxr lateral damping coefficient for the rotor ð¼ 120 N=m sÞ
Cas damping between the stator and the shaft of the stator ð¼ 1200 N=m sÞ
Kbr lateral stiffness between the rotor and the shaft of the rotor ð¼ 3:3� 108 N m=radÞ
Cbr damping between the rotor and the shaft of the rotor ð¼ 1500 N=m sÞ
Kcab c-stiffness between the rotor and stator shaft ð¼ 4:5� 106 N m=radÞ
Kyab y-stiffness between the rotor and stator shaft ð¼ 4:5� 106 N m=radÞ
Kyab y-lateral stiffness between the rotor and stator shaft ð¼ 3:25� 108 N=mÞ
Kzab z-lateral stiffness between the rotor and stator shaft ð¼ 3:25� 108 N=mÞ
Ccab ¼ Cyab rotational damping between the rotor and stator shaft ð¼ 1 N m s=radÞ
Cyab ¼ Czab lateral damping between the rotor and stator shaft ð¼ 1500 N=m sÞ
Ka11 y–y stiffness and z–z stiffness of the stator shaft ð¼ 1:8� 109 N=mÞ
Ka12 y–y stiffness and z–c stiffness of the stator shaft ð¼ 2:1� 108 N=radÞ
Ka22 y–y stiffness and c–c stiffness of the stator shaft ð¼ 4:3� 107 N m=radÞ
Kb11 y–y stiffness and z–z stiffness of the rotor shaft ð¼ 8:9� 107 N=mÞ
Kb12 y–y stiffness and z–c stiffness of the rotor shaft ð¼ 2:5� 107 N=radÞ
Kb22 y–y stiffness and c–c stiffness of the rotor shaft ð¼ 9:6� 106 N m=radÞ
Ca11 y–y damping and z–z damping of the stator shaft ð¼ 6900 N=m sÞ
Ca22 y–y damping and c–c damping of the stator shaft ð¼ 2 N m s=radÞ
Cb11 y–y damping and z–z damping of the rotor shaft ð¼ 6900 N=m sÞ
Cb22 y–y damping and c–c damping of the rotor shaft ð¼ 2 N m s=radÞ
a sprag-slip angle ð¼ 0:005 radÞ

Appendix C. Analytical expression of the coefficients ak;ijl for the second and third orders

One determines the analytical expressions of h as a power series in ðvc; #mÞ of degree 3, for a
n-dimensional differential equations with quadratic and cubic non-linear terms (n ¼ 30 in this study).
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The developed expression of Eq. (46) has the form

’vc ¼ Jcvc þG2ðvÞ þG3ðvÞ ¼ Jcvc þ G
ij
ð2Þv#vþ Gik

ð3Þv#v#v;

’vs ¼ Jsvs þH2ðvÞ þH3ðvÞ ¼ Jsvs þ H
ij
ð2Þv#vþ Hik

ð3Þv#v#v;

’#m ¼ 0 ðC:1Þ

with v ¼ fvTc vTs #mgT: G
ij
ð2Þ; Gik

ð3Þ; H
ij
ð2Þ and Hik

ð3Þ are quadratic and cubic non-linear terms of v;
respectively (with i ¼ 1; 2; 1plpn � 2; 1pjpðn þ 1Þ2 and 1pkpðn þ 1Þ3). # defines the
Kronecker product. These notations will be used to define expressions for the coefficients of the
polynomial approximations vs ¼ hðvc; #mÞ as a power series in ðvc; #mÞ:
Firstly, one can express the stable variables by using second order polynomial approximations.

One recalls that the polynomial approximations contain no constant and linear terms. So, the
expressions of the stable variables vs as a power series in ðvc; #mÞ of degree 2 can be written as

vs ¼ hð1Þðvc; #mÞ ¼ hð1Þðvc1; vc2; #mÞ ¼
X2

p¼iþjþl¼2

Xp

j¼0

Xp

l¼0

aijlv
i
c1v

j
c2 #m

l

¼ a200v2c1 þ a110vc1vc2 þ a020v2c2 þ a101vc1 #mþ a011vc2 #mþ a002 #m2; ðC:2Þ

where aijl are unknown vectors of coefficients. The analytical expression of aijl can be determined
by equating (47), and by considering only second-order terms. The simplified expression of
Eq. (47) has the form

Dvc; #mðh
ð1Þðvc; #mÞÞJcvc � Jsh

ð1Þðvc; #mÞ �H2ðvc; #mÞ ¼ 0: ðC:3Þ

One notes that this system is the exact system for second-order polynomial approximations. It is
possible to obtain an analytical expression of the coefficients ak;ijl by solving Eq. (C.3). One
obtains

ak;200 ¼
Hk;1

ð2Þ

ð2Jc1 � JskÞ
;

ak;110 ¼
Hk;2

ð2Þ þ Hk;nþ2
ð2Þ

ðJc1 þ Jc2 � JskÞ
;

ak;020 ¼
Hk;nþ3

ð2Þ

ð2Jc2 � JskÞ
;

ak;101 ¼
Hk;nþ1

ð2Þ þ H
k;nðnþ1Þþ1
ð2Þ

ðJc1 � JskÞ
;

ak;011 ¼
H

k;2ðnþ1Þ
ð2Þ þ H

k;nðnþ1Þþ2
ð2Þ

ðJc2 � JskÞ
;

ak;002 ¼
�H

k;ðnþ1Þ2

ð2Þ

Jsk

;
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where k defines the kth degree of freedom of stable variables ð1pkpn � 2Þ: Jc1 and Jc2 are the
first and second terms of the diagonal matrix Jc as defined in Eq. (C.1), respectively. Jsk is the kth
term of the diagonal matrix Js: Hk;i

ð2Þ defined the term of the kth line and ith column of the matrix
defined by H2:
If the second order approximation is not sufficient, it is necessary to define the third-polynomial

approximation in order to describe correctly the dynamics of the system. Then, the expressions of
the stable variables vs; as a power series in ðvc; #mÞ of degree, can be defined by adding third order
polynomial terms in the first second order polynomial approximation defined in Eq. (C.2). These
expressions have the form

vs ¼
X3

p¼iþjþl¼2

Xp

j¼0

Xp

l¼0

aijlv
i
c1v

j
c2 #m

l ¼ hð1Þðvc; #mÞ þ hð2Þðvc; #mÞ

¼ hð1Þðvc; #mÞ þ a300v3c1 þ a210v
2
c1vc2 þ a120vc1v

2
c2 þ a030v

3
c2

þ a201v
2
c1 #mþ a111vc1vc2 #mþ a021v2c2 #mþ a102vc1 #m2 þ a012vc2 #m2 þ a003 #m3; ðC:4Þ

where aijl are unknown vectors of coefficients (for i þ j þ l ¼ 3). hð1Þðvc; #mÞ defines the first
approximation using second order polynomial approximation.
It is possible to obtain an analytical expression of the coefficients ak;ijl by solving the simplified

expression of Eq. (47)

Dvc; #mðh
ð1Þðvc; #mÞÞ½G2ðvc; #mÞ� þ Dvc

ðhð2Þðvc; #mÞÞJcvc

� Jsvs �H2ðfvc; 0; #mg#fvc; h
ð1Þðvc; #mÞ; #mg � f0; hð1Þðvc; #mÞ; 0g#fvc; 0; #mgÞ �H3ðvc; #mÞ ¼ 0: ðC:5Þ

One obtains

ak;300 ¼
�2ak;200G

1;1
ð2Þ � ak;110G

2;1
ð2Þ þ Hk;1

ð3Þ þ
Pn�2

i¼1 ai;200ðH
k;2þi
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ1
ð2Þ Þ

3Jc1 � Jsk

;

ak;210 ¼

�2ak;200ðG
1;2
ð2Þ þ G1;nþ2ð2Þ Þ � ak;110ðG

1;1
ð2Þ þ G2;2ð2Þ þ G2;nþ2ð2Þ Þ � 2ak;020G

2;1
ð2Þ þ Hk;2

ð3Þ þ Hk;nþ2
ð3Þ

�
þH

k;ðnþ1Þ2þ1
ð3Þ þ

Pn�2
i¼1 ai;110ðH

k;iþ2
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ1
ð2Þ Þ þ

Pn�2
i¼1 ai;200ðH

k;nþiþ3
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ2
ð2Þ Þ

�
2Jc1 þ Jc2 � Jsk

;

ak;120 ¼

�2ak;020ðG
2;2
ð2Þ þ G2;nþ2ð2Þ Þ � ak;110ðG

2;nþ3
ð2Þ þ G1;2ð2Þ þ G1;nþ2ð2Þ Þ � 2ak;200G

1;nþ3
ð2Þ þ Hk;nþ3

ð3Þ þ H
k;ðnþ1Þ2þ2
ð3Þ

�
þH

k;ðnþ1Þ2þnþ2
ð3Þ þ

Pn�2
i¼1 ai;020ðH

k;iþ2
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ1
ð2Þ Þ þ

Pn�2
i¼1 ai;110ðH

k;nþiþ2
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ2
ð2Þ Þ

�
Jc1 þ 2Jc2 � Jsk

;

ak;030 ¼
�2ak;020G

2;nþ3
ð2Þ � ak;110G

1;nþ3
ð2Þ þ H

k;ðnþ1Þ2þnþ2
ð3Þ þ

Pn�2
i¼1 ai;020ðH

k;nþiþ3
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ2
ð2Þ Þ

3Jc2 � Jsk

;
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ak;201 ¼

�ak;101G
1;1
ð2Þ � ak;011G

2;1
ð2Þ � 2ak;200ðG

1;nþ1
ð2Þ þ G

1;nðnþ1Þþ1
ð2Þ Þ � ak;110ðG

2;nþ1
ð2Þ þ G

2;nðnþ1Þþ1
ð2Þ Þ

�
þH

k;nðnþ1Þþ1
ð3Þ þ Hk;nþ1

ð3Þ þ H
k;nðnþ1Þ2þ1
ð3Þ þ

Pn�2
i¼1 ai;101ðH

k;iþ1
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ1
ð2Þ Þ

þ
Pn�2

i¼1 ai;200ðH
k;ðnþ1Þð2þiÞ
ð2Þ þ H

k;nðnþ1Þþiþ2
ð2Þ Þ

�
2Jc1 � Jsk

;

ak;021 ¼

�ak;101G
1;nþ3
ð2Þ � ak;011G

2;nþ3
ð2Þ � 2ak;020ðG

2;2ðnþ1Þ
ð2Þ þ G

2;nðnþ1Þþ2
ð2Þ Þ � ak;110ðG

1;2ðnþ1Þ
ð2Þ þ G

1;nðnþ1Þþ2
ð2Þ Þ

�
þH

k;ðnþ1Þ3�2ð2nþ1Þ
ð3Þ þ

Pn�2
i¼1 ai;020ðH

k;ðnþ1Þð2þiÞ
ð2Þ þ H

k;nðnþ1Þþiþ2
ð2Þ Þ

þ
Pn�2

i¼1 ai;011ðH
k;2n�1þi
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ2
ð2Þ Þ þ H

k;ðnþ1Þ2þ2ðnþ1Þ
ð3Þ þ H

k;2ðnþ1Þ2�nþ1
ð3Þ

�
2Jc2 � Jsk

;

ak;102 ¼

�2ak;200G
1;ðnþ1Þ2

ð2Þ � ak;110G
2;ðnþ1Þ2

ð2Þ � ak;101ðG
1;nþ1
ð2Þ þ G

1;nðnþ1Þþ1
ð2Þ Þ � ak;011ðG

2;nþ1
ð2Þ þ G

2;ðnþ1Þnþ1
ð2Þ Þ

�
þH

k;ðnþ1Þ3�n
ð3Þ þ

Pn�2
i¼1 ai;101ðH

k;ðnþ1Þð2þiÞ
ð2Þ þ H

k;ðnþ1Þnþiþ2
ð2Þ Þ þ

Pn�2
i¼1 ai;002ðH

k;iþ2
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ1
ð2Þ Þ

þH
k;ðnþ1Þ2

ð3Þ þ H
k;nðnþ1Þ2þnþ1
ð3Þ

�
Jc1 � Jsk

;

ak;012 ¼

�ak;110G
1;ðnþ1Þ2

ð2Þ � 2ak;020G
2;ðnþ1Þ2

ð2Þ � ak;101ðG
1;2ðnþ1Þ
ð2Þ þ G

1;nðnþ1Þþ2
ð2Þ Þ � ak;011ðG

2;2ðnþ1Þ
ð2Þ þ G

2;nðnþ1Þþ2
ð2Þ Þ

�
þH

k;2ðnþ1Þ2

ð3Þ þ
Pn�2

i¼1 ai;011ðH
k;ðnþ1Þð2þiÞ
ð2Þ þ H

k;nðnþ1Þþiþ2
ð2Þ Þ þ

Pn�2
i¼1 ai;002ðH

k;2n�1þi
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ2
ð2Þ Þ

þH
k;nðnþ1Þ2þ2ðnþ1Þ
ð3Þ þ H

k;ðnþ1Þ3�nþ1
ð3Þ

�
Jc2 � Jsk

;

ak;111 ¼

�ak;101ðG
1;2
ð2Þ þ G1;nþ2ð2Þ Þ � ak;110ðG

1;nþ1
ð2Þ þ G

1;nðnþ1Þþ1
ð2Þ þ G

1;2ðnþ1Þ
ð2Þ þ G

1;nðnþ1Þþ2
ð2Þ Þ

�
�2ak;200ðG

1;2ðnþ1Þ
ð2Þ þ G

1;nðnþ1Þþ2
ð2Þ Þ þ H

k;nðnþ1Þþ2
ð3Þ � 2ak;020ðG

2;nþ1
ð2Þ þ G

2;nðnþ1Þþ1
ð2Þ Þ � ak;011ðG

2;2
ð2Þ þ G2;nþ2ð2Þ Þ

þH
k;2ðnþ1Þ
ð3Þ þ H

k;2ðnþ1Þ2�n
ð3Þ þ H

k;ðnþ1Þ2þnþ1
ð3Þ þ H

k;nðnþ1Þ2þn�2
ð3Þ þ H

k;nðnþ1Þ2þnþ2
ð3Þ

þ
Pn�2

i¼1 ai;110ðH
k;ðnþ1Þðiþ2Þ
ð2Þ þ H

k;nðnþ1Þþiþ2
ð2Þ Þ þ

Pn�2
i¼1 ai;101ðH

k;2n�1þi
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ2
ð2Þ Þ

þ
Pn�2

i¼1 ai;011ðH
k;iþ2
ð2Þ þ H

k;ðnþ1Þðiþ1Þþ1
ð2Þ Þ

�
Jc1 þ Jc2 � Jsk

;

ak;003 ¼
ak;102G

1;ðnþ1Þ2

ð2Þ þ ak;012G
2;ðnþ1Þ2

ð2Þ � H
k;ðnþ1Þ3

ð3Þ �
Pn�2

i¼1 ai;002ðH
k;ðnþ1Þð2þiÞ
ð2Þ þ H

k;nðnþ1Þþiþ2
ð2Þ Þ

Jsk

;

where k defines the kth degree of freedom of stable variables. Jc1 and Jc2 are the first and second
terms of the diagonal matrix Jc: Jsk is the kth term of the diagonal matrix Js: Hki

ð2Þ and Hki
ð3Þ defined

the terms of the kth line and ith column of the matrix defined by H2 and H3; respectively. Gki
ð2Þ

defined the term of the kth line and ith column of the matrix defined by G2:
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Appendix D. Definition of the terms for the AFT method

The k-incremental vector of Fourier coefficients are arranged as follows:

Vk ¼ ffVk
0g
T;y; fVk

2j�1g
T; fVk

2jg
T;y; fVk

2HgTgT:

The Jacobian matrices A and J are given by

A ¼

O

Að1Þ

&

AðjÞ

&

AðHÞ

2
6666666664

3
7777777775

and

J ¼ ðG#IÞ

&

@f NL
1

@vc1

@f NL
1

@vc2

@f NL
2

@vc1

@f NL
2

@vc2

&

2
666666664

3
777777775
ðG�1#IÞ;

where

Að jÞ ¼
O joI

�joI O

" #
ðfor j ¼ 1;y;HÞ; I ¼

1 0

0 1

" #
and O ¼

0 0

0 0

" #
:

By considering the expressions

f NL
a ðx; yÞ ¼

P
ði; jÞASM

na:ijv
i
c1v

j
c2P

ði; jÞASN
da:ijv

i
c1v

j
c2

ðfor a ¼ 1; 2Þ

with SM ¼ fði; jÞ j 0pipM; 0pjpMg and SN ¼ fði; jÞ j 0pipN; 0pjpNg; the expressions
@f NL

a =@vc1 and @f NL
a =@vc2 (for a ¼ 1; 2) are given by

@f NL
a

@vc1
¼

ið
P

ði; jÞASM
na:ijv

ði�1Þ
c1 v

j
c2 �

P
ði; jÞASN

da:ijv
i
c1v

j
c2 �

P
ði; jÞASM

na:ijv
i
c1v

j
c2 �

P
ði; jÞASN

da:ijv
ði�1Þ
c1 v

j
c2Þ

ð
P

ði; jÞASN
da:ijv

i
c1v

j
c2Þ
2

and

@f NL
a

@vc2
¼

jð
P

ði; jÞASM
na:ijv

i
c1v

ð j�1Þ
c2 �

P
ði; jÞASN

da:ijv
i
c1v

j
c2 �

P
ði; jÞASM

na:ijv
i
c1v

j
c2 �

P
ði; jÞASN

da:ijv
i
c1v

ð j�1Þ
c2 Þ

ð
P

ði; jÞASN
da:ijv

i
c1v

j
c2Þ
2

:
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The DFT from time to frequency domain is given by

Gij ¼

1

2H þ 1
for i ¼ 1;

2

2H þ 1
cos

ð j � 1Þip
2H þ 1

� �
for i ¼ 2; 4;y; 2H

2

2H þ 1
sin

ðj � 1Þði � 1Þp
2H þ 1

� �
for i ¼ 1; 3;y; 2H þ 1

8>>>>>>><
>>>>>>>:

for j ¼ 1; 2;y; 2H þ 1;

and from frequency time domain:

G�1
ij ¼

1 for j ¼ 1;

cos
ði � 1Þjp
2H þ 1

� �
for j ¼ 2; 4;y; 2H

sin
ði � 1Þðj � 1Þp
2H þ 1

� �
for j ¼ 1; 3;y; 2H þ 1:

8>>>>><
>>>>>:

for i ¼ 1; 2;y; 2H þ 1;

Appendix E. Nomenclature

x scalar
x vector
’x vector of velocity
.x vector of acceleration
x0 equilibrium point

%x small perturbation
C damping matrix
K stiffness matrix
M mass matrix
F vector force due to the net hydraulic pressure
Fcontact vector of linear and non-linear terms due to the rotor/stator contact
Fcouple vector of the brake rod load
FL

contact vector of linear terms due to the rotor/stator contact

FNL
contact vector of non-linear terms due to the rotor/stator contact
aijl vector of the coefficients of the centre manifold
vc vector of centre variables
vs vector of stable variables
h vector of the polynomial approximation of stable variables in centre variables
Js Jacobian matrix of stable variables
Jc Jacobian matrix of centre variables
G vector function of quadratic and cubic terms for the centre variables
H vector function of quadratic and cubic terms for the stable variables
nij coefficients of the denominator of the rational approximants
dij coefficients of the numerator of the rational approximants
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Vi vector of Fourier coefficients
xs lateral displacement of the stator
xr lateral displacement of the rotor
ys rotation of the stator
yr rotation of the rotor
cs rotation of the stator
cr rotation of the rotor
js the axle deflections and rotations of the stator and rotor shaft
ya axle deflection of the stator shaft
za axle deflection of the stator shaft
ya axle rotation of the stator shaft
ca axle rotation of the stator shaft
yb axle deflection of the rotor shaft
zb axle deflection of the rotor shaft
yb axle rotation of the rotor shaft
cb axle rotation of the rotor shaft
a sprag-slip angle
m brake friction coefficient
m0 brake friction coefficient at the Hopf bifurcation point
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