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1 ABSTRACT 
A methodology is presented which extends the domain of validity of non-linear systems 
reduced by using the center manifold approach. This methodology applies the rational 
fractional approximants in order to enhance the convergence of the series expansions of the 
center manifold theory. Effectively, a sequence of rational fractional approximants may 
converge even if the associated series does not; one can than extended our domain of 
convergence. In this study, the domain of validity of the solution is successfully enhanced by 
employing rational fractional approximants.  
In this paper the basic ideas are outlined, an example is presented and some natural extensions 
and possible applications of this methodology are briefly described in the conclusions.   
 

2 INTRODUCTION 
In recent year non-linear vibration phenomena have been receiving increasing attention. Non-
linear techniques have been developed in order to reduce the n -dimensional original system 
to m -dimensional system (with m n ). The most common way to study the behaviour of a 
non-linear system is to introduce a reduced system that can capture the main features of the 
original system. One of the most popular method is the center manifold  method which has 
been employed to solve a large variety of bifurcation problems (Nayfeh and Mook [1], 
Nayfeh and Balachandran [2], Guckenheimer and Holmes [3], Marsden and McCracken [4], 
Jézéquel and Lamarque [5], Hsu [6-7], Yu [8], Thompson and Stewart [9]). The center 
manifold approach is a method used in order to reduce the dimension of a system of ordinary 
differential equation. Generally, this method uses power series expansions in the 
neighbourhood of an equilibrium point. It can be noted, that the formal center manifold 
approximation is not difficult to determine. But, obtaining the coefficients associated which 
each term of the stable variables may pose especially serious difficulties. The only use of the 
center manifold approach is not very convenient to apply, requiring a great deal of labour, 
especially for the calculation of the coefficients defined previously.  
The fundamental goal of this study is to construct an approximation to the solution of the 
center manifold approach. This goal will be achieved by implementing the rational fractional 
approximants after the center manifold theory. Padé approximants and rational fractional 
approximants (Baker and Graves-Morris [10], Hughes Jones [11], Brezinski [12]) have 
received very many applications in various branches of science because of their quite 
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interesting approximation properties and, in particular, their possible convergence outside the 
domain of convergence of the series they approximate. One will consider this last property of 
the rational fractional approximants in this paper in order to augment the domain of validity of 
the series by using the center manifold approach. Moreover,  Padé approximants and rational 
fractional approximants permit to approximate functions given by a formal series expansion.  
This new approach is also useful for calculating periodic solutions of non-linear systems. The 
advantages of the rational fractional approximants is that the results are obtained even if the 
power series expansions of the center manifold in the neighbourhood of an equilibrium point 
is not sufficient.  
In the following section, a general theory is presented:  one will consider the general order 
case with n  center variables and the n -multivariables approximants associated. One will 
show the general technique to compute and  to obtain the coefficients of the center manifold 
and the multivariables approximants. Firstly, one describes the center manifold theory and 
interesting features of the combinaison between the center manifold approach, and the rational 
fractional approximant is introduced. Following the general theory, this non-linear technique 
will be tested in the case of a system with two degree-of-freedom possessing quadratic and 
cubic non-linearities. Comparison with the results obtained by considering the complete non-
linear system is made and the advantages of this present non-linear technique, by considering 
the use of the rational approximant after the center manifold approach, is given. One will 
show that the interest of these rational approximants is that they need less terms that the 
associated Taylor series in order to obtain an accurate approximation of the behaviour of the 
complete non-linear system. In any case, the rational approximation has a greater range of 
validity that the polynomial one. One will demonstrate that the rational approximants permit 
to obtain an approximation of the solution even if the associated center manifold 
approximation diverge or is not sufficient in order to approximate the non-linear solution 
 

3 NON-LINEAR ANALYSIS 
One begins by presenting the methodology and more particularly the definition of the center 
manifold approach and the rational fractional approximants. 
 

3.1 THE CENTER MANIFOLD APPROACH 
 
In this section, one briefly describes the reduction of a non-linear system to a lower 
dimensional form problem by the consideration of the center manifold theory. This method is 
used in the neighbourhood of a bifurcation point. So, on considers an autonomous m -
dimensional ( 2 m   ) dynamical system defined as follow: 

 ,x F x       (1) 

where   is a control parameter and F  is a  polynomial non-linear function. One assumes that 

this system has an equilibrium point  0x  such that  , 0F x 0 . 

One projects the equations on the basis of its eigenvectors and one considers the augmented 
system as 

       ˆ ˆ ˆ ˆ, , ; , ,

ˆ 0

   



   




c c c c c s s s s s c sv J .v F v v v J .v F v v 
   (2) 

where ncv   and m nsv  . By considering the most physically interesting case of the 

stable equilibrium loosing stability, the unstable manifold is empty and it may assume that sv  

contains the variables associated to the eigenvalues   with negative real part. cF  and sF  are 
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polynomial non-linear functions. The center manifold theory allows the expression of the 
variables sv  as a function of cv  such that  ˆ,s cv h v . Due to the fact that the expression 

of h  cannot be solved exactly in most cases, one approximates  ˆ,s cv h v  as a power 

series in  ˆ,cv  of degree q  (Carr [13]), without constant and linear terms ( 2q  ) 

  1 2
2 0 0

ˆ ˆ, . .
q p p

i j l
c c

p i j l j l

v v 
     

   s c ijlv h v a .     (3) 

where ijla  are vectors of constant coefficients. This  m n -dimensional function h  is 

substituted into the second equation of (2) and then these results are combined with the first 
equation of (2). By considering the tangency conditions at the fixed point ( , ,0)0 0  to the 
center eigenspace, one obtains 

           

 

ˆ, ˆ ˆ ˆ ˆ ˆ ˆ, . , , , . , , , ,

1 2 0
ˆi

D

D h i n

      



   

 

      

c

c

v c c c c c c s c s c c

v

h v J .v F v h v J h v F v h v

h
h 0 0 0

 (4) 

where  1ih i m n    are the scalar components of h . 

To solve (4), one equates the coefficients of the different terms in the polynomials on both 
sides; one obtains a system of algebraic equations for the coefficients ijla  of the polynomials. 

Solving these equations, one obtains an approximation to the center manifold  ˆ,s cv h v . 

After h  is identified, the reduced order structural dynamic model, which is only a function of 

cv , is obtained: 

    ˆ ˆ ˆ, , ,

ˆ 0

  



  




c c c c c cv J .v F v h v


   (5) 

If n  of the m eigenvalues  have zero real parts, then one reduces the number of equations of 
the original system from m  to n  in order to obtain a simplified system. 
 

3.2 RATIONAL FRACTIONAL APPROXIMANTS 
The center manifold equations can have complicated non-linear terms, which can be 
simplified using further non-linear methods. The interest of the rational fractional 
approximants is that they need less terms than the associated Taylor series in order to obtain  
an accurate approximation of the limit cycle amplitudes (Baker and Grave-Morris [10]): they 
allow the computation of an accurate approximation of the non-linear function  f x  even at 

values of f  for which the Taylor series of  f x  diverge. One will consider this last property 

of the rational fractional approximants in this paper in order to augment the domain of validity 
of the series previously obtained by using the center manifold approach. 
 Moreover, the objective is to approximate the  non-linear terms by using rational polynomial 
approximants (Baker and Grave-Morris [10], Hughes Jones [11], Brezinski [12]). The use of 
the rational approximants allows to simplify the non-linear system and to obtain limit cycles 
more easily and rapidly.  
Let  1 2, ,..., nf x x x  be a function of n-variables defined by a formal power series expansion 

  1 2

1 2

1 2

1 2 ...
0 0

, ,..., ... ... n

n

n

ii i
n i i i

i i i S

f x x x c x x x c
  

  

    i
i

i

x   (6) 

where  
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 1 2 nx ,x ,...,xx ;   1 2 ni ,i ,...,ii ; 1 2
1 2

nii i
nx x ...xix   (7) 

 a nS i  a non negative integer, a I   i     (8) 

 1 2nI , ,...,n      (9) 

In this paper, on will consider symmetric-off-diagonal (SOD) rational approximants (Baker 
and Graves-Morris [10], Hughes [11]) to    1 2, ,..., nf f x x xx  of the form  

   / M

N

S

f

S

M N












a
a

a

b
b

b

x

x
x

     (10) 

where  

 0 ,M j nS M j I   γ   and  0 ,N j nS N j I   γ   (11) 

There are    1 1
n n

i i
i I i I

M N
 

     unknown coefficients in equation (10). By considering 

this equation, one notes that the coefficients a  and b will be determined at most up to a 

common multiplicative factor. So, one can assume that 0 0 0 0 1, ,...,   . By multiplying the 

difference between  f x  and    /
f

M N x  by the denominator of    /
f

M N x , one obtains  

N MS S S S

c e 
   

   
     
  

   b i a j
b i a j

b i a j

x x x x      (12) 

where 
0 M Ne S S j j       (13) 

0e A j j      (14) 

2;

0
A

e P


 
p

j
j

p      (15) 

with  

1;

P

A A



 p

p
        (16) 

 1; ' ' ' ; ,i i i i j j

i I

A n m n p p j i 


      

p

p α    (17) 

 2; ' ' 1; ,i i i j j

i I

A m n p p j i 


      

p

p α    (18) 

 ; max  has at least two elements
n

M N j i
i I

P S S I j p p


            
    

pp p   (19) 

with  ' min ,i i im m n  and  ' max ,i i in m n . 

Next, the equations obtained by matching coefficients in (12) are (Hughes Jones [11]) 

N

M

S

c S 


  ψ a-ψ a

ψ

a     (20) 

 0 \

N

N M

S

c S S A


  ψ a-ψ

ψ

a     (21) 
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2;

0

NA S

c P
 

  
p

ψ a-ψ

a ψ

p     (22) 

where 0c α  if 0i   for at least one ni I . Then, after normalising 0 0 0, ,..., ,..., 0 0,  and 0  

to unity, the computation of the coefficients ψ  can be achieved by solving the linear 

equations which arise from (21) and (22). Next, the linear equations given by (20) enable the 
coefficients a  to be determined, with the coefficients ψ  found previously. 

 
4 EXAMPLE 

In this section, one will illustrate the extension of the domain of validity by using the rational 
fractional approximants: this non-linear methodology will be tested in the case of a system 
with two degree-of-freedom possessing quadratic and cubic non-linearities. This model 
illustrates a brake system. One will present more particularly the extension of the domain of 
validity by using the rational fractional approximants after the center manifold approach. On 
will show that a sequence of rational fractional approximants may converge even if the 
associated series, defined by using the center manifold approach, does not. 
This example deals with the study of instability phenomena in non-linear model with a 
constant brake friction. It outlines stability analysis and one develops the non-linear strategy, 
based on the center manifold and the rational approximants in order to study the non-linear 
dynamical behaviour of a system in the neighbourhood of a critical steady-state equilibrium 
point. 

 
 

Figure 1: Non-linear system 

 
4.1 NON-LINEAR  SYSTEM 

 
The non-linear system to be considered is shown in Figure 1. It illustrates braking system 
(Sinou [14]). The instability observed by considering this system is more particularly 
grabbing vibration: it was observed on brake control and front axle assembly. According to 
experimental investigations, the frequency spectrum is in the 50–100 Hz range. For this study, 
one assumes that the variation of the brake friction coefficient can be negligible, although this 
is not always the case for modeling brake systems (Ibrahim [16-17], Oden and Martins [18]). 
As a result, one considers the sprag-slip theory (Spurr [15]) based on dynamic coupling due to 
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buttressing with a constant brake friction coefficient. This vibration results from coupling 
between the torsional mode of the front axle  22 m,k  and the normal mode of the brake 

control  11 m,k . In order to simulate braking system placed crosswise due to overhanging 
caused by static force effect, one considers the moving belt slopes with an angle  . This slope 
couples the normal and tangential degree-of-freedom induced only by the brake friction 
coefficient. Therefore, one considers the non-linear behaviour dynamic of the brake command 
of the system  11 m,k , and the non-linear behaviour dynamic of the front axle assembly and 

the suspension  22 m,k  are concerned, respectively. One expresses this non-linear stiffness as 
a quadratic and cubic polynomial in the relative displacement: 

2 2
1 11 12 13 2 21 22 23k k . k . k k . k .k k            (23) 

where   is the relative displacement between the normal displacement in the y-direction of 
the mass 1m  and the mass 2m  (one has x X   ), and   the translational displacement 

defined by the frictional x-direction of the mass 2m  (one has Y  ). 
One assumes that the tangential force T  is generated by the brake friction coefficient  , 
considering the Coulomb’s friction law N.T  . The three equations of motion can be 
expressed as 

       

       

2 3
1 1 11 12 13

2 3
2 2 21 22 23

2 3
2 1 11 12 13

sin cos

cos sin

brakem X c X x k X x k X x k X x F

m Y c Y k Y k Y k Y N T

m x c x X k x X k x X k x X N T

 

 

          

       


         

  

 

 

  (24) 

Using the transformations tanx Y   and  TYXx , and considering the Coulomb’s 
friction law N.T  , the non-linear 2-degrees-of-freedom system has the form  

  . .         NL (2) (3)M.x C.x K.x F F x F f x x f x x x    (25) 

where x , x  and x  are the acceleration, velocity, and displacement response 2-dimensional 
vectors of the degrees-of-freedom, respectively.   defines the Kronecker product (Stewart 
[19]) . M  is the mass matrix, C  is the damping matrix and K  is the stiffness matrix. F  is the 

vector force due to brake command and NLF  contains moreover the quadratic (2)f  and cubic 

(3)f  non-linear  terms. These expressions are given in Annexe A. 

 
4.2 HOPF BIFURCATION POINT 

 
The first step is the static problem, the determination  of the Hopf bifurcation point and the 
stability analysis associated. The equilibrium point 0x  is obtained by solving the non-linear 

static equations for a given net brake hydraulic pressure: 
 0NL0 xFFxK .      (26) 

The stability is investigated by calculating the Jacobian of the system at the equilibrium 
points. A representation of the evolution of the eigenvalues in the complex plane against 
brake friction coefficient is given in  Figure 2. As long as the real part of all the eigenvalues 
remains negative, the system is stable. When at least one of the eigenvalues has a positive real 
part, the dynamical system is unstable. The imaginary part of this eigenvalue represents the 
frequency of the unstable mode. The Hopf bifurcation point occurs at 0 0, 28  .  The 

frequency 0  of the unstable mode, obtained for 0   is near 50 Hz.  
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Figure 2: Determination of the Hopf bifurcation point in the complex plane 

 
 

4.3 NON-LINEAR ANALYSIS 
 
The complete non-linear expressions are expressed at the Hopf bifurcation point and by 
considering the equilibrium point 0x  for small perturbations x ,  in order to conduct a complex 

non-linear analysis. The complete non-linear equations can be written as follow:  
    NLM.x C.x K.x F x       (27) 

where x , x  and x  are the acceleration, velocity, and displacement response of the degrees-
of-freedom, respectively. M  is the mass matrix, C  is the damping matrix and K  is the 
stiffness matrix.  NLF x  contains the non-linear terms near the Hopf bifurcation point for a 

given equilibrium point. 
The evolutions of the displacements, velocities and the limit cycle amplitudes associated can 
be calculated by using classical Runge-Kutta numerical methods. As illustrated in Figure 3 
and in Figure 4, one may obtain the displacement of X( t )  and X( t ) for example. One 
observes that the displacement and velocity growth until one obtain the periodic oscillations. 

Figure 5 and Figure 6 show the evolution of the limit cycle amplitudes  X( t ),X ( t ) and 

 Y( t ),Y( t ) , respectively. By integrating the full system  (Runge-Kutta 4), it is possible to 

obtain the limit cycle amplitudes of the non-linear system, but this procedure is rather 
expensive and consumes considerable resources both in terms of the computation time and in 
terms of the data storage requirements. So, the understanding of the behaviour of this non-
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linear system requires a simplification and a reduction of the equations. This is why the center 
manifold approach and the rational approximants will be used in order to reduce and in order 
to simplify this non-linear system. 
In order to use the non-linear methods (the center manifold approach and the rational 

approximants), one writes the non-linear equation in state variables  T
y x x  

4 4 4 4 4

1 1 1 1 1

. . . . .i j i j k
i j i j k

y y y y y
    

   ij ijk
(2) (3)y A.y p p    (28) 

where iy  defines the thi -term  of y . A , ij
(2)p  and ijk

(3)p  are the 30 30  matrix, quadratic and 

cubic non-linear terms, respectively. One has  

 
    

1 1

0 I
A

M .K M .C
, 

 
 
 

-1(2)
(2)

0
p =

M .q
and 3

3

 
 
 

-1( )
( )

0
p =

M .q
. 

 

 

Figure 3: (A) Evolution of the displacement X(t) by using Runge-Kutta 4 ( 01 01.  )   

(B) Zoom 

 

 
 

Figure 4: (A) Evolution of the velocity X( t )   by using Runge-Kutta 4 ( 01 01.  ) 

(B) Zoom 
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Figure 5: Evolution of the limit cycle amplitude  X ,X  by using Runge-Kutta 4 

( 01 01.  ) 

 

Figure 6: Evolution of the limit cycle amplitude  Y ,Y  by using Runge-Kutta 4 ( 01 01.  ) 

 
4.4 EXTENSION OF THE DOMAIN OF VALIDITY 

 
Next the first objective is to reduce the non-linear system of 4-degree-of-freedom by using the 
center manifold approach near the Hopf bifurcation point. 
At the Hopf bifurcation point, this previous system can be rewritten as illustrated in equation 

(2). In this example, the center variables are two ( 2cv   and  1 2
T

c cv vcv )  and the 

stable variables are two ( 2sv   and  1 2
T

s sv vsv ), as illustrated in Figure 2. As 

explained previously, using existence theorem of the center manifold theory (Carr [13]), there 
exists an center manifold for the system (28) such that the dynamics of (28), for a given 
control parameter ̂ , is determined by  

 ˆ, ,

ˆ 0





 




c c c c c sv J .v F v v
     (29) 

with sv  is approximated as indicated in equations (3) and (4). cF  defines the quadratic and 

cubic non-linear terms of equation (28). This non-linear system can be rewritten as follow 
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   
3

1 2 1 2
1 0

, . .
q p

i p i
c c c c

p i

v v v v 

 

  c c i,p-iv f v f c      (30) 

where q  defines the degree of the power series h  in equation (3).The right side of this 
equation is  a function of 2-variables defined by a formal power series expansion. In this case, 
on may consider symmetric-off-diagonal (SOD) rational approximants (Baker and Graves-

Morris [10], Hughes Jones and Makinson [20]) to  1 2,c cf v v  of the form  

   
1 2

( , )
1 2

1 2
( , )

.

/ ,
.

M

N

i j
ij c c

i j S
c c i jf

ij c c
i j S

v v

M N v v
v v












    (31) 

where   , 0 ,0MS i j i M j M      and   , 0 ,0NS i j i N j N     . There are 

   2 2
1 1M N    unknown coefficients. As explained previously, 00d  can be normalised to 

unity and the other coefficients ij  and ij  can be determined; equations (20), (21) and (22) 

restricted to two variables becomes. 

00 1d            (32) 

;
0 0

0 ,0
a b

ij a i b j ab
i j

c a m b m  
 

         (33) 

;
0 0

0 0 ,
a n

ij a i b j
i j

c a m m b m n a  
 

          (34) 

;
0 0

0 ,0
n b

ij a i b j
i j

c m a m n b b m  
 

          (35) 

 ; 1 1 ;
0 0

0 1
n

ij i m n j ij m n i j
i j

c c n


              
 

       (36) 

Next, the previous system can be written as follow  

   
1. 1 2 2. 1 2

0 0 0 0
1 2

1. 1 2 2. 1 2
0 0 0 0

T

. . . .

( ) / ,
. . . .

m m m m
i j i j

ij c c ij c c
i j i j

c c n n n nf
i j i j

ij c c ij c c
i j i j

v v v v

M N v v
v v v v

 

 

   

   

 
      
 
  

 

 
NL

c cv f v   (37) 

where T  defines the transpose matrix. The advantages of these rational fractional 
approximants are that the results are obtained even if the power series expansions of the 
center manifold in the neighbourhood of an equilibrium point is not sufficient. Effectively, 
one observes that the limit cycles for the center manifold of order 2,3,4 or 5, diverge, as 
illustrated in Figure 7 and Figure 8. However, the    8 / 7 c1 c2v ,v

f
 symmetric-off-diagonal 

rational approximants are applied in order to simplify the non-linear expression of the non-
linear equation (29). These rational approximants are determined by using the center manifold 
approach of order 5 (one knows that the associated limit cycle diverge). By using the 

   8 / 7 c1 c2v ,v
f

 approximants, one observes that the limit cycles are acceptable, as illustrated 

in Figure 9 and Figure 10. So, in this case, the rational fractional approximants permit to 
enhance the convergence of the series expansions of the center manifold theory. Moreover, 
the sequence of rational fractional approximants converges even if the associated series does 
not; one can than extended our domain of convergence. In this case, the domain of validity of 
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the solution is successfully enhanced by employing rational fractional approximants. Good 
agreements are found between the original and reduced system. However, the methods require 
few computer resources: effectively, the use of the rational approximants permit to consider 
lower order approximation for the center manifold approach. Moreover, the obtaining the 
coefficients associated which each term of the stable variables may pose especially serious 
difficulties. This is why the only use of the center manifold approach is not very convenient to 
apply, requiring a great deal of labour, especially for the calculation of the coefficients 
defined previously.  

 

Figure 7: Evolution of the limit cycle amplitude  X ,X  by using the center manifold 

approach of order 5 ( 01 01.  ) 

 

 

Figure 8: Evolution of the limit cycle amplitude  Y ,Y  by using the center manifold 

approach of order 5 ( 01 01.  ) 
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Figure 9: Evolution of the limit cycle amplitude  X ,X  by using the rational 

fractional approximants ( 01 01.  ) 

                Original system                       Reduced system 
 

 

Figure 10: Evolution of the limit cycle amplitude  Y ,Y  by using the rational 

fractional approximants ( 01 01.  ) 

Original system                       Reduced system 
 
 

Moreover, they are two important points to make here. First, this procedure used 316 non-
linear terms in order to obtain an estimation of the limit cycle amplitude, as indicated in Table 
1; in the case of the center manifold approach, 512 non-linear terms are not sufficient in order 
to obtain the limit cycle amplitudes. So, one extends the domain of validity of the problem 
and one simplifies the non-linear terms. Secondly, one obtains a good agreement with the 
complete non-linear system. This procedure permits to reduce the number of degree-of-
freedom of the original non-linear system and to simplify the non-linear terms.  
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This scheme can be applied for a complex system with n -degree-of-freedom and with m  
eigenvalues with zero real parts at the Hopf bifurcation point. By comparison with the use of 
the center manifold theory alone, this proposed methodology appears to be particularly 
interesting for cases of large non-linear systems with strongly nonlinearities.  
 

  
CPU  
time 

 

 
Number of 

degree-of-freedom 
 

 
Number of non-

linear terms 
 

 
Original System in state variables 

(Runge Kutta 4) 
 

 
 

30 minutes 

 
  

       4 

 
 

      96 
    

 

Reduced system 
(center manifold of order 5) 

 

 
 

divergence 

 
 

       2 

 
 

       512 
 

Reduced and simplify system 
(center manifold of order 5 + [8/7] 

approximants) 
 

 
 

5 minutes 

 
 
2 

 
 

316 

 
Table 1: Comparisons of the CPU time,the number of degree-of-freedom and the number of 

non-linear terms 
 

5 CONCLUSION 
This procedure consisting of applying the multivariable approximants next the center 
manifold approach appears very interesting in regard to computational time and it necessitate 
fewer computer ressources due to the number of stables coefficients used to obtained the limit 
cycle amplitude. Effectively, a sequence of rational fractional approximants may converge 
even if the associated series does not; one can than extended our domain of convergence. In 
this work, the domain of validity of the solution is successfully enhanced by employing 
rational fractional approximants. The rational fractional approximants show superior 
performance over series approximations. Finally, The center manifold theory and the rational 
approximants allow to reduce the number of equations of the original system and to simplify 
the non-linear terms in order to obtain a simplified system, without loosing the dynamics of 
the original system, as well as the contributions of the non-linear terms. 
 
 
REFERENCES 

1. Nayfeh, A.H., and Mook, D.T.., Nonlinear Oscillations, John Wiley & Sons, 1979. 
2. Nayfeh, A.H., and Balachandran, B., Applied Nonlinear Dynamics : Analytical, Comptational 

and Experimental Methods, John Wiley & Sons, 1995.  
3. Guckenheimer, J.,  and Holmes, P.,  Nonlinear Oscillations, Dynamical Systems, and 

Bifurcations of Vector Fields, Springer-Verlag, 1986.  
4. J.E. Marsden, J.E., and McCracken, M., Applied Mathematical Sciences. The Hopf 

Bifurcation and its Applications, Spring-Verlag, 1976. 
5. Jezequel, L. and Lamarque, C.H., 'Analysis of Non-linear Dynamical Systems by the Normal 

Form Theory', in Journal of Sound and Vibration, 1991,  149, pp. 429-459. 



 14

6. Hsu, L., 'Analysis of critical and post-critical behaviour of non-linear dynamical systems by 
the normal form method, part I : Normalisation formulae', in Journal of Sound and Vibration, 
1983, 89, pp. 169-181. 

7. Hsu., L., 'Analysis of critical and post-critical behaviour of non-linear dynamical systems by 
the normal form method, part II : Divergence and flutter', in Journal of Sound and Vibration, 
1983,  89, pp. 183-194. 

8. Yu, P., 'Computation of normal forms via a perturbation tehcnique', in Journal of Sound and 
Vibration,1998, 211, pp. 19-38. 

9. Thompson, J.M.T., and Stewart, H.B., Nonlinear Dynamics and Chaos, Wiley, Chichester, 
1986. 

10. Baker, G.A. and Graves-Morris, P., Padé Approximants, Cambridge University Press, 1996. 
11. Hughes Jones, R., 'General rational approximants in N-variables', in Journal of 

Approximation Theory , 1976, 16, pp. 201-233. 
12. Brezinski, C., 'Extrapolation Algorithms and Padé Approximations: a historical survey', in 

Applied Numerical Mathematics, 1983, 20, pp. 299-318.  
13. Carr, J., Application of Center Manifold, Springer-Verlag, 1981. 
14. Sinou, J-J.,  Synthèse non-linéaire des Systèmes vibrants - Application aux systèmes de 

freinage, Student Press, Ecole Centrale de Lyon, 2002. 
 

15. R.T. Spurr,R.T., 'A theory of brake squeal', in Proc. Auto. Div., Instn. Mech. Engrs, 1961, 
n°1, pp. 33-40. 

16. Ibrahim, R.A., 'Friction-Induced Vibration, Chatter, Squeal and Chaos : Part I - Mechanics of 
Contact and Friction' , in ASME Applied Mechanics Review, 1994, 47, n°7, pp. 209-226.. 

17. Ibrahim, R.A., 'Friction-Induced Vibration, Chatter, Squeal and Chaos : Part II – Dynamics 
and Modeling',  in ASME Applied Mechanics Review, 1994, 47, n°7, pp. 227-253. 

18. Oden, J.T., and Martins, J.A.C, 'Models and Computational Methods for Dynamic friction 
Phenomena', in Computer Methods in Apllied Mechanics and Engineering, 1985, 52, pp. 527-
634. 

19. Stewart, G.W. and Sun, J.G, Computer Science and Scientific Computing. Matrix 
Perturbation Theory,  Academic Press, 1990. 

20. Hughes Jones, R., and Makinson, G.J., 'The generation of Chisholm rational approximants to 
power series in two variables',  in Journal. Inst. math. Appl., 1974, 13, pp. 299-310. 



 15

 
APPENDIX A 
 
 

 
1

2
2

0

0 tan 1

m

m 

 
  

  
M           

     
1 1

2
1 1 2

tan

tan tan tan 1 tan

c c

c c c



      

 
  

      
C     

   

     
11 11

2
11 21 11

tan

tan 1 tan tan tan

k k

k k k



      

 
  

      
K     

  

   
          

2 3

12 13

2 3 2 3
12 13 22 23

tan tan

tan tan tan 1 tan 1 tan

k Y X k Y X

k X Y k X Y k X k X

 

       

       
          

NLF

 

0
brakeF 

  
 

F   



 16

          
APPENDIX B : PARAMETER VALUES 
 

NFbrake 1     brake force 

kgm 11      equivalent mass of first mode 

kgm 12      equivalent mass of second mode 

1 5 / .secc N m   equivalent damping of first mode 

2 300 / .secc N m   equivalent damping of second mode 

m/N.k 5
11 101   coefficient of linear term of stiffness 1k  

26
12 101 m/N.k    coefficient of quadratic term of stiffness 1k  

36
13 101 m/N.k    coefficient of cubic term of stiffness 1k  

m/N.k 5
21 101   coefficient of linear term of stiffness 2k  

25
22 101 m/N.k    coefficient of quadratic term of stiffness 2k  

35
23 101 m/N.k    coefficient of cubic term of stiffness 2k  

rad,20     sprag-slip angle 
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APPENDIX C: NOMENCLATURE 
 
x  vector 
x   vector of velocity 
x  vector of acceleration 

0x  equilibrium point 

x  small pertubation 
C  damping matrix 
K  stiffness matrix 
M  mass matrix 
F  vector force due to the net hydraulic pressure 

ijla  vector of the coefficients of the center manifold 

cv  vector of center variables 

sv  vector of stable variables 

h  vector of the polynomial approximation of stable variables in center variables 

sJ  Jacobian matrix of stable variables 

cJ  Jacobian matrix of center variables 

cF  vector function of quadratic and cubic terms for the center variables 

sF  vector function of quadratic and cubic terms for the stable variables 

ij  coefficients of the denominator of the rational approximants 

ij  coefficients of the numerator of the rational approximants 

  brake friction coefficient 

0  brake friction coefficient at the Hopf bifurcation point 
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