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Abstract

Non-linear dynamical structures depending on control parameters are encountered in many areas of science and
engineering. In the study of non-linear dynamical systems depending on a given control parameter, the stability
analysis and the associated non-linear behaviour in a near-critical steady-state equilibrium point are two of the most
important points; they make it possible to validate and characterize the non-linear structures. Stability is investi-
gated by determining eigenvalues of the linearized perturbation equations about each steady-state operating point,
or by calculating the Jacobian of the system at the equilibrium points. While the conditions and the values of the
parameters which cause instability can be investigated by using linearized equations of motion, studies of the non-
linear behaviour of vibration problems, on the other hand, require the complete non-linear expressions of systems.
Due to the complexity of non-linear systems and to save time,simplifications and reductions in the mathematical
complexity of the non-linear equations are usually required. The principal idea for these non-linear methods is to
reduce the order of the system and eliminate as many non-linearities as possible in the system of equations.
In this paper, a study devoted to evaluating the instabilityphenomena in non-linear models is presented. It out-
lines stability analysis and gives a non-linear strategy byconstructing a reduced order model and simplifying the
non-linearities, based on three non-linear methods: the centre manifold concept, the rational approximants and the
Alternating Frequency/Time domain method. The computational procedures to determine the reduced and sim-
plified system via the centre manifold approach and the fractional approximants, as well as the approximation
of the responses as a Fourier series via the harmonic balancemethod, are presented and discussed. These non-
linear methods for calculating the dynamical behaviour of non-linear systems with several degrees-of-freedom and
non-linearities are tested in the case of mechanical systems with many degrees-of-freedom possessing polynomial
non-linearities. Results obtained are compared with thoseestimated by a classical Runge-Kutta integration proce-
dure.
Moreover, an extension of the centre manifold approach using rational approximants is proposed and used to ex-
plore the dynamics of non-linear systems, by extending the domain of convergence of the non-linear reduced system
and evaluating its performance and suitability.

1 Introduction

In the field of engineering, the need for consideration of non-linear effects in the description of a dynamical system
is well recognized. Due to the fact that many structural systems of practical interest possess complex non-linear be-
haviour, there has been a crucial and strong development in the treatment of non-linear differential equations and in
the application of non-linear methods to enable the analysis of vibration problems. These non-linear treatments are
commonly applied in a wide range of mechanical engineering problems where it is impossible to ensure the stability
of a non-linear system and self-excited vibrations may be generated ([191], [156], [192], [194] and [193]).Though the
instability of the equilibrium position of non-linear systems and the associated stability condition can be investigated
by considering a linear stability theory, the complete expressions of non-linear systems need to be taken into account
in order to obtain the non-linear behaviour of systems. As iswell known, a common procedure for estimating the
non-linear dynamical behaviour of systems is the numericalintegration procedure. However, the use of this approach
for non-linear models with many degrees of freedom can be rather expensive and requires considerable resources
both in terms of computation time and data storage. In these cases, non-linear methods for reducing, simplifying and
approximating the non-linear responses can be applied.
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The main objective of these non-linear methods is to extractand characterize the non-linear behaviours of structural
systems by using non-linear interpretations of modes and non-linear extensions of principal coordinate transforma-
tions ([188], [189], [153], [154], [134], [135], [164]). These various non-linear methods have been investigated for
obtaining a low-dimensional and simplified system near the Hopf bifurcation point without losing the contribution of
the non-linear terms in the field of non-linear mechanical autonomous systems depending on one parameter. One of
the most powerful and frequently used reduction methods then is the centre manifold approach based on the reduc-
tion of the dimension of the original system ([135], [70], [99], [82], [167], [170] and [172]); the lower-dimensional
non-linear system has the same non-linear vibrational behaviour as the original one. One of the bases for simplifying
non-linear models is the method of normal forms that allows us to eliminate as many non-linear terms as possible
through a non-linear change of variables ([2], [125], [133], [7], [34], [22], [23], [92], [54], [93], [83], [126],[171],
[72], [203], [6], [204], and [206]). Even if the method of normal forms is usually applied after the centre manifold
approach, other non-linear simplification methods such as the Pade approximants should be applied ([19], [21], [3]
and [18]);all these non-linear methods possess advantagesand disadvantages; the fractional rational approximants
present a great advantages for obtaining information aboutthe non-linear function outside its circle of convergence,
and for more rapidly evaluating the function within its circle of convergence. However, the use of these fractional
approximants are not commonly used after the centre manifold reduction.
In this study we propose to apply non-linear methods to reduce and simplify non-linear systems near the Hopf bi-
furcation point. Applications of these ideas will be investigated for mechanical dynamical systems with polynomial
non-linearities. After the estimate of the stable and unstable areas due to the variation of given parameters, three
non-linear methods will be successively applied to investigate the non-linear behaviour of dynamical systems around
the Hopf bifurcation point. The centre manifold approach will be used first, to reduce the original non-linear systems.
Secondly, the rational fractional approximants will be applied to simplify the non-linear reduced system. Finally, a
harmonic balance method, that enables us to obtain the solution as an assumed time function, will be developed. The
choices of each non-linear method and more particularly theuse of the rational approximants to simplify non-linear
systems instead of the normal form approach will be justifiedand argued.
This paper is divided into four sections. The purpose of Section 1 is to present a survey of the non-linear methods
ap-plied in mechanical engineering to reduce, simplify andto approximate the non-linear behaviour of structural sys-
tems. These non-linear methods reduce the number of equations of the original system and simplify the non-linear
terms in order to obtain a simplified system without losing the dynamics of the original system as well as the essential
contributions of non-linear terms. More particularly, thebasic concept of the centre manifold approach, the normal
form approach and the rational fractional approximants procedure are developed; the theory, the classical procedures
to obtain the reduced and simplified systems by using each non-linear method, and the advantages and disadvantages
of these non-linear methods are discussed.
Following the general theory, Section 2 presents an application of these non-linear methods for a two-degree-of-
freedom mechanical system with quadratic and cubic non-linearities. Attention is first focused on the stability theory
and analysis. Second, the complete non-linear analysis of this mechanical system is developed: the centre manifold
approach, the rational approximants and the Alternate Frequency/Time domain method are then considered in some
detail. Each method is accompanied by a computational procedure with practical advice on usage: computational
schemes with generalisation forn-dimensional non-linear system are given. Moreover, a presentation is given of
comparative results obtained by these various non-linear methods and verifications by computational simulation with
a classical numerical integration procedure; indicationsof the advantages and shortcoming of each method is dis-
cussed. Towards the end of this section, a new procedure using an extension of the centre manifold approach via the
rational fractional approximants is presented: this methodology extends the domain of validity of non-linear systems
reduced by using the centre manifold approach and applies the rational fractional approximants in order to enhance
the convergence of the series expansions of the centre manifold theory. We will show that the interest of these rational
approximants is that they require fewer terms than the associated Taylor series in order to obtain an accurate approxi-
mation of the behaviour of the complete non-linear system.
Finally, Section 3 is devoted to the application of this new non-linear strategy based on the centre manifold, the ra-
tional approximants and the Alternating Frequency/Time domain method, in order to study the non-linear dynamical
behaviour of complex systems in near-critical steady-state equilibrium point. The goal of this section is to show the
suitability, capability and computational advantages of the centre manifold extension via the rational approximants
for a non-linear system with large degree-of-freedom: friction induced vibrations in a complex mechanical aircraft
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brake system that consists of a set of 15 coupled ordinary differential equations of the second order with polynomial
non-linear terms are considered. Some basic concepts of aircraft brake systems, a concise survey of the associated
friction instability mechanisms, and the non-linear mechanical model are first presented. Second, the results from sta-
bility analyses and determination of the non-linear behaviour of the complex system by applying the centre manifold
extension via the fractional rational approximants are examined.

2 Non-linear methods for dimension reduction and simplification

2.1 Overview of non-linear methods

Even though the develop of non-linear procedures have attracted increasing attention in recent years, the earliest stud-
ies of non-linear vibrations were made by Poincare 120 yearsago ([146] and [144]). It is only during the last 50 years
that advances have been made by researchers in the problem ofnon-linear vibrations with one or many degrees of
freedom in order to understand the non-linear behaviour of systems ( [7], [8], [112], [14], [101], [183], [1], [13], [39],
[69], [188], [189], [153], [154], [134] and [135]).
A number of techniques have been used in the past by various researchers using numerical integration over time.
These methods appear to be the most common solution for predicting the non-linear behaviour of systems. How-ever,
they can be both extremely time-consuming and costly to perform in terms of storage requirements for large degree-
of-freedom systems.
Various methods have been introduced by a number of researchers for calculating the non-linear responses of these
complex systems. Conventional methods are approximation techniques that can be divided into two categories. The
first category deals with the methods called the ”small parameters techniques” such as the asymptotic method, the
averaging method, the slowly varying coefficient method anda number of various perturbation techniques ([132], [1],
[14], [56], [159], [101], [115], [139], [134] and [135]). One of the most important disadvantages of these methods
that differ only slightly from one other is that all the non-linear terms in the equations of motion are assumed to
be small and only proportional to a given parameter. The second category of approximation techniques deals with
the Galerkin method, the Ritz method, the harmonic balance methods, trigonometric collocation, etc. They require
an initial assumption about the form of the solution of the non-linear system as a function of time and the estimated
approxi-mate response is obtained by minimizing the residuals of the equations of motions ([196], [197], [184], [118],
[81], [120], [152] [117], [104], [134], [135], [78], [202],[131], [130], [158] [30] and [91]). For this last category, the
most popular methods for approximating the non-linear responses of systems are the harmonic balance methods where
the non-linear solution is assumed to be a truncated Fourierseries (harmonic balance method (HBM) [138], [12] and
[157], incremental harmonic balance method (IHBM) [149], [111], [107], [108], [109], [143], [142], [113] and [95],
alternate frequency/time domain method (AFT) [25], [129],[173] and [174], multi-harmonic balance method (MHB)
[27], [26] and [98]). All these numerical methods are well-known and have been commonly used to solved non-linear
problems in the fields of mechanical engineering.
Another standard approach is the linearized methods ([177], [178], [86], [85], [87], [89], [88] [29]). The principle
of these methods is based on the well-known technique of equivalent linearization of Kryloff and Bogoliubov [101]
and was extended by Iwan to multi-degree-of-freedom systems ([86], [85], [87], [89] and [88]). The purpose of this
method is to replace the non-linear system by an equivalent linear system in which the difference between the two
systems is minimized. Then, the solution of the associated linear system is taken as an approximation of the original
non-linear problem. One of the advantages of this equivalent linearization procedure is that the resulting linear prob-
lem may be solved by any convenient technique, and this approach is easily mechanized and implemented.
An alternative approach to obtain an approximated solutionof systems is to consider reduction and simplification
techniques. The aims of these procedures is to obtain a simplified and reduced system that has approximately the
same dynamical behaviour as the original one. Most of these schemes are concerned with linear reduction and sim-
plification: in structural dynamics, modal analysis techniques are based on modal expansions ([94], [57], [65], [77],
[37], [45], [71], [119], [67] and [66]). The purpose of this technique is to define the coordinate linear transformations
from physical coordinates where the dynamical behaviour ofstructures are complex to modal coordinates where the
structural system may be easily solved. Most mechanical systems are indeed quite complex due to their number of
degree-of-freedom that leads to many vibrational modes; however, it may be demonstrated that certain modes often
dominate in the frequency range of given operating points for structural systems. Then, by applying modal reduction
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methods, the low frequency modes or the most important modesmay be used to define the reduced and simplified
model.
Since non-linearities are often presented in structural systems, non-linear model reduction and simplification methods
have been developed. During the last 30 years, Rosenberg ([153] and [154]) has defined the notion of the non-linear
normal modes as synchronous motions with fixed relations between generalized coordinates, similar to the linear nor-
mal modes of classical vibration theory. This concept of non-linear normal modes has great potential for reduction
techniques and has been studied by many researchers in recent years for weak and strong non-linear systems ([14],
[96], [162], [161], [187], [188], [189], [186], [46], [5], [15], [163], [165], [164], [61], [160]). Shaw and Pierre [164]
proposed a new definition of the non-linear normal modes in terms of invariant manifold approach and presented a
sort of non-linear modal analysis to the non-linear problems: the non-linear normal mode takes place in an invariant
manifold that is tangent to the linear modal subspaces at thepoint of equilibrium. A non-linear trans-formation is
applied to relate the physical coordinates and the non-linear modal coordinates. The invariant manifold methodology
has one aspect that seems to be very promising when searchingfor reduced models, since one non-linear normal
mode is constructed by projecting the other modes over it by means of a non-linear relationship. These pro-jections
contain the non-linear effects, and the performance of the reduced model is adapted to weak non-linearities by virtue
of the power series used to obtain the approximation. However, the applicability of such non-linear modal analysis is
restricted to a very small class of dynamical systems ([141]and [198]).
One of the most useful non-linear methods to reduce systems at near-equilibrium point is the centre manifold ap-
proach ([135], [70], [99], [82], [84], [62], [44], [28] [116], [167], [170] and [172]). This approach assumes that the
non-linear dynamical system at near-equilibrium point is governed by the dynamics on the centre manifold when
certain eigenvalues have zero real parts (and all other eigenvalues have negative real parts). It may be noted that the
centre manifold appears to be an extremely powerful method due to the fact that ifm eigenval-ues of then eeigneval-
ues of the non-linear system have zero real parts, then the number of equations for the non-linear system is reduced
by n − m by applying the centre manifold approach. However, this method can only be used for model reduction
when the system has an eigenvalue with zero real parts at an equilibrium point. Usually, the centre manifold has
complicated non-linear terms. In this case, the non-linearsystem can be simplified by using further non-linear coor-
dinate transformations ([145], [146], [103], [2], [125], [7], [22], [23], [54], [93], [83]). The normal form theory is
often applied after the centre manifold approach. The main objective of the method of normal forms is to obtain the
simplest possible non-linear system by the use of successive non-linear co-ordinate transformations ([133], [92] and
[70]). At the end of these non-linear transformations, onlythe resonant terms are retained: they cannot be eliminated
and are essential to the non-linear system dynamics.
Moreover, there exist other non-linear methods called the rational approximants that simplify the non-linear terms
by fractional series ([19], [21], [3] and [18]). The aim of this non-linear method is to approximate a function from
its series expansion by constructing a fractional rationalfunction such that its power series expansion agrees with
that of the original function, insofar as possible. Such rational functions are called the Padé approximants and many
generalizations of Padé approximants have been introduced over the past 80 years ([3], [47], [20], [64], [140], [41],
[182] and [181]). The rational fractional approximants have found numerous applications in various branches of sci-
ence and mechanical engineering because of their highly interesting approximation properties and, in particular, their
potential convergence outside the domain of convergence ofthe series they approximate: they allow simplification of
the non-linear terms and computation of an accurate approximation of a non-linear functionf (x), even at values of
f for which the Taylor series off (x) diverge.
There are other reduction, simplification and approximation methods used in non-linear dynamical analysis including
the multiple shooting method, the Time Finite Element Method, the Multiple Scale Method, the fixed point procedure,
etc ([185], [42][43], [24] and [97]).

We will now describe in detail three non-linear methods to reduce and simplify non-linear systems: the centre
manifold, the normal forms and the fractional approximants. By applying these methods, we can reduce the dimension
of the original system and/or simplify the number of non-linear terms without losing the non-linear behaviour of the
original system. We do not claim to make an important contribution nor to be exhaustive; the only purpose is to give
an overview of the non-linear methods that underlie this paper. We refer the interested reader to the books [134],
[135], [3] and [70] for an extensive overview of the non-linear analysis and non-linear methods that are not the subject
of this study.
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2.2 The centre manifold approach

In the field of engineering, the description of a dynamical system is usually given by an-dimensional differential
equation

ẋ = F(x, µ) (1)

whereµ is a control parameter andF is a non-linear function.
The centre manifold analysis is used to reduce the order of the non-linear model at near-equilibrium pointx0 upon
bifurcation ([135], [70], [99] and [82]). This approach is based on the idea that all the dynamical system characteristics
at near-equilibrium point are governed by the dynamics on the centre manifold when some eigenvalues have zero real
parts and all the other eigenvalues have negative real parts. To determine the centre manifold with a fixed pointx0

(defined byf(x0;µ = 0)), the transformationx = x0 + y is used to shift the fixed pointx0 of the system (1) to the
origin. The non-linear system (1) is transformed by

ẏ = F(y+ x0, µ) (2)

Assuming that the functionF is at leastC2,the non-linear system (2) can be extanded in a Taylor seriesaboutx0 for
small‖y‖ as follow

ẏ = Ay+ F2(y) +F3(y) + · · ·+ Fk(y) +O(yk+1) (3)

whereA = Dxf(x0;µ) is then × n matrix of first derivatives ofF evaluated at the fixed point(x0;µ). Fk is a
degreek polynomial series in the principal coordinates of degreey.
Next, the linear transformationy = Pv whereP = [p1 · · · pm,pm+1 · · ·pn] is introduced. p1 · · ·pm and
pm+1 · · · pn are the generalized eigenvectors of them eigenvalues ofA with zero real parts, and(n−m) eigenvalues
of A with nonzero real parts, respectively. The system (3) is transformed by

v̇ = Jv +P−1F2(Pv) + · · · +P−1Fk(Pv) + · · · (4)

whereJ = P−1AP. At the Hopf bifurcation point, the system (4) may be rewritten in the form
{

v̇c = Jc (µ0)vc + Fc(vc,vs, µ0) = Jcvc +G2(vc,vs, µ0) + · · ·+Gk(vc,vs, µ0) + · · ·

v̇s = Js (µ0)vs + Fs(vc,vs, µ0) = Jsvs +H2(vc,vs, µ0) + · · ·+Hk(vc,vs, µ0) + · · ·
(5)

wherevc ∈ ℜn andvs ∈ ℜm−n. Jc andJs have eigenvaluesλ such thatRe (λJc
(µ0)) = 0 andRe (λJs

(µ0)) 6= 0
whereµ0 is the value of the control parameter at the Hopf bifurcationpoint. It may be noted thatvc andvs are linearly
uncoupled but non-linearly coupled. Moreover,Gi (0,0) = 0, Hi (0,0) = 0, and the Jacobian matricesDGi (0,0)
andDHi (0,0) are matrices with zero entries (with1 < i ≤ k).
Now, a simple extension to the centre manifold method ([116], [135] and [70]) which is useful when dealing with
parametrized systems may be defined by augmenting the original system (5)















v̇c = Jc (µ̂)vc + Fc(vc,vs, µ̂)

v̇s = Js (µ̂)vs + Fs(vc,vs, µ̂)

˙̂µ = 0

(6)

where µ̂ defines the modification ofµ0 around the Hopf bifurcation point.Fc andFs are polynomial non-linear
functions in the components ofvc andvs and infinitely differential. At(vc,vs, µ̂) = (0,0, 0), the center space is
(vc, µ̂). For only small‖vc‖ and‖µ̂‖, a local centre manifold exists and the centre manifold theory (Carr [28]) allows
the expression of the stables variablesvs as a function of the center variables(vc, µ̂) such that

vs = h (vc, µ̂) (7)

where the functionh verified at the fixed point(0,0, 0)

h = 0 (8)

Dvc
hi (0) = 0 1 ≤ i ≤ n− 2 (9)
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∂h

∂µ̂
= 0 (10)

wherehi are the scalar components ofh. Due to the fact that the expression ofh cannot be solved exactly in most
cases, the stable variables are usually approximated as a power series in(vc, µ̂) of degreem

vs = h (vc, µ̂) =
m
∑

p=i+j+···+k+l=2

p
∑

j=0

· · ·
p
∑

k=0

p
∑

l=0

aij···klv
i
c1v

j
c2 · · · v

k
cnµ̂

l (11)

whereaij···kl are vectors of constant coefficients. It may be noted thath is a power series without constant and linear
terms in order to satisfy equations (8-10). The choice of an approximation of the stable variablesvs as a power series
in the centre variablesvc is not an obligation; however, that makes it possible to check easily the conditions defined in
equations(8-10). The determination of the vectoraij···kl is obtained by substituting the(m−n) dimensional function
h into the second equation of (6). By combinaison with the firstequation of (6), the functionh verified

Dvc,µ̂ (h (vc, µ̂)) (Jcvc + Fc (vc,h (vc, µ̂) , µ̂)) = Jsh (vc, µ̂) + Fs (vc,h (vc, µ̂) , µ̂) (12)

To solve equation (12), we equate the coefficients of the different terms in the polynomials on both sides and we obtain
a system of algebraic equations for the coefficientsaij···kl of the polynomials. By solving these equations, we obtain
an approximation to the centre manifoldvs = h (vc, µ̂). After h is identified, the reduced order structural dynamic
model, which is only a function ofvc , is given by

{

v̇c = Jc (µ̂)vc + Fc(vc,h (vc, µ̂) , µ̂)

˙̂µ = 0
(13)

If n of them eigenvalues have zero real parts, then we reduce the number of equations of the original system from
m to n in order to obtain a simplified system. In the field of mechanicengineering, the centre manifold is frequently
composed of only two centre variables so that the reduced non-linear system (13) contains only two degrees-of-
freedom with a control parameterµ̂, called an unfolding parameter.

2.3 The Normal forms simplification

As explained previously, the centre manifold reduces the non-linear system on the centre variables. However, the
associated centre manifold equations can have complicatednon-linear terms due to the approximation of the stable
variables in a power series in centre variables and their substitutions in the centre manifold equations. For such
systems, non-linear successive coordinate transformations can be used to reduce this non-linear system to its simplest
form, called the normal form. The idea of the normal transformation comes from Poincaré ([145] and [146]) and
this normal forms theory has been studied by several groups ([103], [2], [125], [133], [7], [34], [22], [23], [92], [54],
[93], [83], [126] and [171]). The main idea of the normal formapproach is to eliminate as many non-linear terms as
possible through a non-linear change of variables. This normal forms theory is a very powerful tool for the analysis
of the local dynamical behavior near a singularity ([72], [203], [6], [204], and [206]).

2.3.1 Normal form theory

Consider the nonlinear system described by

ẋi = fi (x) i = 1, . . . , n (14)

where eachfi is a function ofx. By introducing the formal invertible transformation

xi = ξi (y) = yi
∑

q∈Ni

hiqy
q i = 1, . . . , n (15)

every system (14) may be transformed retaining the Jordan form of the system (14) in the normal form defined by

ẏi = yi
∑

q.Λ=0

giqy
q i = 1, . . . , n (16)
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where
yq = (yq11 , y

q2
2 , · · · , y

qn
n ) (17)

Ni =

{

q integral vector : qi ≥ −1, qk ≥ 0 if k 6= i,
n
∑

i=1

qi = 0

}

(18)

giq = 0 if q · Λ =
n
∑

i=1

qiλi 6= 0 (19)

Λ = {λ1, λ2, . . . , λn}
T (20)

whereΛ defines the vector of the linear eigenvalues of the non-linear system (14). Due to the relation (20), it may
be observed that the right side of the expression (16) contains only the resonant termsyigiqyq verifying q · Λ =
∑n
i=1 qiλi = 0.

2.3.2 Transformation to normal form

In this section, it is proposed to compute the normal form transformation by using a successive change of variables
according to the increasing degrees of non-linearities ([70], [92] and [206]). Effectively, as explained previously,
the basic idea of the method of normal forms is to employ successive coordinate transformation to systematically
construct a simple form of the original non-linear system.
By considering the previous system (14), we expand the vector field f(x) into a Taylor series

ẋ = f(x) = Ax+ f2(x) + f3(x) + · · ·+ fN (x) +O
(

|x|N+1
)

= Ax+
N
∑

k=2

fk(x) +O
(

|x|N+1
)

(21)

wherex ∈ ℜn. The matrixA may be assumed to be in the Jordan standard form; if this is notthe case,A may be
changed easily to block Jordan form by a linear transformation. We havefk ∈ Hk

n whereHk
n defines then-variate

polynomial space of orderk (with k ≥ 2).
Introducing the non-linear transformations

x = y2 +P2 (y2) with P2 (y2) ∈ H2
n

y2 = y3 +P3 (y3) with P3 (y3) ∈ H3
n

...
yk−1 = yk +Pk (yk) with Pk (yk) ∈ Hk

n
...
yN−1 = yN +PN (yN) with PN (yN) ∈ HN

n

(22)

and substituting these expressions in the non-linear system (21), the left side is

ẋ =
d

dt

(

y2 +P2 (y2)
)

=
(

I+Dy2
P2 (y2)

)

ẏ2

ẏ2 =
d

dt

(

y3 +P3 (y3)
)

=
(

I+Dy3
P3 (y3)

)

ẏ3

...

˙yk−1 =
d

dt

(

yk +Pk (yk)
)

=
(

I+Dyk
Pk (yk)

)

ẏk

...

˙yN−1 =
d

dt

(

yN +PN (yN)
)

=
(

I+DyN
PN (yN)

)

˙yN

(23)
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and the right side is

f (x) = A
(

y2 +P2 (y2)
)

+ · · ·+ fN
(

y2 +P2 (y2)
)

+O
(

|x|N+1
)

f (y2) = A
(

y3 +P3 (y3)
)

+ · · ·+ fN2
(

y3 +P3 (y3)
)

+O
(

|x|N+1
)

...

f (yk−1) = A
(

yk +Pk (yk)
)

+ · · ·+ fNk−1

(

yk +Pk (yk)
)

+O
(

|x|N+1
)

...

f (yN−1) = A
(

yN +PN (yN)
)

+ · · ·+ fNN−1

(

yN +PN (yN)
)

+O
(

|x|N+1
)

(24)

By identifying (23) and (24), we obtain for thekth-transformation

ẏk =
(

I+Dyk
Pk (yk)

)−1



Ayk +APk (yk) +
k
∑

j=1

N
∑

i=2

Djf ik−2

j!

(

Pk (yk)
)j



 (25)

Finally, after a number of computations [70], the reduced system for eachkth-normal form is obtained successively
by

ẏ2 = Ay2 + f21 (y2) +
N
∑

i=3

f i1 (y2)

ẏ3 = Ay3 +
3
∑

i=2

f ii−1 (y3) +
N
∑

i=4

f i2 (y3)

...

ẏk = Ayk +
k
∑

i=2

f ii−1 (yk) +
N
∑

i=k+1

f ik−1 (yk)

...

˙yN = AyN +
N
∑

i=2

f ii−1 (yN)

(26)

As illustrated in the previous equations, the normal form transformations absorb lower degree non-linearities insidethe
coordinate definitions while generating higher degree non-linearities. These coordinate transformations are generally a
good computational tool because by applying transformations, we simplify the original non-linear expression without
losing the mathematical and physical properties of systems. It may be noted that the normal forms are generally not
uniquely defined and finding a normal form of non-linear systems is not easy. However, all the expressions off ij and
the related coefficients can be obtained by using symbolic calculations and solving successively a series of algebraic
equations according to the increasing degrees of non-linearities ([70] and [92]). The normal forms method greatly
simplifies the analysis of dynamic behaviour of the originalnon-linear system. However, this procedure may be not
very convenient, and other procedures have been developed to more easily obtain the normal form of a non-linear
system([203], [6], [147], [206], [73] and [72]).

2.4 The Pad́e and multivariable approximants

As shown in Sections 2.2 and 2.3, the centre manifold equations can have complicated non-linear terms. These non-
linear tems can be simplified by using further non-linear methods, such as the normal forms approach. One of the
other most interesting possibilities is to apply the Padé approximants and the general rational fractional approximants
([19], [21], [3] and [18]). As explained previously, the interest of the Padé approximants and general rational fractional
approximants is that they need fewer terms than the associated Taylor series in order to obtain an accurate approxi-
mation of a solution of a given problem. The aim of this section is to provide an introduction to Padé approximations
and the general rational fractional approximants in 2-variables that will be applied after the centre manifold analysis.
In many branches of engineering sciences, Padé approximants and rational fractional approximants have found nu-
merous applications ([40], [35], [36], [201], [200], [55],[155],[170], [169], [168] and [175]); the solution of a given
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problem in applied sciences is often described as a power series expansion. In this case, one of the interesting aims
is to approximate the function from its series expansion. Such constructions of rational functions are called the Padé
approximants and general fraction approximants. They havequite interesting approximation properties and possible
convergence outside the domain of convergence of the seriesthey approximate; a sequence of rational fractional ap-
proximants may converge even if the associated series does not, so that the domain of convergence may be extended
by employing rational fractional approximants [174].

2.4.1 Pad́e approximants

Let the functionf(z) be represented by a formal power series, so that

f(z) =
∞
∑

i=0

ciz
i (27)

A Padé approximantg(z) is a rational approximation of the functionf(z) such that its power series expansion matches
the formal power seriesf(z) insofar as possible. The Padé approximantg(z) associated with the formal power series
f(z) =

∑∞
i=0 ciz

i is the rational function

g(z) =
a0 + a1z + · · ·+ amz

m

b0 + b1z + · · ·+ bnzn
(28)

such that
f(z)− g(z) = O

(

zm+n+1
)

(29)

The Padé approximantg(z) with a numerator of degreeL at most, and a denominator of the degreen at most is
usually denoted by

[m/n]f (z) (30)

Next, the aim is to determine the unknown coefficients(a0, a1, · · · , am) and(b0, b1, · · · , bn). There arem+1 unknown
numerator coefficients andn + 1 unknown denominator coefficients. By considering the equation (28), we note that
the coefficients(a0, · · · , am) and(b0, · · · , bn) will be determined at most up to a common multiplicative factor. So,
for definiteness we assume thatb0 = 1 . So there arem + n + 1 unknown independent coefficients in all (m + 1
unknown independent numerator coefficients andn unknown independent denominator coefficients).
By multiplying the difference betweenf(z) and[m/n]f (z) by the denominator of[m/n]f (z) , we find that

(b0 + b1z + · · ·+ bnz
n) (c0 + c1z + · · ·) = a0 + a1z + · · ·+ amz

m +O
(

zm+n+1
)

(31)

By equating the coefficients ofzm+1, zm+2, · · · , zm+n, we obtain


































b0cm+1 + · · ·+ bn−1cm−n+2 + bncm−n+1 = 0

b0cm+2 + · · ·+ bn−1cm−n+3 + bncm−n+2 = 0

· · ·

b0cm+n + · · · + bn−1cm+1 + bncm = 0

with ci = 0 if i < 0

(32)

It may be noted that the system (32) is a set ofn linear equations for then unknown denominator coefficients
(b1, · · · , bn) (by assumingb0 = 1). Then, them+ 1 unknown coefficients(a0, a1, · · · , am) can be obtained directly
from the equation (31) by equating the coefficients ofz1, z2, · · · , zm















































a0 = c0b0

a1 = c1b0 + c0b1

a2 = c2b0 + c1b1 + c0b2

· · ·

am = cmb0 +

min(m,n)
∑

i=1

bicm−i

(33)
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2.4.2 The multivariable rational fractional approximants

A natural problem in applied sciences is the generalisationof the Padé approximants to more than one variable. In this
section, we limit our attention to the case of the rational polynomial approximants in two variables that will be studied
in this paper. All the problems associated with many variables have the same kind of solutions and the determination
of the numerator and denominator coefficients of the fractional approximants follows the same steps [75].
Let f (x, y) be a function of two variables of the form

f (x, y) =
∞
∑

α=0

∞
∑

β=0

cαβx
αyβ =

∑

(α,β)∈S

cαβx
αyβ (34)

where
S = {(α, β) | α, β nonnegative integers} (35)

We define
A (x, y) =

∑

(α,β)∈Sm

aαβx
αyβ (36)

and
B (x, y) =

∑

(α,β)∈Sn

bαβx
αyβ (37)

such that

f (x, y) =
A (x, y)

B (x, y)
+

∞
∑

α=0

∞
∑

β=0

dαβx
αyβ (38)

where as many coefficientsdαβ as possible are zero and withSm etSn defined as follows

Sm = {(α, β) | 0 ≤ α ≤ m1, 0 ≤ β ≤ m2} (39)

Sn = {(α, β) | 0 ≤ α ≤ n1, 0 ≤ β ≤ n2} (40)

In this case,A(x,y)B(x,y) is the rational fractional polynomial approximants in two-variables off (x, y). It has the form

[m/n]f (x, y) =

∑

(α,β)∈Sm

aαβx
αyβ

∑

(α,β)∈Sn

bαβx
αyβ

= [m1,m2/n1, n2]f (x, y) =

m1
∑

α=0

m2
∑

β=0

aαβx
αyβ

n1
∑

α=0

n2
∑

β=0

bαβx
αyβ

(41)

By assuming thatb00 = 0, there are(m1 + 1) (m2 + 1) + n1 (n2 + 1) unknown coefficients to be found in the
fractional approximant (41). In order to understand the procedure to determine the unknown coefficients and to
illustrate the various types of regions in which the termsxαyβ are to be matched, it is useful to consider a few
diagrams in the two-dimensional lattice setS, as illustrated in Figures 1-3. Figures 1, 2 and 3 illustratethe situation
for a Chisholm Approximant (m1 = m2 = n1 = n2 = m), a Simple-Off-Diagonal approximant (m1 = m2 = m and
n1 = n2 = n), and a General-Off-Diagonal approximant (m1 6= m2 6= n1 6= n2), respectively.
We use the following convenient notation:

m
′

i = min (mi, ni) (42)

n
′

i = max (mi, ni) (43)

pm = min (m1,m2, n1, n2) (44)

and the following sets
P = {(p, p) | 0 ≤ p ≤ pm} (45)

R1;p = {(p, p)} ∪ {(α, p) | p < α ≤ m
′

1} ∪ {(p, β) | p < β ≤ m
′

2} (46)

R2;p = {(α, p) | m
′

1 < α ≤ n
′

1} ∪ {(p, β) | m
′

2 < β ≤ n
′

2} (47)
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R3;p = {(α, p) | n
′

1 < α ≤ m1 + n1 − p} ∪ {(p, β) | n
′

2 < β ≤ m2 + n2 − p} (48)

R4;p = {(m1 + n1 − p+ 1, p) , (p,m2 + n2 − p+ 1)} (49)

Finally, the various types of regions indicated in Figures 1-3 are defined as follows

S1 = Sm ∩ Sn (50)

S2 = Sm ∪ Sn \ S1 (51)

S3 =
⋃

p∈P

R3;p (52)

S4 =
⋃

p∈P

R4;p (53)

S5 = S2 \





⋃

p∈P

R2;p



 (54)

Next, by considering equations (38) and (41), and by multiplying the difference betweenf (x, y) and[m/n]f (x, y)
by the denominator of[m/n]f (x, y), we obtain





∑

(α,β)∈Sn

bαβx
αyβ



 .





∑

(α,β)∈S

cαβx
αyβ



−
∑

(α,β)∈Sm

aαβx
αyβ =

∑

(α,β)∈S

dαβx
αyβ (55)

with
dαβ = 0 (α, β) ∈ R1;p ∪R2;p ∪R3;p (56)

and
∑

p 6=0

dm1+n1−p+1,p + dp,m2+n2−p+1 = 0 (57)

Finally, by matching the coefficients for identical power ofxαyβ in (55), the following relations are obtained
∑

ψ∈Sn

bψcρ−ψ = aρ ρ ∈ Sm (58)

∑

ψ∈Sn

bψcρ−ψ = 0 ψ ∈ (Sn \ Sm) ∪ S3 (59)

∑

ψ∈R4;p

∑

ρ∈Sn

bψcρ−ψ = 0 p ∈ P (60)

wherecαβ = 0 if eitherα or β is negative. Then, after normalisingb00 to unity, the computation of the coefficientsbψ
can be achieved by solving the linear equations which arise from (59) and (60). Next, the linear equations given by
equations (58) enable the coefficientsaρ to be determined, with the coefficientsbψ found previously.

Figure 1: Various types of regions for the Chisholm Approximants (CA) of two variables
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Figure 2: Various types of regions for the Symmetric-Off-Diagonal (SOD) approximants of two variables

Figure 3: Various types of regions for the General-Off-Diagonal (GOD) approximants of two variables

2.4.3 General fractional approximants ink-variables

It may be observed that the generalisation for the rational fractional aproximants ink-variables is a fairly natural
process. Letf (x1, x2, ..., xk) be a function ofk-variables defined by a formal power series expansion

f (x1, x2, ..., xk) =
∞
∑

α1=0

· · ·
∞
∑

αk=0

cα1...αk
xα1

1 · · · xαk

k (61)

with
x = (x1, ..., xk) (62)

α = (α1, ..., αk) (63)

xα ≡ xα1

1 · · · xαk

k (64)

Ik = {1, ...k} (65)

S = {α | αi ∈ ℵ+, i ∈ Ik} (66)

The power series defined in (61) withk-variables has the compact form

f (x) =
∑

α∈S

cαx
α (67)
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The associated rational approximants ink-variables are given by

[m/n]f (x) =

∑

µ∈Sm

aµx
µ

∑

σ∈Sn

bσx
σ

(68)

with
Sm = {α | 0 ≤ αi ≤ mi, i ∈ Ik} (69)

and
Sn = {α | 0 ≤ αi ≤ ni, i ∈ Ik} (70)

There areΠi∈Ik (mi + 1)+Πi∈Ik (ni + 1) unknown coefficients in the equation. We note that the coefficientsaµ and
bσ will be determined at most up to a common multiplicative factor. So, we assume thatb0,...,0 = · · · = b0 = 1. By
multiplying the difference betweenf (x) and[m/n]f (x) by the denominator of[m/n]f (x) , we obtain

∑

σ∈Sn

bσx
σ
∑

α∈S

cαx
α −

∑

µ∈Sm

aµx
µ =

∑

β∈S

dβx
β (71)

with
dβ = 0 β ∈ Sm ∪ Sn (72)

dβ = 0 β ∈ S3 (73)
∑

β∈R4;p

dβ = 0 p ∈ P (74)

with
R4;p =

⋃

i∈Ip

{α | α = m
′

i + n
′

i − p+ 1;αj = pj , j 6= i} (75)

P = {p | p ∈ Sm ∩ Sn; Ip = {j | pj = max (pi) with i ∈ Ik} has at least 2 elements} (76)

wherem
′

i = min (mi, ni) andn
′

i = max (mi, ni). Next, the equations obtained by matching coefficients in equation
(71) are

∑

σ∈Sn

bσcµ−σ = aµ µ ∈ Sm (77)

∑

σ∈Sn

bσcµ−σ = 0 µ ∈ (Sn \ Sm) ∪ S3 (78)

∑

µ∈R4;p

∑

µ∈Sn

bσcµ−σ = 0 p ∈ P (79)

with
S3 =

⋃

p∈P

{∪i∈Ip{α | n
′

i < αi ≤ n
′

i +m
′

i − p;αj = pj, j 6= i}} (80)

wherecα = 0 if αi < 0 for at least onei ∈ Ik. Then, after normalisingb0,...,0, · · · , b0 to unity, the computation of
the coefficientsbσ can be achieved by solving the linear equations which arise from (78) and (79). Next, the linear
equations given by (77) enable the coefficientsaµ to be determined, with the coefficientsbσ found previously.
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3 First example

In this section a simple example with two degrees-of-freedom is presented in order to explain all the computational
developments for each non-linear method and to discuss the main numerical results. In this example, we first illustrate
the reduction of the order of the non-linear system at near-equilibrium point upon bifurcation, the simplification of
the non-linear terms due to the fractional approximants andthe approximation of the non-linear solution as a Fourier
series by using a harmonic balance method. The advantages ofeach non-linear method will be demonstrated by
comparing the non-linear behaviour obtained by using thesenon-linear approaches with those obtained by a classical
integration scheme (Runge-Kutta of order 4). More particularly, the advantages of the fractional rational approximants
after the centre manifold will be illustrated and discussed: we will demonstrate that the rational approximants have
a greater range of validity than the polynomial one and that they allow us to obtain an approximation of the solution
even if the associated approximation obtained by the centremanifold reduction is not sufficient or diverge.

3.1 Non-linear model: general presentation

In the field of mechanical engineering, the non-linear dynamical system defined in Figure (4) is a classic example
of friction-induced vibrations in a brake system. It presents the grabbing vibration in heavy trucks that results from
coupling between the normal mode(k1,m1) of the brake control and the torsion mode of the front axle(k2,m2). In
order to simulate a braking system placed crosswise due to overhanging caused by a static force effect, we consider
the moving belt slopes with an angleθ. This slope couples the normal and tangential degree-of-freedom induced only
by the friction coefficientµ that is assumed to be constant. The braking forceFbrake transits through the braking
command, that has non-linear behaviour. Therefore, we consider the possibility of a non-linear contribution. This
non-linearity is applied in order to indicate the influence and the importance of non-linear terms in under-standing the
dynamic behaviour of systems with non-linear phenomena, the prediction of dangerous or favourable conditions, and
the exploitation of the full capability of structures by using systems in the non-linear range. In this study, the non-
linear behaviour dynamic of the brake command of the system(k1,m1), and the non-linear behaviour dynamic of
the front axle assembly and the suspension(k2,m2) are concerned, respectively. These non-linearities are defined as
non-linear stiffnesses. The non-linear behaviour is then expressed as a quadratic and cubic polynomial in the relative
displacement:

k1 = k11 + k12 (Y − y) + k13 (Y − y)2

k2 = k21 + k22X + k23X
2

(81)

Figure 4: Non-linear model of the braking system

With reference to Figure 4, and considering the non-linear expression of the stiffnesses defined in equations (81),
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the three equations of motion can be expressed as



















m1Ÿ + c1
(

Ẏ − ẏ
)

+ k11 (Y − y) + k12 (Y − y)2 + k13 (Y − y)3 = −Fbrake

m2Ẍ + c2Ẋ + k21X + k22X
2 + k23X

3 = −N sin θ + T cos θ

m2ÿ + c1
(

ẏ − Ẏ
)

+ k11 (y − Y ) + k12 (y − Y )2 + k13 (y − Y )3 = N cos θ + T sin θ

(82)

Considering Coulomb’s friction lawT = µN , and the transformationsy = X tan θ andx = {X Y }T , the non-
linear 2-degrees-of-freedom system is given by

Mẍ+Cẋ+Kx = F+ FNL(x) (83)

whereẍ, ẍ andx define the acceleration, velocity, and displacement response 2-dimensional vectors of the degrees-
of-freedom, respectively.M, C andK are the mass, damping and stiffness matrices of the mechanical system.F
defines the vector due to the brake force, andFNL(x) is the vector containing all the non-linear terms of the system
(82). By considering the equations of (82) the expressions of all the matrices and vectors are

M =

[

m2
(

tan2 θ + 1
)

0

0 m1

]

(84)

C =

[

c1
(

tan2 θ − µ tan θ
)

+ c2 (1 + µ tan θ) c1 (− tan θ + µ)

−c1 tan θ c1

]

(85)

K =

[

k21 (1 + µ tan θ) + k11
(

tan2 θ − µ tan θ
)

k11 (− tan θ + µ)

−k11 tan θ k11

]

(86)

FNL =











(− tan θ + µ)
(

k12 (X tan θ − Y )2 + k13 (X tan θ − Y )3
)

+k22 (1 + µ tan θ)X2 + k23 (1 + µ tan θ)X3

−k12 (Y −X tan θ)2 − k13 (Y −X tan θ)3











(87)

F =

{

0

−Fbrake

}

(88)

The general form of the equation of motion for the non-linearsystem is given in the following way:

Mẍ+Cẋ+Kx = F+
2
∑

i=1

2
∑

j=1

f
ij

(2)xixj +
2
∑

i=1

2
∑

j=1

2
∑

k=1

f
ijk

(3)xixjxk (89)

wheref ij(2) et f ijk(3) are the vectors of quadratic and cubic non-linear terms, respectively.

3.2 Stability analysis

3.2.1 Methodology

The stability analysis is the first step in instability phenomena and allows us to obtain the stable and unstable areas
versus the evolution of parameters. This methodology can bedivided into two parts; firstly, the equilibrium point
of the non-linear system is obtained by solving the non-linear static equations for a given parameter. Next, stability
analysis is investigated by the determination of eigenvalues of the linearized equations for each steady-state operating
point of the non-linear system or by calculating the Jacobian of the system. The linearized equations are obtained by
introducing small perturbations about the equilibrium point into the non-linear equations. The equilibrium pointx0

of the non-linear system (89) satisfies the following conditions:

Kx0 = F+ FNL(x0) (90)
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Then, stability of the non-linear system is investigated onthe linearized equations by assuming small perturbations

x =
{

X Y
}T

about the equilibrium pointx0 = {X0 Y0}
T of the non-linear system :

x = x0 + x (91)

By substituting equations (91) in the linearised expression of the non-linear system (89), we obtain the linearized
system

Mẍ+Cẋ+K (x+ x0) = F+ FNL (x0) + FL (x) (92)

with

FL (x) =















∂FXNL
∂X

∣

∣

∣

∣

∣

x0

∂FXNL
∂Y

∣

∣

∣

∣

∣

x0

∂F YNL
∂X

∣

∣

∣

∣

∣

x0

∂F YNL
∂Y

∣

∣

∣

∣

∣

x0















.x (93)

The terms of the vectorFL (x) =
{

FXL (x) F YL (x)
}T

at the equilibrium pointx0 for small perturbationsx are
given by

FXL (x) = (− tan θ + µ)
(

2k12
(

tan2 θX0X + Y0Y − tan θY0X − tanθX0Y
)

+3k13
(

tan3 θX2
0X + 2 tan2 θX0Y0X + tan θY 2

0 X + 2 tan θX0Y0Y − Y 2
0 Y

))

+(1 + µ tan θ)
(

2k22X0X + 3k23X
2
0X − tan2θX2

0Y
)

(94)

F YL (x) = −2k12
(

Y0Y + tan θY0X + tan2 θX0X − tan θX0Y − tan θY0X
)

+3k13
(

2 tan θX0Y0X − Y 2
0 Y + tan θY 2

0 X − tan2 θX2
0Y − 2 tan2 θX0Y0X + tan3 θX2

0X
)

(95)
Finally, the linearized equation of the non-linear system at the equilibrium pointx0 is given by

Mẍ+Cẋ+ (K−KL)x = 0 (96)

with
FL (x) = KLx (97)

Then, the stability analysis may be carried out by determining the eigenvalues of the matrixA given by

A =

[

0 I

−M−1 (K−KL) −M−1C

]

(98)

The eigenvaluesλ of A can be expressed as
λ = a+ ib (99)

wherea is the real part, andb is the imaginary part of the eigenvalue, respectively. If all eigenvalues have their real
parta negative or zero, the system is stable. If one or more eigenvalues have their real parta positive, the system is
unstable. Therefore,b represents frequency of the unstable mode. It clearly appears that the stability analysis may be
applied for large non-linear systems and practical computational implementation can be easy and systematic.
Another classic approach for investigating the stability of non-linear systems is the Routh-Hurwitz criteria [48]. In
this case, the fourth-degree characteristic polynomial ofthe linearized system (96) is investigated. It has the form
λ4 + a3λ

3 + a2λ
2 + a1λ + a0 = 0. The system is stable if the three following relations are verified: (a) a3 > 0;

(b) a2a3 − a1 > 0; (c) a1 (a2a3 − a1) − a1a
2
3 > 0. Even if this approach has advantages in determining analytical

expressions of stability criteria versus all the parameters of the non-linear system, the estimate of these expressions is
very difficult to obtain for non-linear systems with many degrees-of-freedom.
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3.2.2 Hopf bifurcation point

Moreover, one of the important points is the determination of the Hopf bifurcation point. This point defines the
limit between the stable and unstable areas of non-linear systems. Moreover, the non-linear behaviour of an unstable
dynamical system is usually estimated around this Hopf bifurcation point when the system becomes unstable. The
Hopf bifurcation point can be defined as follows























Re (λcenter (µ)) |x=x0,µ=µ0 = 0

Re (λno−center (µ)) |x=x0,µ=µ0 6= 0

d

dµ
(Re (λ (µ))) |µ=µ0 6= 0

(100)

The first condition implies that the system (96) has a pair of purely imaginary eigenvaluesλcentre while all of its other
eigenvaluesλno−centre have nonzero real parts at(x = x0, µ = µ0). The last condition of (113), called a transversally
condition, implies a transversal or nonzero speed crossingof the imaginary axis, as shown in Figure 6.

3.2.3 Computational stability analysis

The following parameters will be used for the computationalstability analysis and the associated parametric studies:
the friction coefficientµ = 0.3; the brake forceFbrake = 1N ; the equivalent mass of the first and second modes
m1 = m2 = 1kg; the equivalent damping of the first and second modesc1 = c2 = 5N/m/sec; the coefficients of
the linear, quadratic and cubic terms of the stiffnessk1 for the first mode,k11 = 1.105N/m, k12 = 1.106N/m and
k13 = 1.106N/m, respectively; the coefficients of the linear, quadratic and cubic terms of the stiffnessk2 for the
second mode,k12 = 1.106N/m, k12 = 1.105N/m andk13 = 1.105N/m, respectively; the angleθ = 0.2rad..
Firstly, the computations are conducted with respect to thebrake friction coefficientµ. The Hopf bifurcation point
is detected forµ = µ0 = 0.204. A representation of the evolution of frequencies against brake friction coefficientµ
is given in Figure 5. In Figure 6, the associated real parts are plotted; the real part of eigenvalues is negative when
µ < µ0. As the friction coefficientµ increases, the two modes move closer until they reach the bifurcation zone. We
obtain the coalescence forµ = µ0 of two imaginary parts of the eigenvalues (frequency about 50 Hz). Forµ = µ0 ,
there is one pair of purely imaginary eigenvalues. All othereigenvalues have negative real parts. After the bifurcation,
the real part of eigenvalues is positive. In conclusion, thesystem is unstable forµ ≤ µ0, and stable forµ > µ0 .
Then, stability analysis versus two parameters can be easily carried out by numerically determining the evolution of
the real part and imaginary part of the eigenvalues. For example, parametric studies are shown in Figures 7-14; Figures
7(a)-14(a) indicate the stable and unstable areas versus the evolution of parameters and Figures 7(b)-14(b) show the
evolution of the frequencies in the complex plane. Consequently, stability analysis is a very complex problem: stable
and unstable regions can be obtained by varying parameters and there are an infinite number of combinations of
parameters that could be examined. This is why computational parametric studies are very interesting and useful in
order to obtain general indications for parametric design studies.
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Figure 5: Evolution of the frequencies versus the friction coefficient
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Figure 6: Evolution of the real parts versus the friction coefficient

0 0.5 1 1.5 2 2.5

x 10
7

0

10

20

30

40

50

60

70

80

90

100

F
br

ak
e 

(N
)

k12 (N/m²)

STABLE 

UNSTABLE 

(a) Stable/Unstable areas

−30 −20 −10 0 10 20 30
30

35

40

45

50

55

60

Real part 

F
re

qu
en

cy
 (

H
z)

(b) Evolution of frequencies

Figure 7: Stability analysis versusFbrake andk12
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Figure 8: Stability analysis versus the sprag-slip angle and the friction coefficient
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Figure 9: Stability analysis versus the friction coefficient andm1
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Figure 10: Stability analysis versus the the friction coefficient andk11
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Figure 11: Stability analysis versus the sprag-slip angle andk11

0 0.5 1 1.5 2

x 10
5

0

10

20

30

40

50

60

70

80

90

100

F
br

ak
e 

(N
)

k11 (N/m)

STABLE STABLE 

UNSTABLE 

(a) Stable/Unstable areas

−50 −25 0 25 50
40

42

44

46

48

50

52

54

56

58

60

Real part

F
re

qu
en

cy
 (

H
z)

(b) Evolution of frequencies

Figure 12: Stability analysis versusk11 andFbrake
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Figure 13: Stability analysis versus the friction coefficient andFbrake
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Figure 14: Stability analysis versusk11 andm1

3.3 Non-linear dynamic: classical approach

While stability analysis conducted using the determination of the eigenvalues of the linearized equation at the equi-
librium point are extremely useful in evaluating the effectof changes in various parameters, they can not evaluate the
vibration amplitudes at the instability region and more particularly near the Hopf bifurcation point. In this case, the
time-history solutions of the full set of the non-linear equations (89) can evaluate the non-linear dynamic behaviour
of a system in near-critical steady-state equilibrium point.
These time-history responses of the non-linear system can be calculated by using a classic fourth-order Runge-Kutta
algorithm. Figures 15 and Figures 16 show the transient response analysis and the predicted non-linear vibration
amplitudes of the displacementX(t) and the velocityẊ(t) at the instability regionµ = 1.001µ0, respectively. We
observe that the displacementX(t) and velocityẊ(t) grow until we obtain the periodic oscillations of the non-linear

dynamical behaviour of the system. Then, the evolution of the associated limit cycle amplitude
(

X, Ẋ
)

can be
evaluated at the instability regionµ = 1.001µ0, as illustrated in Figure 17. The time-history of the displacement
Y (t) and the velocityẎ (t) at the instability regionµ = 1.001µ0 are plotted in Figure 18 and 19, respectively; the

associated limit cycle amplitude
(

Y, Ẏ
)

is shown in Figure 20.
Even if the time-history response solutions have been obtained using a fourth-order Runge-Kutta algorithm to integrate
the non-linear equations (89), this procedure is rather expensive and consumes considerable resources both in terms
of the computation time and in terms of the data storage requirements when extensive parametric design studies are
needed. As explained in Section 2.1, various non-linear methods can be applied to find the non-linear response of this
dynamical system. For example, it may be possible to assume the non-linear vibration amplitudes of the displacements
X(t) andY (t) as truncated Fourier series. The numerical estimate of thissolution should be obtained by applying
such non-linear methods as the trigonometric collocation method, and the various harmonic balance methods for
example ([132], [134], [149], [111], [109], [143], [113], [25], [129] and [174]). All these numerical methods can be
commonly applied to solve non-linear problems; however, the most efficient methods are those that first reduce and
simplify the non-linear original system. Then we may use thenon-linear methods that enable approximation of the
solution. By adopting this step and a succession of non-linear methods, each method is used in an optimal way and the
final reduced and approximated system can be considered as one of the simplest forms possible. So an understanding
of the behaviour of the non-linear system first requires simplification and reduction of the equations. In order to obtain
the non-linear reduced and simplified system, the centre manifold approach and the rational fractional approximants
will be used in this study.
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Figure 15: Evolution of the displacementX(t) for µ = 1.001µ0 by using Runge-Kutta 4
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Figure 16: Evolution of the velocitẏX(t) for µ = 1.001µ0 by using Runge-Kutta 4
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Figure 17: Limit cycles (X, Ẋ) for µ = 1.001µ0 by using Runge-Kutta 4
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Figure 18: Evolution of the displacementY (t) for µ = 1.001µ0 by using Runge-Kutta 4
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Figure 19: Evolution of the velocitẏY (t) for µ = 1.001µ0 by using Runge-Kutta 4
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Figure 20: Limit cycles (Y, Ẏ ) for µ = 1.001µ0 by using Runge-Kutta 4
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3.4 Reduced non-linear system via the centre manifold approach

3.4.1 Non-linear formulation of the problem

In order to apply the centre manifold approach to reduce and to simplify the original non-linear system without losing
the effect of the non-linear terms, the complete non-linearsytem (89) may be rewritten about the equilibrium point

x0 for small perturbationsx in state variablesy =
{

x ẋ
}T

.
The complete non-linear equation of the system (89) is givenby

Mẍ+Cẋ+Kx = PNL (x) (101)

whereẍ, ẋ et x are the acceleration, velocity and displacement response two-dimensional vectors of the degrees of
freedom, respectively.M, C andK are the mass matrix, the damping matrix and the stiffness matrix, respectively.

PNL =
{

PXNL (x) P YNL (x)
}T

contains the linear and non-linear terms of the system. By considering equations
(93-95),PNL has the form

PXNL (x) = FXL (x) + FXNL (x) (102)

P YNL (x) = F YL (x) + F YNL (x) (103)

whereFXL (x) et F YL (x) are the linear terms ofPXNL (x) andP YNL (x) at the equilibrium pointx0, as defined in
equations (93) and (95).FXNL (x) andF YNL (x) defines the purely non-linear term ofPXNL (x) et P YNL (x) at the
equilibrium pointx0. These expressions are given by

FXNL = k12 (− tan θ + µ)
(

tan2 θX
2
+ Y

2
− 2 tan θY X

)

+ k13 (− tan θ + µ)
(

tan3 θ
(

X
3
+ 3X

2
X0

)

−3 tan2 θ
(

Y X
2
+ 2Y XX0 +X

2
X0

)

+ 3 tan θ
(

XY
2
+ Y XY0 + Y

2
XY0

)

− Y
3
− 3Y

2
Y0
)

+k22 (1 + µ tan θ)X
2
+ k23 (1 + µ tan θ)

(

X
3
+ 3X

2
X0

)

(104)
F YNL = k12

(

Y
2
− 2 tan θXY + tan2 θX

2
)

+ k13
(

Y
3
+ 3Y

2
Y0
)

− 3 tan θ
(

Y
2
X + 2XY Y0 + Y

2
X0

)

+3 tan2 θ
(

X
2
Y + 2Y Y X0 +X

2
Y0
)

− tan3
(

X
3
+ 3X

2
Y0
)

(105)
Then, the non-linear system can be rewritten at the equilibrium point x0 = {X0 Y0}

T for small perturbations

x =
{

X Y
}T

Mẍ+Cẋ+Kx =
2
∑

i=1

f i(1)xi +
2
∑

i=1

2
∑

j=1

f
ij

(2)xixj +
2
∑

i=1

2
∑

j=1

2
∑

k=1

f
ijk

(3)xixjxk (106)

where the coefficientsf i(1), f
ij

(2) andf ijk(3) define the linear, quadratic and cubic terms of the system.

By rearranging the linear terms on the left with̃Kx = Kx−
∑2
i=1 f

i
(1)xi the expression of the non-linear system is

Mẍ+Cẋ+ K̃x =
2
∑

i=1

2
∑

j=1

f
ij

(2)xixj +
2
∑

i=1

2
∑

j=1

2
∑

k=1

f
ijk

(3)xixjxk (107)

Finally, the non-linear equations of the system are writtenin state variablesy =
{

x ẋ
}T

ẏ = Ay +
4
∑

i=1

4
∑

j=1

q
ij

(2)yiyj +
4
∑

i=1

4
∑

j=1

4
∑

k=1

q
ijk

(3)yiyjyk (108)

with

A =

[

C M

I 0

]−1 [

K̃ 0

0 I

]

(109)
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q(2) =

[

C M

I 0

]−1{

f(2)
0

}

(110)

q(3) =

[

C M

I 0

]−1{

f(3)
0

}

(111)

whereqij

(2) andqijk

(3) are the quadratic and cubic non-linear terms of the system (107) in state variablesy =
{

x ẋ
}T

.

3.4.2 Application of the centre manifold approach

The centre manifold method allows reduction of a non-linearsystem to a lower-dimensional form near the Hopf
bifurcation point. As explained in Section 2.2, the previous system (108) can be written at the Hopf bifurcation point
in the form

{

v̇c = Jcvc +G2(vc,vs) +G3(vc,vs)

v̇s = Jsvs +H2(vc,vs) +H3(vc,vs)
(112)

In this example, we consider the physically interesting case of the stable equilibrium losing stability and the first
coupling modes that is the most commonly studied cases in thefield of mechanical engineering. So, there are two
centre variablesvc = {vc1 vc2}

T and two stable variablesvs = {vs1 vs2}
T . Jc andJs have eigenvaluesλ such

thatRe (λJc
(µ0)) = 0 andRe (λJs

(µ0)) 6= 0. G2, G3, H2 andH3 are the matrices containing the quadratic and
cubic terms for the centre variablesvc and the stable variablesvs, respectively. All the properties ofG2, G3, H2 and
H3 are given in Section 2.2.
In this study, we consider the application of the centre manifold approach near the Hopf bifucation point. In this case,
the previous system (112) is augmented with the control/unfolding parameter̂µ = µ0 + µ as follows















v̇c = Jc (µ̂)vc +G2(vc,vs, µ̂) +G3(vc,vs, µ̂)

v̇s = Js (µ̂)vs +H2(vc,vs, µ̂) +H3(vc,vs, µ̂)

˙̂µ = 0

(113)

At the point (vc,vs, µ̂) = (0,0, 0), the non-linear system has three centre variables with the centre space(vc, µ̂)
associated. As explained in Section 2.2 the centre manifoldtheory (Carr [28]) allows the expression of the stable
variablesvs as a power seriesh in (vc, µ̂) of degreep (with p < 1). We obtain

vs = h (vc, µ̂) =
m
∑

p=i+j+l=2

p
∑

j=0

p
∑

l=0

aijlv
i
c1v

j
c2µ̂

l (114)

whereaijl is the vector of the centre manifold coefficients. We recall that the polynomial approximationsh do not
contain constant and linear terms in order to verify the tangency conditions at the Hopf bifurcation point to the centre
eigenspace:h (0,0, 0) = 0; Dvc

hi (0,0, 0) = 0 for 1 ≤ i ≤ 2; ∂h∂µ̂ (0,0, 0) = 0.
More precisely, the stable variables are defined by

vs =

{

vs1

vs2

}

=

{

h1 (vc)

h2 (vc)

}

=



























m
∑

p=i+j+l=2

p
∑

j=0

p
∑

l=0

a1,ijlv
i
c1v

j
c2µ̂

l

m
∑

p=i+j+l=2

p
∑

j=0

p
∑

l=0

a2,ijlv
i
c1v

j
c2µ̂

l



























(115)

It may be noted that the termsvc1µ̂, vc2µ̂, vs1µ̂ et vs2µ̂ are now used as non-linear quadratic terms. The value of the
coefficientsak,ijl (with 1 ≤ k ≤ 2) is obtained by solving the following system

Dvc,µ̂ (h (vc, µ̂)) (Jcvc +G2 (vc,h (vc, µ̂) , µ̂) +G3 (vc,h (vc, µ̂) , µ̂))
= Jsh (vc, µ̂) +H2 (vc,h (vc, µ̂) , µ̂) +H3 (vc,h (vc, µ̂) , µ̂)

(116)

By substituting the assumed polynomial approximationh into (116), and equating the coefficients of the different
terms in the polynomials on both side, a system of algebraic equations is obtained and the coefficientsak,ijl (with
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1 ≤ k ≤ 2) are obtained.
Then, the reduced system is defined by

{

v̇c = Jc (µ̂)vc +G2(vc,h (vc, µ̂) , µ̂) +G3(vc,h (vc, µ̂) , µ̂)

˙̂µ = 0
(117)

Even though the centre manifold approach is very interesting due to the reduction of the system to a lower-dimensional
form near the bifurcation point, we observe that determining the coefficientsak,ijl (with 1 ≤ k ≤ n wheren defining
the number of the stable variables is a complex problem. It iseasy to obtain the analytical expressions of these
coefficients for a small-dimensional system with few non-linear terms. However, in the case of large-dimensional
systems with complex non-linear terms, it would be impossible to obtain an analytical expression of the coefficient
ak,ijl (with 1 ≤ k ≤ 2) due to the complexity of the polynomial approximations andthe important number of
non-linearities where the centre, stable and unstable variables are non-linearly coupled.

In the next section, we propose a computational procedure todetermine the numerical values of the coefficients
ak,ijl (with 1 ≤ k ≤ n wheren is the number of stable variables) in the general case of ap-dimensional system with
three centre variables(vc1, vc2, µ̂) andn stable variablesvs = {vs1 vs2 · · · vsn}

T . The general form of the
non-linear system (113) is























v̇c = Jcvc +
[

Gij(2)

]

v ⊗ v +
[

Gik(3)

]

v ⊗ v ⊗ v

v̇s = Jsvs +
[

H ij
(2)

]

v ⊗ v +
[

H ik
(3)

]

v ⊗ v ⊗ v

˙̂µ = 0

(118)

with v =
{

vc
T vs

T µ̂
}T

. ⊗ defines the Kronecker product [180]. We assume thatdim (vc) = 2 anddim (vs) =

n. So, thatdim (v) = n+3. Gij(2),G
ik
(3),H

lj
(2) andH lk

(3) are the quadratic and cubic terms (with1 ≤ i ≤ 2, 1 ≤ l ≤ n,

1 ≤ j ≤ (n+ 3)2 and1 ≤ k ≤ (n+ 3)3).

3.4.3 Computational determination of the second order approximation

The computational procedure applied for determining the centre manifold coefficients consists of a systematic method
using the increasing power of equation (116).
If the stable variables are approximated by using only a second order polynomial expression in the centre variables
{

vc
T µ̂

}T
= {vc1 vc2 µ̂}T , the expressions of the stable variablesvs are given by

vs = h(1)(vc, µ̂) =
2
∑

p=i+j+l=2

p
∑

j=0

p
∑

l=0

aijlv
i
c1v

j
c2µ̂

l

= a200v
2
c1 + a110vc1vc2 + a020v

2
c2 + a101vc1µ̂+ a011vc2µ̂+ a002µ̂

2 (119)

with a200, a110, a020, a101, a011 anda002 then-dimensional unknown vectors of the stable variables. The determi-
nation of then× 6 coefficients (withn the number of the stable variables) is obtained by considering only the second
order terms of (116) that are defined by

Dvc,µ̂

(

h(1)(vc, µ̂)
)

Jcvc − Jsh
(1)(vc, µ̂)−H2(vc, µ̂) = 0 (120)

This expression is the exact system for second order polynomial approximation. By considering thekth-vector of the
second order coefficients for thekth-state variable

a2k = {ak,200 ak,110 ak,020 ak,101 ak,011 ak,002}
T (121)
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and by equating the coefficients of the different terms in thepolynomials on both sides, the relation (120) has the form

























J1,2 0 · · · · · · 0

0
.. . . . .

...
...

.. . Jk,2
. . .

...
...

. . . . . . 0
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where

Jk,2 = diag [2Jc1 − Jsk Jc1 + Jc2 − Jsk 2Jc2 − Jsk Jc1 − Jsk Jc2 − Jsk Jsk] (123)

Ck,2 = diag
[

Hk,1
(2) Hk,2

(2) +Hk,n+2
(2) Hk,n+3

(2) Hk,n+1
(2) +H

k,n(n+1)+1
(2) H

k,2(n+1)
(2) +H

k,n(n+1)+2
(2) −H

k,(n+1)2

(2)

]

(124)
Jc1 andJc2 are the first and second terms of the diagonal matrixJc as defined in (118).Jsk is thekth term of the
diagonal matrixJs as defined in (118).Hk,i

(2) defines thekth-line andith-column of the matriceH2. Then, the linear
equations (122) can be written in the compact form

J2a
2 = C2 (125)

with
J2 = diag [J1,2 · · · Jk,2 · · ·Jn,2] (126)

a2 =
[

a21 · · · a
2
k · · · a

2
n

]T
(127)

C2 = diag [C1,2 · · ·Ck,2 · · ·Cn,2] (128)

Finally, then× 6 unknown coefficients of the second order approximation contained in the vectora2 are obtained by

a2 = J2
−1C2 (129)

J2 is a(6× n) × (6× n) diagonal matrix.C2 is a(6× n)-dimensional vector containing constant terms. All these
matrices can be obtained numerically by using the relation (120). As indicated in equations (120) and (124), only
the non-linear terms of the second order polynomial expressions ofH2 are considered for the determination of the
second order coefficientsa2 of the centre manifold approximation. We can easily show that though the second order
approximation is not sufficient to correctly describe the non-linear dynamic of the original system, the methodology
and the centre manifold theory are not in question; this discrepancy reflects only the fact that the approximation
of the stable variablesvs as a power series in(vc, µ̂) of degree 2 is not sufficient and does not represent a good
approximation of the effect of the stables variablesvs on the centre manifold basis.

3.4.4 Computational determination of the third order approximation

In many cases, the second order approximation is not sufficient to obtain a good approximation of the non-linear
behaviour of the original system. This is due merely to the fact that the reduced system obtained by using only the
second order approximation contains only a small portion ofthe non-linear expression of the original system. As
explained previously, the second order approximation usesonly the quadratic terms of the centre variables of the left
of (116).
So, the third order approximation can be used to enhance the approximation of the stable variablesvs as a power

series in the centre variables
{

vc
T µ̂

}T
. We have

vs = h(vc, µ̂) =
3
∑

p=i+j+l=2

p
∑

j=0

p
∑

l=0

aijlv
i
c1v

j
c2µ̂

l (130)
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This developped expression can be written as follow

vs = h(2)(vc, µ̂) = h(1)(vc, µ̂) + a300v
3
c1 + a210v

2
c1vc2 + a120vc1v

2
c2 + a030v

2
c2

+a201v
2
c1µ̂+ a111vc1vc2µ̂+ a021v

2
c2µ̂+ a102vc1µ̂

2 + a012vc2µ̂
2 + a003µ̂

3 (131)

All the coefficients of the second order have been determinedpreviously. Now, we only need to find the10 × n
coefficients of the third order approximation (withn defining the number of stable variables). This can be obtained
by considering the third order terms in the polynomials on both sides in (116):

Dvc,µ̂

(

h(2)(vc, µ̂)
)

Jcvc +Dvc,µ̂

(

h(1)(vc, µ̂)
)

G2(vc, µ̂)− Jsh
(2)(vc, µ̂)

−H2

(

[vc,0, µ̂]⊗ [vc,h
(1)(vc, µ̂), µ̂] + [0,h(1)(vc, µ̂)]⊗ [vc,0, µ̂]

)

−H3(vc, µ̂) = 0
(132)

Then the determination of the coefficientsak,ijl of the third order can be obtained by augmenting the system defined
in equation (125):

[

J2 0

D2,3 J3

]{

a2

a3

}

=

{

C2

C3

}

(133)

where
a3 =

[

a31 · · · a
3
k · · · a

3
n

]T
(134)

a3k = {ak,300 ak,210 ak,120 ak,030 ak,201 ak,021 ak,102 ak,012 ak,111 ak,003}
T (135)

J2, C2 anda2 have been previously defined in equations (126-128).J3 is a(10 × n)× (10× n) diagonal matrix and
D2,3 is a(10× n)× (6× n) matrix that defines the contribution of the second order coefficients.C3 is a(10× n)-
dimensional vector containing constant terms. All these matrices can be obtained numerically by using the relation
(132). Then the coefficientsa3 of the third order approximation are obtained by

a3 = J3
−1
(

C3 +D2,3a
2
)

= J3
−1
(

C3 +D2,3J2
−1C2

)

(136)

We note that the third order approximation uses the values ofthe coefficient of the second order approximation. More-
over, a part of the quadratic non-linear terms in centre variables on the left side of (116) contained inG2 defined in
equation (113). Cubic terms of the centre variables contained inH3, defined in equation (113), and quadratic terms
of stable variables contained inH2, defined in equation (113), are used. This clearly indicatesthat the third order
approximation enables consideration of more non-linear terms than the second order approximation. So, it is clear
that the third order approximation allows a better approximation than the second order approximation with the con-
tribution of most non-linear terms. As in the case of the second order approximation, if the estimate of the stable
variablesvs in a power series in(vc, µ̂) of degree 3 is not sufficient and does not represent a good approximation of
the contributions of the stables variables on the centre manifold basis, the determination of theqth-order is necessary
(with q ≥ 4).
Finally, one of the important points to be noted here is that the number of equations in terms of the unknown co-
efficientsak,ijl naturally increases in comparison with the second order; this implies that obtaining an analytical
expression of these coefficienstak,ijl may quickly become impossible if the order of the stable variables in power
series of centre variables increases.

3.4.5 Computational determination of theqth order approximation

The determination of theqth order approximation can be generalized by using the same procedure as in Section 3.4.4.
The expression of the stable variablesvs as a power series in(vc, µ̂) of degreeq is defined by

vs = h(vc, µ̂) =
q
∑

p=i+j+l=2

p
∑

j=0

p
∑

l=0

aijlv
i
c1v

j
c2µ̂

l (137)

The vector of theqth order approximation for then stable variables has the form

aq =
[

a
q
1 · · · a

q
k · · · a

q
n

]T (138)
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It may be determined by solving the following system that is an extension of the system (133) for theqth order:
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Then the determination of the centre manifold coefficients for each order, and more particularly theqth-order may be
obtained successively:
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(
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aq = Jq
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Cq +
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Di,qa
i +Fq

(

a2, · · · ,aq−2
)





(140)

Moreover, the more the higher-order terms are used in order to approximate the stable variablesvs as a power series
of the centre variables(vc, µ̂), the more the effects of the non-linear terms appear in equations (116) and (139-140)
for the determination of coefficientsaq (with q > 2). As can be shown in equations (139-140), the determinationof
coefficientsaq (with q > 2) can be obtained order by order, and there is no need to recalculate the lower-order for a
new evaluation of polynomial approximationvs = h(vc, µ̂). Finally, the analytical expressions for the coefficients
a2 anda3 of second-order and third-order polynomial approximations ofvs = h(vc, µ̂) are proposed in Annexe A.

3.4.6 Numerical estimate of the reduced system via the centre manifold approach

By using the procedure defined in Section 3.4.5, the originalsystem (112) is reduced to a three-dimensional form near
the Hopf bifurcation pointµ = µ0 + µ whereµ0 is the Hopf bifurcation point andµ = εµ0 (with ε≪ 1):

{

v̇c = Jc (µ)vc +G2 (vc,h (vc) , µ) + +G3 (vc,h (vc) , µ)
µ̇ = 0

(141)

When the limit cycles are determined near the Hopf bifurcation point (withε very small), the expressionsh (vc, µ)
may be approximated by the simplified expressionh (vc) with negligible errors; in this case we haveµ = O (vc).
The purpose of this consideration is to simplify the expression of the reduced system (141). This approximation thus
amounts to the expression ofvs at the Hopf bifurcation pointµ0 with aijl ≡ 0 for l 6= 0. In other words, it is not
necessary, but nonetheless allows the simplification of theexpression of (141); this simple extension and simplifica-
tion to the centre manifold method is useful when dealing with parameterised families of sys-tems. Therefore, the
non-linear terms may be approximated by their evaluation atthe bifurcation pointµ0, provided that none of the lead-
ing non-linear terms vanish here; so the approximationG2 (vc,h (vc) , µ) andG3 (vc,h (vc) , µ) are equivalent to
G2 (vc,h (vc) , µ0) andG3 (vc,h (vc) , µ0) with negligible error due to the fact thatε is very small.
Finally, an application of the centre manifold theorem to the original system (112) shows that if the equilibrium is
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preserved, then the reduced dynamics atµ = µ0 + µ is given with small errors by
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v̇c = Jc (µ)vc +G2 (vc,h (vc) , µ0) +G3 (vc,h (vc) , µ0)
µ̇ = 0
µ = µ0 (1 + ε) (ε≪ 1)

vs = h (vc) =
q
∑

p=i+j=2

p
∑

j=0

aijv
i
c1v

j
c2 (q ≥ 2)

(142)

Now, the centre manifold reduction is applied to the system (112). Using an approximation ofh of order 2 causes
divergence in the evolutions of limit cycle amplitudes. This is only due to the fact that a polynomial approximation
of h of order 2 is not sufficient to describe with low errors the expressions of the stable variablesvs and their effects
in the reduced system (142). Using an approximation ofh of order 3, 4 or 5 allows good correlations between the 4-
dimensional original system and the 2-dimensional reducedsystem, as illustrated in Figures 21 and 22. Consequently,
the centre manifold approach is validated; in this case, we reduce the number of equations of the original system (112)
from 4 to 2 in order to obtain the simplified system (142) without losing the dynamics of the original system as well
as the effects of non-linear terms. Then, this reduced system will be easier to study than the original one. Moreover,
one of the most important points is the determination of polynomial approximations and the estimate of power that
defines the expressions of stable variables versus centre variables: the more complex the expressions of the stable
variablesvs and the associated polynomial approximationh are, the more interesting the estimate of the reduced
system is, allowing us to obtain an estimate of the non-linear dynamics of (142) near (112), as illustrated in Figures
21 and 22. However, the more complex the expressions of thevs andh are, the more costly and time consuming the
computations are.
Finally, it may be noted that the more complex the non-linearsystem is, with many degrees-of-freedom, the more
interesting the centre manifold approach is, allowing us toreduce the original system from a m-dimensional form to
a lower-dimensional form and to save time.
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Figure 21: Limit cycle (X, Ẋ) by using the center manifold approach forµ = 1.001µ0
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Figure 22: Limit cycle (Y, Ẏ ) by using the center manifold approach forµ = 1.001µ0

3.5 Simplified non-linear system via the multivariable approximants

As indicated in the previous section, the centre manifold approach reduces a non-linear system with many degrees
of freedom to a lower-dimensional form near the Hopf bifurcation point. However, it may be observed that this non-
linear method swaps a non-linear system with a high number ofdegrees of freedom with a ”simple” non-linearity
for one with fewer degree of freedom, but a more complicated non-linearity. Moreover, the formal centre manifold
approximation is not difficult to determine; but, obtainingthe coefficients associated which each term of the stable
variables may pose particularly serious difficulties. Thisis why the sole use of the centre manifold approach is not
very convenient, requiring a great deal of labour, especially for the calculation of the coefficients defined previously.
Due to the fact that the centre manifold can have complicatednon-linear terms, further non-linear methods are applied
after the centre manifold reduction. In this study, the rational fractional approximants are used; the interest of these
multivariable approximants is that they require fewer terms than the associated Taylor series in order to obtain an
accurate approximation of a non-linear function: they allow the computation of an accurate approximation of the non-
linear functionf (x) even at values ofx for which the Taylor series off diverge. We will consider this last property
of the rational fractional approximants in this paper in order to augment the domain of validity of the series previously
obtained by using the centre manifold approach with aqth-order polynomial approximationh of the stable variables
vs in the centre variables(vc). This property may be very interesting in regard to the appropriate order of the centre
manifold polynomial approximationh needed to obtain a good correlation between the reduced system via the centre
manifold method and the original system.
Moreover, the objective is to approximate the non-linear terms by using rational polynomial approximants: the use of
the rational approximants allows us to simplify the non-linear system and to obtain the non-linear dynamical responses
of the system more easily and rapidly.

3.5.1 Transformation from the centre manifold form to the fractional approximants form

Before applying the fractional rational approximants, thenon-linear reduced system expressed in the centre manifold
basis is transformed in a power seriesvc1 andvc2. The expressions ofG2 (vc,h (vc)) andG3 (vc,h (vc)) can be
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developped as follows
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G3 (vc,h (vc)) =
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whereϕ1,ij andϕ2,ij are the constant coefficients from the quadratic expressions of (142), andγ1,ij et γ2,ij are the
constant coefficients from the cubic expressions of (142).
By considering (142-144), the non-linear system (142) can be rewritten as follows:
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wherec1,ij et c2,ij are the coefficients associated with the powervic1v
j
c2 (i+ j ≥ 1) for vc1 andvc2, respectively.

Finally, the reduced system (142) may be rewritten as follows
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(146)

We now consider the Symmetric-Off-Diagonal (SOD) approximants (m1 = m2 = M andn1 = n2 = N ) to
fk (vc1, vc2). The choice of the SOD-approximants instead of the GOD-approximants is only due to the fact that the
two centre variablesvc1 andvc2 are assumed to be of the same order and then to have the same effect for the non-
linear dynamical befaviour of the system. Moreover, the SOD-approximants are preferred instead of the Chisholm
approximants because they enable consideration of more complex expressions of the non-linear approximation. As
explained in Section 2.4 the SOD approximants[M/N ]fk (vc1, vc2) associated with the system (146) have the general
form

[M/N ]fk (vc1, vc2) =

M
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M
∑
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nk,αβv
α
c1v

β
c2

N
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α
c1v

β
c2

(for 1 ≤ k ≤ 2) (147)

where[M/N ]fk (vc1, vc2) is the rational function for thekth-variablevck with a numerator of degreeM and a denom-
inator of degreeN .

3.5.2 Computational determination of the fractional approximants coefficients

As explained in Section 2.4, the SOD approximants[M/N ]fk satisfies thek relations

3m
∑

i=0

3m
∑

j=0
2≤i+j≤3m

ck,ijv
i
c1v

j
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c2 (for 1 ≤ k ≤ 2) (148)
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where as many coefficientsek,αβ as possible are equal to zero. Then, the coefficientsnk,αβ (for 1 ≤ k ≤ 2, 0 ≤
α ≤ M , and0 ≤ α ≤ M ) anddk,αβ (for 1 ≤ k ≤ 2, 0 ≤ α ≤ N , and0 ≤ α ≤ N ) are determined by matching
the coefficients for identical powervαc1v

β
c2, as indicated in equations (58-60). The equations obtainedby matching the

coefficients in (148) are
dk,00 = 1 (149)

α
∑

i=0

β
∑

j=0

dk,ijck,α−i,β−j = nk,αβ 0 ≤ α ≤M, 0 ≤ β ≤M (150)

α
∑

i=0

N
∑

j=0

dk,ijck,α−i,β−j = 0 0 ≤ α < N, M < β ≤M +N − α (151)

N
∑

i=0

β
∑

j=0

dk,ijck,α−i,β−j = 0 M ≤ α < M +N − β, 0 ≤ β < N (152)

ν
∑

i=0

N
∑

j=0

dk,ijck,ν−i,M+N+1−ν−j + dk,jick,M+N+1−ν−i,ν−j = 0 1 ≤ ν ≤ N (153)

with 1 ≤ k ≤ 2. After normalizingdk,00 to unity as indicated in (149), there arek ×
(

(M + 1)2 + (N + 1)2 − 1
)

unknown coefficients in equations (150-153). The first step is the determination of thek×
(

(N + 1)2 − 1
)

unknown

coefficientsdk,ij. It is useful to introduce the lattice space diagram to indicate the regions in which the termsvαc1v
β
c2

are to be matched, as illustrated in Figure 23.k× (N (N + 1) /2) equations arise from each of (151) and (152) which
are obtained by matching terms of the two triangular regionsS3. Now,k ×N equations arise from (153) obtained by
equating to zero the sums of the coefficients of the pairsvαc1v

β
c2 andvβc1v

α
c2. These pairs are indicated in the regionsS4

by the the two associated pointsAk (with k = 1, 2, . . . , N ). Finally, thek×
(

(N + 1)2 − 1
)

coefficientsdk,ij can be

achieved by solving thek×
(

(N + 1)2 − 1
)

linear equations (151-153). Next, thek×
(

(M + 1)2
)

coefficientsnk,ij

may be found by directly solving the equations (150); the associated termsvαc1v
β
c2 are in the regionsS1

⋃

S2
⋃

S5.
In conclusion, It is easy to obtain the unknowm coefficientsnk,ij anddk,ij from equations (149-153). However, the

resolution of thek ×
(

(M + 1)2 + (N + 1)2
)

linear equations may be both time consuming and costly to perform,
and require a very large storage space. However, it is possible to apply a special process, called the ”‘prong method”’,
to rapidly compute the coefficients by taking the equations (149-153) in a special order. This computational process
reduces the calculation of all the coefficients to linear algebra with a lower triangular block by block resolution which
greatly simplifies the determination of the coefficientsnk,ij anddk,ij.

Figure 23: Lattice space for the SOD approximants
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The first step in the ”‘prong method”’ ([3], [74] and [75]) consists of determining the denominator coefficients
dk,ij. As explaind previously, the determination of this coefficients can be achieved by considering the pairs of two
regionsS3 andS4. However, it may be observed that thek × (N + 1) coefficientsdk,i,0 (with 0 ≤ i ≤ N ) are
matched by considering the segment of the lattice space(M + 1 ≤ α ≤M +N,β = 0). These equations written in
matrix form become











ck,M−N+1,0 · · · ck,M+1,0

...
...

ck,M,0 · · · ck,M+N,0





























dk,N,0
...

dk,0,0



















=



















0

...

0



















(154)

Similarly, the matching of thek×(N + 1) coefficientsdk,0,j (with 0 ≤ j ≤ N ) located on the segment(α = 0,M + 1 ≤ β ≤M +N
produces











ck,0,M−N+1 · · · ck,0,M+1

...
...

ck,0,M · · · ck,0,M+N





























dk,0,N
...

dk,0,0



















=



















0

...

0


















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By normalizing equationdk,0,0 = 1, the two systems (154) and (155) may be rewritten in the following form
































ck,0,M−N+1 · · · ck,0,M 0 · · · 0 ck,0,M+1

...
...

...
...

...

ck,0,M · · · ck,0,M+N−1 0 · · · 0 ck,0,M+N

0 · · · 0 ck,M−N+1,0 · · · ck,M,0 ck,M+1,0

...
...

...
...

...

0 · · · 0 ck,M,0 · · · ck,M+N−1,0 ck,M+N,0

0 · · · 0 0 · · · 0 1































































































dk,0,N
...

dk,0,1

dk,N,0
...

dk,1,0

dk,0,0































































=































































0

...

0

0

...

0

1






























































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The previous system (156) may be written in the compact form

Ak,0dk,0 = uk (157)

wheredk,0 defines the(2×N + 1)-dimensional vector of the coefficientsdk,0,0, dk,0,i anddk,i,0(with 1 ≤ i ≤ N ).
uk is a column vector of dimension2 × N + 1 with unity in the(2×N + 1)th place and zeros elsewhere. Finally,
thekth vectordk,0 may be obtained:

dk,0 = Ak,0
−1uk (158)

Next, thek × (2×N − 1) coefficientsdk,1,1, dk,i,1 anddk,1,i (with 2 ≤ i ≤ N ) are obtained by matching terms
on the segments of the lattice space(M + 1 ≤ α ≤M +N − 1, β = 1) and (α = 1,M + 1 ≤ β ≤M +N − 1)
(defined in the two regionsS3 by the lines marked(1)), and on the symmetrized linked pair of points(1,M +N) and
(M + N, 1) (defined by the two pointsA1). The equations of the determination of these coefficients may be written
in the matrix form

Bk,11dk,0 +Ak,1dk,1 = 0 (159)

wheredk,1 defines the(2× (N − 1) + 1)-dimensional vector

dk,1 = {dk,1,N · · · dk,1,2 dk,N,1 · · · dk,2,1 dk,1,1}
T (160)

and

Ak,1 =

































ck,0,M−N+1 · · · ck,0,M−1 0 · · · 0 ck,0,M
...

...
...

...
...

ck,0,M−1 · · · ck,0,M+N−3 0 · · · 0 ck,0,M+N−2

0 · · · 0 ck,M−N+1,0 · · · ck,M−1,0 ck,M,0

...
...

...
...

...

0 · · · 0 ck,M−1,0 · · · ck,M+N−3,0 ck,M+N−2,0

ck,0,M · · · ck,0,M+N−2 ck,M,0 · · · ck,M+N−2,0 ck,M+N−1,0 + ck,0,M+N−1

































(161)
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Bk,11dk,0 defines a(2×N + 1)-dimensional vector of known quantity. Finally, thekth vectordk,1 may be obtained:

dk,1 = −Ak,1
−1Bk,11dk,0 (162)

By using an iterative process, the overall system of the equations involving the determination of thedk,p vectors (with
1 ≤ p ≤ N ) is defined by































Ak,0 0 · · · · · · · · · 0

Bk,11 Ak,1
. . .

...

Bk,21 Bk,22 Ak,2
. . .

...

Bk,31 Bk,32 Bk,33 Ak,3
. . .

...
...

...
...

. . . 0

Bk,N1 Bk,N2 Bk,N3 · · · Bk,NN Ak,N

















































































dk,0

dk,1

dk,2

dk,3

...

dk,N



















































=



















































uN

0

0

0

...

0



















































(163)

The matricesBk,ij (with 0 ≤ i ≤ N and1 ≤ i ≤ N ) are known. The(2N − 2i+ 1)-dimensional vectordk,i (with
1 ≤ i ≤ N ) may be obtained by a block by block inversion process.
These equations written in matrix form become































































dk,0 = Ak,0
−1uN

dk,1 = Ak,1
−1 (−Bk,11dk,0)

dk,2 = Ak,2
−1 (−Bk,21dk,0 −Bk,22dk,1)

dk,3 = Ak,3
−1 (−Bk,31dk,0 −Bk,32dk,1 −Bk,33dk,2)

...

dk,N = Ak,N
−1

(

−
N
∑

i=1

Bk,Nidk,i−1

)

(164)

This block by block process has been termed the ”‘prong method”’([74] and [75]). It may be observed that this process
takes the equations defined by (149) and (138-153) in a special order so that the computation of the coefficientsdk,ij
are simplified.

Finally, thek × (M + 1)2 numerator coefficientsnk,ij can be found easily by considering the relations (150). It may
be observed that the determination of these coefficients canbe achieved by considering the succesive orders:







































nk,0

nk,1

nk,2

...

nk,M







































=

























Ck,0 0 · · · · · · 0

Dk,11 Ck,1
. ..

...

Dk,21 Dk,22 Ck,2
.. .

...
...

...
. .. .. . 0

Dk,M1 Dk,M2 · · · Dk,MM Ck,M











































































dk,0

dk,1

dk,2

dk,3

...

dk,M


















































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All the matricesCk,i (with 0 ≤ i ≤ M ) andDk,jl (with 1 ≤ j ≤ M and1 ≤ l ≤ M ) are known and the vectordk,i

(with 0 ≤ i ≤ N ) have been obtained previously by using the ”‘prong method”’. Finally, the vector coefficientsnk,i

(with 0 ≤ i ≤M ) are defined by


















































nk,0 = Ck,0dk,0

nk,1 = Ck,1dk,1 +Dk,11dk,0

nk,2 = Ck,2dk,2 +Dk,21dk,0 +Dk,22dk,1

...

nk,M = Ck,Mdk,M +
M
∑

i=1

Dk,Midk,i−1

(166)
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3.5.3 Numerical estimate of the reduced and simplified system via the fractional approximants

The Symmetric-Off-Diagonal (SOD) approximants and the computational technique previously explained are applied
in order to simplify the non-linear expression of (146), that is a power series in(vc1, vc2) of degree 15, without
constant terms. The system (146) can be rewritten in SOD approximants by

{

˙vc1

˙vc2

}

=







































3m
∑

i=0

3m
∑

j=0
1≤i+j≤3m

c1,ij (µ) v
i
c1v

j
c2

3m
∑

i=0

3m
∑

j=0
1≤i+j≤3m

c2,ij (µ) v
i
c1v

j
c2







































=











































































[M/N ]f1(vc1,vc2) =

M
∑

α=0

M
∑

β=0

n1,αβ (µ) v
α
c1v

β
c2

N
∑

α=0

N
∑

β=0

d1,αβ (µ) v
α
c1v

β
c2

[M/N ]f2(vc1,vc2) =

M
∑

α=0

M
∑

β=0

n2,αβ (µ) v
α
c1v

β
c2

N
∑

α=0

N
∑

β=0

d2,αβ (µ) v
α
c1v

β
c2










































































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where all the coefficientsd1,αβ , d2,αβ (for i, j = 0, 1, ..., N ) andn1,αβ, n2,αβ (for i, j = 0, 1, ...,M ) are estimated by
using the ”‘prong method”’ [75] defined in the previous Section 3.5.2.
In order to obtain a good estimate of the non-linear behaviour of the system (167), the[5/4]fk(vc1,vc2) (with 1 ≤ k ≤ 2)
approximants are applied. An[M/N ]fk(vc1,vc2) approximation withM ≤ 4 andN ≤ 4 appears to be insufficient to
describe the dynamics of the original system: effectively,in some cases, computations diverge since the non-linearities
retained are not sufficient, and in other cases, the limit cycle amplitudes obtained are not acceptable due to the same
reasons. An[M/N ]fk(vc1,vc2) approximation withM ≥ 5 andN ≥ 4 gives a good correlation with the original
non-linear system as illustrated in Figures 24 and 25. We maynote in fact that the results from the SOD approximants
and the ”‘exact”’ solution obtained by using the4th Runge-Kutta process are hardly distinguishable.
Moreover, one of the interests of multivariable approximants is that they require fewer terms than the Taylor series
for obtaining an accurate approximation of the limit cycle amplitudes. In this case, it may be observed that the
centre manifold approach requires at least order 5 to have the same estimate of the limit cycles as the[5/4]fk(vc1,vc2)
fractional approximants. So, the non-linear terms become apower series of degree15 in which all terms are relevant
when considering the centre manifold approach. In the case of the fractional approximants, fewer terms are used to
obtain the same solution. Moreover, the determination of limit cycle amplitudes by the integration of the differential-
algebraic equations of the system is faster using the multivariable approximants. All these properties of the fractional
approximants will be discussed later and analysed in detail.
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Figure 24: Limit cycles (X, Ẋ) for µ = 1.001µ0 by using the fractional approximants
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Figure 25: Limit cycles (Y, Ẏ ) for µ = 1.001µ0 by using the fractional approximants

3.6 Estimate of the solution via the Harmonic Balance Method

By using the two previous non-linear methods (the centre manifold approach and the fractional rational approximants),
reduction and simplification of the mathematical complexity of the non-linear equations has been carried out. The
non-linear system resulting from these procedures may be considered one of the most simple forms of the original
non-linear system. Now we may investigate a classical non-linear method which requires an initial assumption about
the form of the solution as a function of time. In this study, the classical approximation of the solution as a truncated
Fourier series will be used. We use the harmonic balance method, called the Alternate Frequency/Time domain
method (AFT method), to approximate the final solution of thereduced and simplified system as a periodic solution.
This method and the global harmonic balance methods are veryuseful non-linear approaches to systematically obtain
the non-linear behaviour of general non-linear vibration problems ([33], [151], [25], [129], [143], [110], [111], and
[173]). The non-linear system in (167) can be described by a set of non-linear ordinary differential equations of the
form

v̇c = fNL (vc) (168)

wherevc = {vc1 vc2}
T , andfNL is the vector of the SOD approximants in(vc1, vc2). Then, the Alternate Fre-

quency/Time domain method is based upon assumptions about aFourier expansion for the non-linear response of
the non-linear system (168). We assume that the vector solution vc = {vc1 vc2}

T can be expanded as a truncated
Fourier series:

vc (t) = V0 +
H
∑

j=1

(V2j−1cos (jωt) +V2jsin (jωt)) (169)

whereω = 2π/T andT defines the period of the system.V0, V2j−1 andV2j are the vectors of Fourier coefficients.
Usually, harmonic components become less significant whenj increases, and hence we may ignore the harmonic
components ifj is superior toH; in this case, the number of the harmonic coefficientsH are selected to retain only
the significant harmonics.

3.6.1 Computational estimate of the harmonic coefficients

The coefficients for all the harmonics of (169) must be balanced in order to obtain the final solution of the non-linear
system (168). The determination of the harmonic coefficients is found by using an iterative process. Substituting
the truncated Fourier series expansion (168) into equation(168) yields a set of linear algebraic equations for the
kth-iterative periodic solution for the Newton-Raphson method

(A− J)Vk + FNL + (A− J)∆Vk = 0 (170)
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whereVk defines thekth-incremental vector of the Fourier coefficients ofvc:

Vk =
{

Vk
0
T
, · · · ,Vk

2j−1
T
,Vk

2j
T
, · · · ,Vk

2H
T
}T

(171)

A andJ are the jacobian matrices associated with the linear and non-linear parts of (168).FNL defines the vector
of the Fourier coefficients of the non-linear functionfNL. By considering the expressionfNL =

{

fNL1 fNL2

}

, the
matricesJ andA are given by

J = (Γ⊗ I)
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
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with the matricesI =

[

1 0
0 1

]

andO =

[

0 0
0 0

]

andH represents the retained number of harmonic components

for the solution’s estimate.
The vectorsΓ andΓ−1 make it possible to pass from the time domain to the frequencydomain and vice versa.
This procedure is called the Discret Fourier Transform ([25] and [129]) and the expression ofΓ andΓ−1 are (with
q = 2H + 1):

[Γij] =
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(174)
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(175)

Moreover, by considering the expression of the functionfi defined in (168) as a SOD approximant[M/N ]fi :

fi (vc1, vc2) =

M
∑

α=0

M
∑

β=0

ni,αβv
α
c1v

β
c2

N
∑

α=0

N
∑

β=0

di,αβv
α
c1v

β
c2

(176)
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the expression of (172) may be easily obtained by calculating the expressions∂fi/∂vc1 and∂fi/∂vc2:
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The vectorFNL that represents the vector of the Fourier coefficients of thenon-linear functionfNL, is calculated
by an iteration process ([25] and [129]), and by consideringthe Discret Fourier Transform DFT defined previously.
Cameron and Griffin [25] indeed pointed out that the estimateof the vectorFNL was often difficult to obtain from

Vk =
{

Vk
0
T
, · · · ,Vk

2j−1
T
,Vk

2j
T
, · · · ,Vk

2H
T
}T

directly. Hence, they suggested that the vectorFNL of the non-

linear functionfNL be calculated by following the process:

V
DFT−1

−−−− → vc (t) =⇒ fNL (t)
DFT

−−−− → FNL (179)

Finally, the(k + 1)th-iterative Fourier components estimateVk+1 is obtained from (170)

∆Vk = − (A+ J)−1
(

FNL + (A+ J)Vk
)

(180)

Vk+1 = Vk +∆Vk (181)

Vk+1 is then used as a new estimate for the next iteration. The finalsolution of the system is obtained by considering
the minimization of the error vectorR and the associated convergencesδ1 andδ2:

R = AVk + FNL (182)

δ1 =

√

√

√

√R2
0 +

H
∑

j=1

(

R2
2j−1 +R2

2j

)

(183)

δ2 =

√

√

√

√∆V2
0 +

H
∑

j=1

(

∆V2
2j−1 +∆V2

2j

)

(184)

The complete scheme of the computational process is expressed in Figure 25.

39



Figure 26: Computational process for the AFT method

3.6.2 Numerical estimate of the system via the AFT method

The numerical results in the time domain by using the Alternate Frequency/Time Domain method are shown in Fig-
ures 27 and 28 for various orderH of the harmonic coefficients. The results are compared with those obtained by
using the SOD approximants solution that can be considered as the ”exact” solution of the non-linear problem. The
first order of the harmonic coefficients (H = 1) allows us to obtain a good estimate of the limit cycles. Moreover,
the second or higher order of the harmonic coefficients (H ≥ 2) enable us to obtain the same limit cycles as those
obtained by the Padé SOD approximants. The values of all theharmonic coefficients for one, two and three harmon-
ics are given in Table 1. The associated evolutions of these harmonic coefficients during the iteration process of the
Alternate Frequency/Time Domain method are given for the variablevc1 andvc2 in Figures 29-30, and Figures 31-32
respectively. It appears that the calculation of Fourier coefficients (and the associated limit cycles) requires only a
small number of iterations. Therefore, it may be noted that the value of the Fourier coefficients are complex, since
they are defined in the centre manifold space. So, the limit cycles of the non-linear system are obtained by using the
reverse transformation in order to go from the centre manifold space with complex variables to the physical space
with real variables.
Finally, one of the practical computational problems for wide application of methods based on the balance of har-
monics, such as the Alternate frequency/Time Domain method, is believed to be the determination of a good initial
estimate for the iteration process. We may indeed observe that the Newton-Raphson approach may fail to converge
with the solution in the AFT method if the initial estimate ofthe solution is not sufficiently accurate [25]. In many
applications, a perturbation approach is suggested to avoid this problem when the Newton-Raphson method fails
[151].
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Fourier components H = 1 H = 2 casH = 3

V1,0 -0.685-0.0102i -0.686-0.0102i -0.685-0.0102i
V2,0 -0.685+0.0102i -0.686+0.0102i -0.685+0.0102i
V1,1 1.7453+1.0786i 1.7453+1.0812i 1.7458+1.0808i
V2,1 1.7453-1.0786i 1.7453-1.0812i 1.7458-1.0808i
V1,2 -1.0775+1.7377i -1.0805+1.739i -1.0801+1.7385i
V2,2 -1.0775-1.7377i -1.0805-1.739i -1.0801-1.7385i
V1,3 0 0.0171+0.0215i 0.0166+0.0212i
V2,3 0 0.0171-0.0215i 0.0166-0.0212i
V1,4 0 -0.0147+0.0388i -0.0144+0.0382i
V2,4 0 -0.0147-0.0388i -0.0144-0.0382i
V1,5 0 0 0.0002+0.0007i
V2,5 0 0 0.0002-0.0007i
V1,6 0 0 -0.0002+0.0008i
V2,6 0 0 -0.0002+0.0008i

Table 1: Fourier components for various orderH of the periodic solution
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Figure 27: Limit cycles(X, Ẋ ) for µ = 1.001µ by using the AFT method
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Figure 28: Limit cycles (Y, Ẏ ) for µ = 1.001µ by using the AFT method
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Figure 29: Evolution of the real part of the Fourier components for vc1
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Figure 30: Evolution of the imaginary part of the Fourier components forvc1

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iterations

R
ea

l p
ar

t o
f t

he
 F

ou
rie

r 
co

ef
fic

ie
nt

s

V2,6
V2,5
V2,4
V2,3
V2,2
V2,1
V2,0

(a) Evolution of the real part

0 10 20 30 40 50
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Iterations

R
ea

l p
ar

t o
f t

he
 F

ou
rie

r 
co

ef
fic

ie
nt

s

V2,6
V2,5
V2,4
V2,3
V2,2
V2,1
V2,0

(b) Zoom

Figure 31: Evolution of the real part of the Fourier components for vc2
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Figure 32: Evolution of the imaginary part of the Fourier components forvc2
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3.7 Advantages of applying non-linear methods

The purpose of this section is to demonstrate the advantagesof the non-linear methods and more particularly the
fractional approximants. First, comparisons of the CPU times for the classical4th-order Runge-Kutta procedure and
each non-linear method are investigated. Second, some considerations about the advantage of the fractional approx-
imants are described; the possible convergence of the fractional approximants outside the domain of convergence of
the series they approximate is investigated. Finally, we will show that one of the most important aspects of applying
the fractional approximants after the centre manifold approach lies in the fact that they require fewer terms than the
associated Taylor series (obtained by using the centre manifold approach ofkth-order) in order to obtain an accurate
estimate of the non-linear solution of the problem, and thatit may be possible to obtain a good approximation of the
solution even if the associated centre manifold estimate ofkth-order diverges or is not sufficient to approximate the
non-linear system.

3.7.1 Computational Time

Using the non-linear investigation and a classical integration scheme (4th-order Runge-kutta procedure) an estimate
and comparison of the methods’ CPU time may be investigated.The computational calculations need about 2000 CPU
seconds by using the classical4th-order Runge-Kutta procedure. By applying the centre manifold approach (3rd-order
for example) and the fractional SOD approximants[5/4]f , these calculations only need about 200 CPU time and 50
CPU seconds. All the CPU times for various orders of the centre manifold approach and various numerators and
denominators of the SOD approximants are given in Table 2. The centre manifold and the fractional approximants
make it possible to save time by reducing the number of degree-of-freedom and by simplifying the number of non-
linear terms of the reduced centre manifold system, respectively. Moreover, the use of the Alternate frequency/Time
Domain method saves time by assuming a Fourier series expansion for the periodic solution of the final non-linear
reduced and simplified system. In conclusion, the amount of CPU-time when applying the non-linear methods is
significantly less than that of the classical Runge-Kutta 4 procedure. Therefore, these methods provide goods results
for our problem by reducing and simplifying the original system without losing all the non-linear behaviour of the
problem. It may be observed that the more complex the original non-linear system is, with many degrees-of-freedom,
the more interesting the centre manifold approach is, allowing us to save time and to determine rapidly and efficiently
the limit cycle amplitudes.

Numerical methods CPU time (sec)

Original system - Runge-Kutta of4th-order 2000
Center manifold approach (3th-order) 200
Center manifold approach (4th-order) 500
Center manifold approach (5th-order) 1200

Symmetric-Off-Diagonal Approximants [5/4] 50
Symmetric-Off-Diagonal Approximants [5/5] 135
Symmetric-Off-Diagonal Approximants [6/6] 280

Alternate Frequency/Time Domain method (H = 1) 13
Alternate Frequency/Time Domain method (H = 2) 30
Alternate Frequency/Time Domain method (H = 3) 45

Table 2: CPU time for various numerical non-linear estimates

3.7.2 Extension of the domain of convergence via the fractional approximants

One of the well-known advantages of the rational approximants is their possible convergence outside the domain of
convergence of the series they approximate. Due to thekth-order polynomial approximationh of the stable variables
vs as a power series in centre variablesvc, the reduced system defined in equation (146) has a circle of convergence
R (with R ≤ R∞ whereR∞ is the circle of convergence for the power series associatedwith the polynomial approx-
imationh whenk → +∞). If the initial conditions are taken outside this circle ofconvergenceR, the series defined
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in equation (146) diverge. We now examine the fractional rational approximants associated with the power series ob-
tained via the centre manifold approach that has a circle of convergenceR. By considering the same initial conditions,
it may be observed that the fractional approximants converge and produce the same non-linear solution as the original
non-linear system, as illustrated in Figures 33 and 34. In this case, the sequence of rational approximants converge
outside the circle of convergenceR; the fractional approximants enhance the convergence of the series expansions of
the centre manifold theory. In this section, it is importantto understand that the polynomial approximation is assumed
to be sufficient in order to obtain a good approximation of thenon-linear behaviour of the reduced system if the initial
conditions are taken inside the circle of convergenceR.
To examine the capability and suitability of this last property and more generally of the rational approximants, we use
various initial conditions taken inside or outside the circle of convergenceR (first case:V 0

1,k = V 0
2,k = 20; second

case:V 0
1,k = V 0

2,k = 10 + 10i ; third case:V 0
1,k = V 0

2,k = −30i; fourth case:V 0
1,k = V 0

2,k = 2 + 2i; fifth case:
V 0
1,k = V 0

2,k = 1 for k = 0, 1, · · · , 4). As indicated in Figures 35 and 36, The Fourier coefficientsand the associated
non-linear responses are correctly estimated in all cases.Then, the extension of the domain of convergence via the
fractional rational approximants becomes interesting, even if the value of the new circle of convergence due to the
fractional approximants is an unknown parameter.
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Figure 33: Evolution of the limit cycles (X, Ẋ) by using the Runge-Kutta 4, the center manifold approach and the
fractional approximants
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Figure 34: Evolution of the limit cycles (Y, Ẏ ) by using the Runge-Kutta 4, the center manifold approach and the
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Figure 35: Evolution of the real part of the Fourier coefficients forvc2
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Figure 36: Evolution of the imaginary part of the Fourier coefficients forvc2

3.7.3 Extension of the center manifold via the fractional approximants

The interest of these rational approximants is that they require fewer terms than the associated Taylor series in order
to obtain an accurate approximation of the behaviour of the complete non-linear system. In any case, the rational
approximation has a greater range of validity than the polynomial one and make it possible to obtain an approximation
of the solution even if the associated centre manifold approximation diverges or is not sufficient to approximate
the non-linear solution near the equilibrium point. To demonstrate this advantage of the rational approximants, the
previous system is applied by changing only the value of the parameterC2 = 300N/m/sec. In this case the Hopf
bifurcation point is obtained forµ0 = 0.28. The displacementsX andY and velocitiesẊ and Ẏ obtained by
using a classical integration Runge-Kutta 4 near the Hopf bifurcation pointµ = 1.01µ0 are given in Figures 37 and
38, respectively. The associated limit cycles (X, Ẋ) and (Y, Ẏ ) are given in Figures 39. It may be noted that the
non-linear oscillation of the displacements and velocities grow more rapidly.
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Figure 37: DisplacementX(t) and velocityẊ(t) for µ = 1.01µ0
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Figure 38: DisplacementY (t) and velocityẎ (t) for µ = 1.01µ0
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Figure 39: Limit cycles (X, Ẋ) and (Y, Ẏ ) for µ = 1.01µ0
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By applying the centre manifold theory in this case, we observe that the limit cycles forµ = 1.01µ0 obtained with
various approximations of the stable variables as a power series in the centre variables of order 2, 3, 4 or 5 diverge.
This implies that the polynomial approximation is not sufficient to obtain a good estimate of the stable variable con-
tributions and of the non-linear behaviour of the dynamicalsystem. However, we apply the symmetric-off-diagonal
rational approximants in order to extend the non-linear expression of the centre manifold system of order 5 (we know
that the associated limit cycles diverge) and to estimate the associated limit cycles: the purpose of using the rational
fractional approximants is to obtain an approximate non-linear response of the complete system by considering that
the approximants require fewer terms than the associated Taylor series (defined by the centre manifold of order 5 in
this case). In fact, the rational approximants also allow usto simplify the non-linear terms of the centre manifold
of order 5. By using the approximants[8/7]f and the Alternate/Frequency Time domain method (withH = 3), we
observe that the Fourier coefficients of each variablevc1 andvc2 converge, as illustrated in Figures 41 and 42, respec-
tively. By comparing the limit cycles obtained by considering these Fourier coefficients with those obtained via the
previous integration of the full original system, we observe that the limit cycles are acceptable, as illustrated in Figure
42 and Figure 43. The harmonic balance method is used in this case only to accelerate obtaining the final solution
by assuming the form of the response as a truncated Fourier series. The domain of validity for the centre manifold
approach is extended only due to the application and properties of the rational fractional approximants.
So, in this case, the rational fractional approximants allow us to enhance the convergence of the series expansions of
the centre manifold theory. Moreover, the sequence of rational fractional approximants converge even if the associated
series does not; we can than extend our domain of convergenceand good agreements are found between the original
and reduced system. Moreover, this extension of the centre manifold via the fractional rational approximants requires
less computer resources: the use of the rational approximants allows us to consider lower order approximation of the
polynomial approximationh (with vs = h (vc)). The CPU times associated with all the simulations are given in
Table 3.
Obtaining the centre manifold coefficientsak,ij associated which the stable variablesvs (with vs =

∑q
p=i+j=2

∑p
j=0 aijv

i
c1v

j
c2

andq ≥ 2) may pose particularly serious difficulties. This is why thesole use of the centre manifold approach is not
very convenient, requiring a great deal of labour, especially for the computational calculation of the coefficientsak,ij
defined previously.
There are two important points to make here. First, this procedure used 316 non-linear terms in order to obtain an
estimation of the limit cycle amplitude, as indicated in Table 3; in the case of the centre manifold approach, 512
non-linear terms are not sufficient to obtain the limit cycleamplitudes. So, we extend the domain of validity of the
problem and simplify the non-linear terms. Second, we obtain good agreement with the complete non-linear system.
This procedure makes it possible to reduce the number of degree-of-freedom of the original non-linear system and
to simplify the non-linear terms. The great advantage of theuse of rational approximants after the centre manifold
method in comparison with the normal form approach defined inSection 2.3 is clearly demonstrated by considering
this extension of the centre manifold approach. Determining the normal form is usually obtained by considering the
power series defined by the centre manifold approach; due to the fact that the normal form is another power series
containing only the relevant non-linear terms, it may be assumed that if the power series obtained by applying the cen-
tre manifold diverge, the associated simplification via thenormal form also diverges. This property can be understood
by considering the procedure of the normal form transformation defined in Section 2.3.

Methods CPU time (s) Degree-of-freedom Non-linear terms

Original system - Runge-Kutta of4th-order 2000 4 96
Center manifold approachqth-order withq ≤ 5 diverge 2 512

Extension via the Padé [8/7] 300 2 316
Padé [8/7] + AFT (H = 3) 50 2 316

Table 3: Advantages of the extension of the center manifold approach via the fractional approximants
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Figure 40: Evolution of the Fourier coefficients forvc1

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

6

7

Iterations

R
ea

l p
ar

t o
f t

he
 F

ou
rie

r 
co

ef
fic

ie
nt

s

V2,6
V2,5
V2,4
V2,3
V2,2
V2,1
V2,0

(a) Evolution of the real part

0 5 10 15 20 25 30
−8

−6

−4

−2

0

2

4

6

8

10

Iterations

Im
ag

in
ar

y 
pa

rt
 o

f t
he

 F
ou

rie
r 

co
ef

fic
ie

nt
s

V2,6
V2,5
V2,4
V2,3
V2,2
V2,1
V2,0

(b) Evolution of the imaginary part

Figure 41: Evolution of the Fourier coefficients forvc2
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Figure 43: Limit cycle (Y, Ẏ ) bu using an extension of the center manifold approach via the fractional approximants
(for µ = 1.01µ0 )

3.8 Conclusion

In this section, stability analysis, three non-linear methods and the associated computational techniques have been
developed. First, the centre manifold approach was developed to reduce the number of degree-of-freedom of the
original non-linear problem; a lower-dimensional system containing only the centre variables near the Hopf bifurca-
tion point was defined. Second, the rational fractional approximants were used to simplify the non-linear terms.
This new procedure consisting of applying the fractional approximants after the centre manifold was successfully
applied: this new methodology extended the domain of validity of non-linear systems reduced by using the centre
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manifold approach. Moreover, it was demonstrated that one of the interesting aspects of these rational approximants
is that they require fewer terms than the associated Taylor series to obtain an accurate approximation of the non-linear
behaviour of the complete non-linear system. Even if the centre manifold approximation diverges or is insufficient
to ap-proximate the non-linear solution near an equilibrium point, the associated rational approximants may converge
and make it possible to obtain an approximation of the solution. This last advantage of the rational approximants is
an extremely powerful property.

4 Second example: a complex non-linear mechanical system

In the previous section, the centre manifold, the rational fractional approximants and the Alternate Frequency/Time
Domain method were used to reduce, to simplify and to obtain the final solution of a non-linear system with two
degree-of-freedom possessing quadratic and cubic non-linearities as a truncated Fourier series approximation. The
computational scheme of these methods were developed and the advantages of fractional approximants after the
centre manifold approach were discussed; more particularly, the extension of the domain of validity by employing the
fractional approximants and the possibility of obtaining an accurate solution even if the associated series expansion
diverge was demonstrated.
A natural extension of this problem is to show the capabilityof this centre manifold extension via the fractional
approximant for a more complex non-linear mechanical system such as an aircraft brake system where the problem
of unstable vibrations in disk brakes has been studied by a number of researchers ([114], [9], [195], [68], [10], [63],
[58], [32], [60], [127] and [68]).
As illustrated in Figure 44, an aircraft brake system is composed of a stack of rotating brake discs (rotors) which
engage the wheel, and stationary brake discs (stators), which engage the torque tube. The torque tube attaches to the
piston housing that links to the landing gear through a torque take-out rod. During operation, the brake is activated
by hydraulic system pressure, which compresses the heat stack: the rotors and the stators are squeezed together
by hydraulic pistons and the brake produces torque by virtueof friction forces generated at the rubbing interface
between the rotors and the stators. Vibration can then be further induced by the friction characteristics of the heat
sink material. Two important specific complex non-linear phenomena have been identified: squeal and whirl. The
other major vibration modes are gear walk and chatter. Gear walk is defined as cyclic fore and aft motion of the
landing gear assembly. The frequency spectrum of gear walk is in the 5 -20 Hz range. Chatter is defined as a torsional
motion of the rotating parts of the brake-wheel-tire assembly about the axle and against the elastic restraint of the tire.
The frequency spectrum of chatter is in 50-100 Hz range. Squeal is defined as torsional vibrations of non-rotating
brake parts around the axle. The frequency spectrum of squeal is in the 100 -1000 Hz range. Whirl is defined as
one vibration wherein the cantilevered end of the torque plaque orbits around the axle accompanied by un-phased
pumping of the brake pistons. Brake whirl mode is within frequency range as brake squeal (200-300 Hz range) and
can couple parametrically. Hydraulic damping provided by the piston housing fluid circuit provides a major source of
whirl damping. If the hydraulic damping provided by the piston housing fluid is insufficient, orifices may be used to
increase damping to required levels.
The goal of this section is to show the efficiency of the previous non-linear computational methods (the centre manifold
approach, the fractional approximants and the Alternate Frequency/Time Domain method) for the stability analysis
and complex non-linear behaviour of the whirl vibration in an aircraft brake system. First, a brief overview of friction
induced vibration and some basic concepts of aircraft brakesystems is presented in order to described the non-linear
whirl model. Then, results from stability analyses and the extension of the centre manifold via rational approximants
is investigated.
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Figure 44: Aircraft brake system

4.1 General presentation of the non-linear model

4.1.1 Overview of friction induced vibration mechanisms

In this section, the general mechanisms of friction-induced vibration are briefly developed and more particularly the
sprag-slip phenomenon and the associated geometric coupling is evaluated. Friction-induced vibration occurs in many
industrial applications with rotating and sliding parts and is undesirable due to its detrimental effects on the perfor-
mance of mechanical systems and its role in the accelerated wear of components, damage and noise. Different types
of vibrations induced by friction have been studied in the past by several researchers ([124], [31], [79], [80], [38],
[137], [49], [90], [51], [50], [150], [128], [199], [100], [76], [102], [105], [122], [123], [52] and [53]).
One of the important phases in studying vibration problems in systems is the determination of the mechanism of the
unstable friction-induced vibration. There is no unique mathematical model and theory to explain the mechanisms and
dynamic phenomena associated with friction: Ibrahim [79]-[80], Crolla and Lang [38] provide an extensive summary
of many aspects of friction-induced vibration. Moreover, the contact forces between two surfaces play an important
role in self-excited vibrations: Oden and Martins [137] proposed a review of frictional contact of metallic surfaces.
The different mechanisms of friction-induced vibration fall into four classes: stick-slip, variable dynamic friction
coefficient, sprag-slip and geometric coupling of degrees of freedom. In this study, we will consider the latter two
approaches which use modal coupling to develop instabilitywhen the friction coefficient is constant. The first two ap-
proaches make use of the changes in the friction coefficient:the stick-slip is a low sliding speed phenomenon caused
by the static friction coefficient being higher than the dynamic friction coefficient. The simple system which has been
used to examine the stick-slip phenomenon, is that of a mass sliding on a moving belt. During the sliding phase, there
is no change in the friction force that tends to make the mass stick on the moving belt. The sliding force increases
until it exceeds the static friction force maximum. Consequently, the mass starts to slide. Next, the mass continues
to slide until the force causing the sliding drops to the sliding friction value. Then, sliding and sticking occur in
succession. Moreover, the speed dependence of kinematic friction was accepted to define the stick-slip motion and
produce self-excited vibration ([59], [190], [16], [17], [4], [148], [166], [106], [11] and [205]).
The 1960s saw new developments of mechanisms for friction-induced vibration and the introduction of the motions
of sprag-slip and geometric coupling. In 1961, Spurr [179] proposed this mechanism for friction induced vibrations.
This approach uses kinematic constraints and modal coupling to develop instability. Following this work, several
authors ([48], [136] and [121]) made contributions in support of this theory of geometric coupling: these studies have
illustrated that frictional instability can be caused by geometrically induced instabilities that do not require variations
in the coefficient of friction.
This notion of sprag-slip angle and geometric coupling willbe considered to explain the whirl vibration in aircraft
brake systems. Feld [58] explains the whirl vibration: the disks in the brake stack are compressed by the hydraulic
pressure applied to the brake, as illustrated in Figure 45. Without vibration, the normal pressure is distributed uni-
formly over the rubbed surface between rotating and stationary disks. When vibration is present, disks in the brake
stack are subjected to out-of-plane rotation called accordion motion. The uniform normal pressure over the disk in-
terface is then altered by this accordion notion: the normalpressure increases over half of the interface and relaxes
over the other half. Moreover, the friction force varies proportionally to this normal pressure and produces the whirl
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motion. On some gear systems, the brake rod attaches to the brake housing in an offset, cantilevered fashion such that
the rod operates out-of-plane with the hydraulic system. Due to this offset, an angle may appear between the brake
rod and the housing. This offset angle can be compared with the sprag-slip mechanism [179]. In this case, instability
can occur with a constant brake friction coefficient. This angle in fact couples the normal and tangential contact force.
This coupling is one of the primary cause of instability in the whirl vibration.

(a) Sprag-slip angleβ (b) Whirl vibration

Figure 45: Friction-induced whirl vibration

4.1.2 Non-linear behaviour of the brake system

In this system, the non-linear behaviour is due to the non-linear contact stress of the rotor-stator assembly. Exper-
imental static tests show that the load-deflection relationship is highly non-linear, as illustrated in Figure 46. We
assume that the non-linear normal stressN (r, θ) acting at the interface surface between the stator and the rotor can
be expressed as a cubic polynomial in the relative displacement between the rotor and stator in compression

N (r, θ) =
3
∑

i=1

Ki (x (r, θ))
i (185)

wherex (r, θ) is the relative displacement between the rotor and the stator. K1 , K2 andK3 are the linear, quadratic
and cubic coefficients of the non-linear contact between therotor and the stator. This assumption is verified by static
tests, as illustrated in Figure 46: the non-linear relationship between load and deflection is used to determine the
coefficientsK1, K2 andK3. As shown in Figure 46, we have good agreement with the experimental non-linear
contact stress and the cubic polynomial approximate solution.
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Figure 46: Non-linear contact stress

We then assume that the tangential stressT is generated by the brake friction coefficientµ, considering the
Coulomb friction lawT (r, θ) = µN (r, θ). The multi-stage brake is represented by a single rotor, as illustrated
in Figure 47, and stator with the effective brake friction coefficient µbrk = 2Nµ whereN defines the number of
interfaces between stators and rotors. It is assumed that the rotor and stator friction surfaces are always in contact. In
this whirl system, we consider the rigid body lateral displacement and the two yaws of the stator and rotor. For any
pointM (r, θ) on the rotor and stator, and by considering small displacements, the normal displacement of the rotor
and the stator are

{

xrotor = xr − r sin θ sin θr − r cos θ sinψr
xstator = xs − r sin θ sin θs − r cos θ sinψs

(186)

wherexr, xs, θr, θs, ψs, andψr are the stator and the rotor lateral displacement, and the stator and rotor rotations, as
illustrated in Figure 47. Then, for any pointM (r, θ) on the disc surface, the normal displacement is

x(r, θ) = xstator − xrotor = (xs − xr)− r sin θ(θs − θr)− r cos θ(ψs − ψr) (187)

Next, by considering the non-linear normal stress expression of (185), the non-linear expressions of the normal force
FX due to the normal contact between the rotor and the stator friction surface, and the non-linear expressions of the
momentsMX ,MY andMZ are given by

FX =

∫ 2π

0

∫ Re

Ri

P (M) rdrdθ

= K1A2 (xs − xr) +K2

(

A2 (xs − xr)
2 + A4

4 (θs − θr)
2 + A4

4 (ψs − ψr)
2
)

+K3

(

A2 (xs − xr)
3 + 3A4

4 (θs − θr)
2 (xs − xr) +

3A4

4 (ψs − ψr)
2 (xs − xr)

)

(188)

MX =

∫ 2π

0

∫ Re

Ri

2NµbrkP (M) r2drdθ

= 2Nµbrk
(

K1
2A3

3 (xs − xr) +K2

(

2A3

3 (xs − xr)
2 + A5

5 (θs − θr)
2 + A5

5 (ψs − ψr)
2
)

+K3

(

2A3

3 (xs − xr)
3 + 3A5

5 (xs − xr) (θs − θr)
2 + 3A5

5 (xs − xr) (ψs − ψr)
2
))

(189)

MY = −

∫ 2π

0

∫ Re

Ri

P (r, θ) r2 sin θdrdθ

= −K1
A4

4 (θs − θr)−K2
A4

2 (θs − θr) (xs − xr)

−K3

(

3A4

4 (θs − θr) (xs − xr)
2 + A6

8 (θs − θr)
3 + A6

8 (θs − θr) (ψs − ψr)
2
)

(190)
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MZ = −

∫ 2π

0

∫ Re

Ri

P (r, θ) r2 cos θdrdθ

= −K1
A4

4 (ψs − ψr)−K2
A4

2 (ψs − ψr) (xs − xr)

−K3

(

3A4

4 (ψs − ψr) (xs − xr)
2 + A6

8 (ψs − ψr)
3 + A6

8 (ψs − ψr) (θs − θr)
2
)

(191)

with Ak = π
(

Rke −Rki

)

for k = 1, 2, 3, 4, . . . , 6.

Figure 47: Model of the whirl vibration

4.1.3 Equations of the non-linear dynamical system

The equations of motion for the non-linear aircraft brake system are [167]

msẍs + Cxsẋs = Fbarre/X + Fhyd/X − FX (192)

Iθsθ̈s + Cθsθ̇s +Ctwk(θ̇s − θ̇t) +Kθsθs +Ktwk(θs − θt) = Fbarre/XRe + Fbarre/Zde +MY (193)

Iψsψ̈s + Cψsψ̇s + Ctwk(ψ̇s − ψ̇t) +Kψsψs +Ktwk(ψs − ψt) = Fbarre/Y de +MZ (194)

Iφsφ̈s + Cφsφ̇s = −Fbarre/Z sinαRe − Fbarre/Y Re cosα+MX (195)

mrẍr + Crrẋr +Krrxr = FX (196)

Iθrθ̈r + Cθrθ̇r +Cfwk(θ̇r − θ̇f ) +Kfwk(θr − θf ) = −MY (197)

Iψrψ̈r + Cψrψ̇r + Cfwk(ψ̇r − ψ̇f ) +Kfwk(ψr − ψf ) = −MZ (198)

mf ÿf + Cf11ẏf + Cytf (ẏf − ẏt) +Kf11yf +Kf12θf +Kytf (yf − yt) = 0 (199)

If θ̈f +Cf22θ̇f +Cfwk(θ̇f − θ̇r)+Cθtf (θ̇f − θ̇t)+Kf21yf +Kf22θf +Kfwk(θf − θr)+Kθtf (θf − θt) = 0 (200)

mf z̈f + Cf11żf + Cztf (żf − żt) +Kf11zf +Kf12ψf +Kztf (zf − zt) = 0 (201)

If ψ̈f+Cf22ψ̇f+Cfwk(ψ̇f−ψ̇r)+Cψtf (ψ̇f−ψ̇t)+Kf21zf+Kf22ψf+Kfwk(ψf−ψr)+Kψtf (ψf−ψt) = 0 (202)

mtÿt + Ct11ẏt + Cytf (ẏt − ẏf ) +Kt11yt +Kt12θt +Kytf (yt − yf ) = 0 (203)

Itθ̈t + Cf22θ̇t + Cfwk(θ̇t − θ̇s) + Cθtf (θ̇t − θ̇f ) +Kt21yt +Kt22θt +Ktwk(θt − θs) +Kθtf (θt − θf ) = 0 (204)

mtz̈t + Ct11żt + Cztf (żt − żf ) +Kt11zt +Kt12ψt +Kztf (zt − zf ) = 0 (205)

Itψ̈t+Ct22ψ̇t+Ctwk(ψ̇t− ψ̇s)+Cψtf (ψ̇t− ψ̇f )+Kt21zt+Kt22ψt+Ktwk(ψt−ψs)+Kψtf (ψt−ψf ) = 0 (206)

wherexs, xr, θs, θr, ψs, ψs, φs, yf , yt, zf , zt, ψf , ψt, θf andθt are the stator and the rotor lateral displacement, the
stator and rotor rotations, the piston torsional rotation and the axle deflections and rotations of the rotor and stator
shaft, respectively. The stator and the shaft of the stator interact via notches on the inner perimeter of the disk, and the
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rotor and the shaft of the rotor interact via drive keys on theoutside of the disk.Fhyd/X defines the brake force from
hydraulic pressure that is given by

Fhyd/X =
6
(

D2
piston/outer −D2

piston/inner

)

(

D2
disque/outer −D2

disque/inner

) Phydraulicnpiston (207)

wherenpiston, Dpiston/outer , Dpiston/inner are the number of pistons, the outer and inner diameter of thepiston
surface in contact with the stator, respectively.Ddisque/outer andDdisque/inner define the outer and inner diameter of
the rotor-stator interface, respectively.
Ktwk andCtwk define the stiffness and the damping between the stator and the shaft of the stator, called torque tube,
via notches on the inner perimeter of the disk.Kfwk andCfwk define the stiffness and the damping between the rotor
and the shaft of the rotor, via drive keys on the outside of thedisk. Kψtf , Kθtf , Kytf , Kztf andCψtf , Cθtf , Cytf ,
Cztf are the contact stiffness and the contact damping between the rotor’s and stator’s shaft, respectively.Krr defines
the stiffness of the back-plate of the brake.Ktij andCtij (for 1 ≤ i ≤ 2 and1 ≤ j ≤ 2) are the axle bend stiffness
and axle bend damping for the stator’s shaft, respectively.Kfij andCfij (for 1 ≤ i ≤ 2 and1 ≤ j ≤ 2) are the
axle bend stiffness and axle bend damping for the rotor’s shaft, respectively.de andRe represent the brake rod lateral
offset and the distance axle to brake rod axis.FX ,MX ,MY andMZ are the normal contact between the rotor and the
stator friction surfaces and the associated moments, respectively. Fcouple/X , Fcouple/Y andFcouple/Z define the load
due to the brake rod. We have











Fcouple/X = KcoupleReφs cosα sin β +Kcouplexs sin β +KcoupleRe sin β (θs cosα+ ψs sinα)

Fcouple/Y = KcoupleReφs cosα cos β −Kcoupledeθs cos β

Fcouple/Z = KcoupleReφs sinα cos β −Kcoupledeψs cosβ
(208)

whereKcouple defines the axial stiffness of the brake rod andα the sprag-slip angle due to the brake rod angle offset
with the rotor-stator interface. It may be observed that thefriction-induced vibration is only due to the fact that this
angleα is not equal zero.
Finally, the complex non-lniear equations may be rewrittenin the folllowing form

Mẍ+Cẋ+Kx = Fhydraulic(x) + Fcouple(x) +Ffriction(x) (209)

with
x = {xs θs ψs φs xr θr ψr yf θf zf ψf yt θt zt ψt}

T (210)

whereM, C andK are the15 × 15 mass, damping and stiffness matrices, respectively.Fhydraulic is the vector
force due to net brake hydraulic pressure in thex-basis;Fcouple is the vector due to the brake rod load, andFfriction

contains the linear and non-linear frictional contact force terms at the stator and rotor interface and in thex-basis.
We easily observe thatFcouple is described as a linear expression versus the vectorx:

Fcouple (x) = Kcouplex (211)

The set of equations describing the dynamic of the non-linear system may then be written as

Mẍ+Cẋ+Ktx = Fhydraulic (x) + Ffriction (x) (212)

with
Kt = K−Kcouple (213)

As explained previously, the non-linear analysis can be divided into two parts. First, the stability analysis is in-
vestigated by estimating the equilibrium point and by considering the eigenvalues of the jacobian matrix of the lin-
earized system at this equilibrium point. Second, the dynamic characteristics of friction induced vibration in the
aircraft brake system near the Hopf bifurcation point is investigated. The main purpose of this last section is to con-
sider non-linear methods to reduce the non-linear mechanical system for instability computation. The computational
procedure of the centre manifold extension by using the fractional approximants and the Alternate Frequency/Time
Domain method, is applied to obtain a reduced and simplified non-linear system retaining the essential features of the
non-linear dynamic behaviour near the Hopf bifurcation point.
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4.2 Stability analysis

As explained in Section 3.2, to study the stability of the system, the equilibrium point of the non-linear system is
investigated and then the non-linear equations of motion are linearized around each steady-state equilibrium position.
The equilibrium pointx0 is obtained by solving the non-linear static equations for agiven net brake hydraulic pressure

Ktx0 = Fhydraulic (x0) + Ffriction (x0) (214)

Next, the stability analysis is investigated around the steady-state operating point by assuming small perturbationsx

around the equilibrium pointx0 (with x = x0+x). The frictional contact vectorFfriction may be expressed in terms
of both equilibrium positionx0 and perturbation variablesx, where

Ffriction(x) = Ffriction(x0) + Ffriction (x) (215)

By substituting (215) in (214) and by considering only the linear termsFL
friction (x), on has

Mẍ+Cẋ+Ktx = FL
friction (x) (216)

with

FL
friction (x) =

15
∑

i=1

∂Ffriction (x)

∂xi

∣

∣

∣

∣

x0

xi (217)

The final expression of the vectorFL
friction is

FL
friction =

{

−FLX ML
Y ML

Z ML
X FLX −ML

Y −ML
Z 0 0 0 0 0 0 0 0

}T
(218)

The analytical linear expressions of the termsFLX , ML
Y , ML

Z andML
X in terms of both equilibrium positionx0 and

perturbation variablesx are given in Annexe B.
Finally, the computational stability analysis can be performed on the eigenvalues of the matrixA

A =





0 I

−M−1
(

Kt −KL
friction

)

−M−1C



 (219)

Results from computational stability analyses are presented in Figures 48-49. A representation of the evolution of
frequencies and the evolution of the associated real part against brake friction coefficientµ are given in Figures 48,
and Figures 49, respectively. A representation of the evolution of the eigenvalues in the complex plane is presented
in Figure 49. As long as the real part of all the eigenvalues remains negative, the system is stable. When at least one
of the eigenvalues has a positive real part, the dynamical system is unstable. Generally the system is stable at low
value of brake friction coefficientµ and unstable at high values. The frequency of instability isobtained near 250Hz:
a perfect correlation with experimental tests where the frequency of instability near 260Hz is obtained. Moreover,
the mode shape obtained in association with this instability defines a wobbling motion between the brake’s rotating
and stationary parts and we observe that in this mode the cantilevered end of the torque plaque orbits around the
axle, as observed experimentally. To illustrate the high potential and efficiency of the computational stability analysis,
parametric studies are presented: Figures 50-52 show the evolution of the real and imaginary parts of eigenvalues with
various brake friction coefficientsµ, brake hydraulic pressuresP and sprag-slip angleα.
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Figure 50: Stability analysis versus the friction coefficient µ and the pressureP
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Figure 51: Stability analysis versus the friction coefficient µ and the sprag-slip angleα

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α
/α

m
ax

P/Pmax

UNSTABLE 

STABLE 

(a) Stable/Unstable areas

−150 −100 −50 0 50 100
180

190

200

210

220

230

240

250

260

270

280

Real part

F
re

qu
en

cy
 (

H
z)

(b) Evolution of frequencies

Figure 52: Stability analysis versus the pressureP and the sprag-slip angleα

4.3 Non-linear dynamics

The time-history responses of the non-linear dynamical system (212) is first calculated by using classical4th-order
Runge-Kutta algorithm, as illustrated in Figures 53- 55. However, this procedure is rather expensive and consumes
considerable resources both in terms of the computation time and in terms of the data storage. Understanding the
behaviour of this non-linear system thus requires simplification and reduction of the equations. In order to obtain the
non-linear simplified system, the computational extensionof the centre manifold approach using the rational fractional
approximants and the Alternate/Frequency Time domain method will be applied.
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Figure 53: Non-linear dynamic of the displacementxs(t) for µ = 1.01µ0
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4.3.1 Results via the computational centre manifold extension via the fractional approximants

By considering (212), the complete non-linear expressionsof the non-linear forces are expressed in order to conduct
this complex non-linear analysis. We have:

Mẍ+Cẋ+Ktx = FNL
friction (x) (220)

where the complete expression of the non-linear friction vectorFfriction (x) is defined by

Ffriction (x) = FL
friction (x) + FNL

friction (x) (221)

FL
friction andFNL

friction contain the linear and non-linear expressions ofFfriction.
The termsFL

friction were defined previously in (218). The expression of the vector FNL
friction is given by

FNL
friction =

{

−FNLX MNL
Y MNL

Z MNL
X FNLX −MNL

Y −MNL
Z 0 0 0 0 0 0 0 0

}T

(222)
The analytical expressions of the non-linear termsFNLX ,MNL

Y ,MNL
Z andMNL

X in terms of both equilibrium position
x0 and perturbation variablesx are given in Annexe B.

Mẍ+Cẋ+
(

K−Kbarre −KL
frottement

)

x =
15
∑

i=1

15
∑

j=1

f
ij

(2)xixj +
15
∑

i=1

15
∑

j=1

15
∑

k=1

f
ijk

(3)xixjxk (223)

wheref ij(2) andf ijk(3) contain the quadratic and cubic non-linear terms. Next, thesystem is rewritten in state variables

y = {y ẏ}T in order to apply the extension of the centre manifold:

ẏ = Ay +
30
∑

i=1

30
∑

j=1

g
ij

(2)yiyj +
30
∑

i=1

30
∑

j=1

30
∑

k=1

g
ijk

(3)yiyjyk (224)

whereA is a30× 30 matrix. gij

(2) andgijk

(3) are 30-dimensional vectors containing the quadratic and cubic non-linear
terms.
As explained in the Section 3.4.2, the system may be reduced in the centre manifold variables near the Hopf bifurcation
point as follows































v̇c = Jc (µ)vc +G2 (vc,h (vc) , µ) + +G3 (vc,h (vc) , µ)
µ̇ = 0
µ = µ0 (1 + ε) (ε≪ 1)

vs = h (vc) =
m
∑

p=i+j=2

p
∑

j=0

p
∑

l=0

aijlv
i
c1v

j
c2µ

l (m ≥ 2)

(225)
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with µ0 the value of the friction coefficient at the Hopf bifurcationpoint. In this case, the centre manifold makes it
possible to reduce the original non-linear system of30 degree-of-freedom to only3 variablesvc = {vc1 vc2 µ}T .
Next, the extension of the centre manifold approach via the fractional approximants is obtained. As explained in
Section 3.4, the final reduced and simplified non-linear system is expressed as follows























































˙vc1 = [M,N ]f1(vc1,vc2) =
3m
∑

i=0

3m
∑

j=0
1≤i+j≤3m

c1,ijv
i
c1v

j
c2 (1 ≤ k ≤ 2)

˙vc2 = [M,N ]f2(vc1,vc2) =
3m
∑

i=0

3m
∑

j=0
1≤i+j≤3m

c2,ijv
i
c1v

j
c2

µ̇ = 0
µ = µ0 (1 + ε) (ε≪ 1)

(226)

Finally, the non-linear solution of the system (226) is expressed as a truncated Fourier series:



























vc1 (t) = V1,0 +
H
∑

j=1

(V1,2j−1cos (jωt) + V1,2jsin (jωt))

vc2 (t) = V2,0 +
H
∑

j=1

(V2,2j−1cos (jωt) + V2,2jsin (jωt))

(227)

By applying the3th-order centre manifold approach with the[3/2]f Symmetric-Off-Diagonal fractional rational ap-

proximants and the2th-order harmonic components (H = 2) for the Alternate/Frequency Time domain method, we
reduce the number of equations of the original system from30 to 2 and simplify the number of non-linear terms
approximatively from108000 to 28, as indicated in Table 4.
Then, the original complex non-linear system is reduced andsimplified by retaining the essential non-linear dynami-
cal behaviour of the original system as illustrated in Figures 56-63. The second-order polynomial approximation is
not sufficient to provide a good approximation of the stable variables. This non-linear extension of the centre manifold
approach via the rational approximants appears very interesting in regard to computational time and also requires very
little computer resources, as indicated in Table 4.

Methods CPU time (s) Degree-of-freedom Non-linear terms

Original system ≈ 18000 30 ≈108000
Reduced and simplified system ≈ 20 2 28

Table 4: Comparison between the original and reduced system
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5 Conclusion and future research directions

In this paper, non-linear methods to reduce the non-linear mechanical systems for instability computation have been
developed. The centre manifold, the rational approximantsand an harmonic balance method, called the Alternate Fre-
quency/Time domain method, have been introduced; all the associated computational techniques have been discussed
in detail. The results from these non-linear approaches have been compared with those obtained by integrating the full
original system. Excellent agreement was found between theoriginal and the reduced system. The centre manifold
theory and the rational approximants allow us to reduce the number of equations of the original system and to simplify
the non-linear terms in order to obtain a simplified system, without losing the dynamics of the original system, as well
as the contributions of the non-linear terms. The harmonic balance method makes it possible to find the non-linear
response of the reduced and simplified system as an assumed truncated Fourier series.
One of the main purposes of this paper is to present a new non-linear procedure consisting of applying the ratio-
nal fractional approximants after the centre manifold method. This procedure appears very interesting in regard to
computation time and it requires less computer resources due to the number of stable coefficients used to obtained
the limit cycle amplitude. The powerful property used in this study is indeed that a sequence of rational fractional
approximants may converge even if the associated series does not; we can than extended our domain of convergence.
Moreover, the domain of validity of the solution is successfully enhanced by employing rational fractional approx-
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imants in this study. The rational fractional approximantsshow superior performance over series approximations.
The computational techniques for the three non-linear methods have been tested for two examples: the first example
was a two degree-of-freedom system with quadratic and cubicnon-linearities. It was developed to demonstrate and
test all the advantages and disadvantages of each method. The second example was a complex system with many
degrees-of-freedom and polynomial non-linearities. The suitability and capacity of the new non-linear technique us-
ing the centre manifold and the rational approximants was clearly demonstrated. Moreover, this non-linear procedure
method requires less computer resources and appears to be particularly interesting in cases of large non-linear systems.

One of the difficulties when the centre manifold or the rational approximants are applied is the determination of
the order of the polynomial approximation of the stable variables in a power series in centre variable, and the determi-
nation of the order of the numerator and denominator for the centre manifold approach and the rational approximants,
respectively. Usually, high orders become less significantwhen they increase, and hence we may find the necessary
and significant order to obtain a good approximation of the non-linear dynamical system; in the field of mechanical
engineering, the choice of the orders for the centre manifold approach and for the rational approximants are selected
to retain only the significant order by iterative approaches. It should be very interesting to find and to implement
systematic computational procedures to determine the lowest order needed to obtain a good approximation of the
non-linear dynamical system.
Even if this non-linear technique appears very interestingin regard to reduction and simplification of mechanical sys-
tems subject to instability phenomena, it has the disadvantage of being applicable only to systems with polynomial
non-linearities. Moreover, the centre manifold approach and the associated theorem [116] characterize the local bi-
furcation analysis near a fixed point of the non-linear system. This assumption reduced the fields of application and it
should be interesting to estimate the non-linear dynamicalresponse of mechanical systems far from the Hopf bifurca-
tion point. Also, new methods combining various approachesincluding at the same time the notion of reduction via
the centre manifold approach and a modal analysis approach based on the non-linear modes should be very interesting
[176].
Moreover, the extension of non-linear methods that reduce the dimension of mechanical systems would offer pow-
erful techniques for non-linear systems with various non-linearities such as discontinuous phenomena: in the field
of mechanical engineering, various applications are concerned with this type of non-linear problem that may cause
a great deal of instability phenomena. Because non-linear dynamical structures depending on control parameters are
encountered in many areas of science and engineering, a systematic computational implementation in finite elements
software for non-linear methods such as the centre manifoldapproach or the extension proposed in this paper that
reduce the dimension of non-linear systems would be a powerful tool. This computational and systematic treatment
in finite element software is perhaps a difficult and ambitious task but not unrealistic.

Annexe A: Analytical expression for the center manifold coefficients

We noteJc1 etJc2, the first and second terms of the matrixJc, respectively;Jsk thekth-diagonal term of the matrix
Js; andAi,j theith-ligne jth-column of the matrixA.

Second order analytical expression

The stable variablesvs are approximated as a power series of order two in the center variables(vc, µ̂) :

vs = h(1)(vc, µ̂) =
2
∑

p=i+j+l=2

p
∑

j=0

p
∑

l=0

aijlv
i
c1v

j
c2µ̂

l

= a200v
2
c1 + a110vc1vc2 + a020v

2
c2 + a101vc1µ̂+ a011vc2µ̂+ a002µ̂

2 (228)

wherea200, a110, a020, a101, a011 anda002 are the unknown center manifold coefficients of order two.
The analytical expressions of the center manifold coefficients for thekth-stable variable are given by

ak,200 =
Hk,1

(2)

2Jc1 − Jsk
(229)
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ak,110 =
Hk,2

(2) +Hk,n+2
(2)

Jc1 + Jc2 − Jsk
(230)

ak,020 =
Hk,n+3

(2)

2Jc2 − Jsk
(231)

ak,101 =
Hk,n+1

(2) +H
k,n(n+1)+1
(2)

Jc1 − Jsk
(232)

ak,011 =
H
k,2(n+1)
(2) +H

k,n(n+1)+2
(2)

Jc2 − Jsk
(233)

ak,002 =
−H

k,(n+1)2

(2)

Jsk
(234)

Third order analytical expression

The stable variablesvs are approximated as a power series of order three in the center variables(vc, µ̂) :

vs = h(vc, µ̂) =
3
∑

p=i+j+l=2

p
∑

j=0

p
∑

l=0

aijlv
i
c1v

j
c2µ̂

l (235)

So, we have

vs = h(2)(vc, µ̂) = h(1)(vc, µ̂) + a300v
3
c1 + a210v

2
c1vc2 + a120vc1v

2
c2 + a030v

2
c2

+a201v
2
c1µ̂+ a111vc1vc2µ̂+ a021v

2
c2µ̂+ a102vc1µ̂

2 + a012vc2µ̂
2 + a003µ̂

3 (236)

wherea300, a210, a120, a030, a201, a111, a021, a102, a012 anda003 are the unknown center manifold coefficients
of order three.
The analytical expressions of the center manifold coefficients for thekth-stable variable are given by

ak,300 =

−2ak,200G
1,1
(2) − ak,110G

2,1
(2) +Hk1

(3) +
n−2
∑

i=1

ai,200
(

Hk,2+i
(2) +H

k,(n+1)(i+1)+1
(2)

)

3Jc1 − Jsk
(237)

ak,210 =

−2ak,200
(

G1,2
(2) +G1,n+2

(2)

)

− ak,110
(

G1,1
(2) +G2,2

(2) +G2,n+2
(2)

)

− 2ak,020G
21
(2) +Hk,2

(3) +Hk,n+2
(3)

+H
k,(n+1)2+1
(3) +

n−2
∑

i=1

ai,110
(

Hk,i+2
(2) +H

k,(n+1)(i+1)+1
(2)

)

+
n−2
∑

i=1

ai,200
(

Hk,n+i+3
(2) +H

k,(n+1)(i+1)+2
(2)

)

2Jc1 + Jc2 − Jsk
(238)

ak,120 =

−2ak,020
(

G2,2
(2) +G2,n+2

(2)

)

− ak,110
(

G2,n+3
(2) +G1,2

(2) +G1,n+2
(2)

)

−2ak,200G
1,n+3
(2) +Hk,n+3

(3) +H
k,(n+1)2+2
(3) +H
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∑
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(
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+
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∑
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(
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(2) +H
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(2)

)

Jc1 + 2Jc2 − Jsk
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ak,030 =

−2ak,020G
2,n+3
(2) − ak,110G

1,n+3
(2) +H

k,(n+1)2+n+3
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Hk,n+i+3
(2) +H

k,(n+1)(i+1)+2
(2)

)

3Jc2 − Jsk
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ak,201 =

−ak,101G
1,1
(2) − ak,011G

2,1
(2) − 2ak,200
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H
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2Jc1 − Jsk
(241)

ak,021 =

−ak,101G
1,n+3
(2) − ak,011G

2,n+3
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G
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(
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(2)

)
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ak,102 =

−2ak,200G
1,(n+1)2
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ak,012 =

−ak,110G
1,(n+1)2
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ak,111 =
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ak,003 =

ak,102G
1,(n+1)2

(2) + ak,012G
2,(n+1)2

(2) −H
k,(n+1)3

(3) −
n−2
∑
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(

H
k,(n+1)(2+i)
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Annexe B: linear and non-linear expressions ofFX , MX , MY andMZ

The linear expressionsFLX ,ML
X ,ML

Y andML
Z of FX ,MX ,MY andMZ are given by

FLX (x) =
(

K1A2 + 2K2A2Bx + 3K3A2B
2
x +

3
4K3A4B

2
θ +

3
4K3A4B

2
ψ

)

(xs − xr)

+
(

1
2K2A4Bψ + 3

2K3A4BψBθ
) (

ψs − ψr
)

+
(

1
2K2A4Bθ +

3
2K3A4BψBθ

)(

θs − θr
) (247)

ML
X (x) = 2Nµbrk

((

2
3K1A3 +

4
3K2A3Bx + 2K3A3B

2
x +

3
5K3A5B

2
θ +

3
5K3A5B

2
ψ

)

(xs − xr)

+
(

2
5K2A5Bθ +

6
5K3A5BxBθ

) (

θs − θr
)

+
(

2
5K2A5Bψ + 6

5K3A5BxBψ
)(

ψs − ψr
)) (248)

ML
Y (x) =

(

−1
2K2A4Bθ +

3
2K3A4BxBθ

)

(xs − xr) +
(

−1
4K3A6BθBψ

) (

ψs − ψr
)

+
(

−1
4K1A4 −

1
2K2A4Bx −

3
4K3A4B

2
x −

1
7K3A6B

2
ψ − 3

8K3A6B
2
θ

) (

θs − θr
) (249)

ML
Z (x) =

(

−1
2K2A4Bψ + 3

2K3A4BxBψ
)

(xs − xr) +
(

−1
4K3A6BθBψ

)(

θs − θr
)

+
(

−1
4K1A4 −

1
2K2A4Bx −

3
4K3A4B

2
x −

1
7K3A6B

2
θ −

3
8K3A6B

2
ψ

) (

ψs − ψr
) (250)

with Bx = xs0 − xr0, Bψ = ψs0 − ψr0, Bθ = θs0 − θr0, andAk = π
(

Rke −Rki

)

for k = 1, 2, 3, 4, . . . , 6.

The non-linear expressionsFNLX ,MNL
Y andMNL

Z of FX ,MX ,MY andMZ are given by

FNLX (x) = (K2A2 + 3K3A2Bx) (xs − xr)
2 +

(

1
4K2A4 +

3
4K3A4Bx

)(

θs − θr
)2

+
(

1
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3
4K3A4Bx

) (

ψs − ψr
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+ 3
2K3A4Bθ

(

θs − θr
)

(xs − xr)

+3
2K3A4Bψ

(

ψs − ψr
)
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4K3A4

(

θs − θr
)2

(xs − xr)

+3
4K3A4

(

ψs − ψr
)2

(xs − xr)

(251)

MNL
X (x) = 2Nµbrk
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(

2
3K2A3 + 2K3A3Bx
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(xs − xr)
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2
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θs − θr
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(xs − xr) +
3
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ψs − ψr
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(252)

MNL
Y (x) = −3

4K3A4Bθ (xs − xr)
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8K3A6Bθ
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θs − θr
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− 1
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−
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3
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)
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3
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(
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)
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(253)

MNL
Z (x) = −3

4K3A4Bψ (xs − xr)
2 − 3

8K3A6Bψ
(

ψs − ψr
)2

− 1
8K3A6Bψ

(

θs − θr
)2

−
(

1
2K2A4 +

3
2K3A4Bx

) (

ψs − ψr
)

(xs − xr)−
3
8K3A6Bψ

(

θs − θr
) (

ψs − ψr
)

+1
8K3A6

(

ψs − ψr
)3

+ 3
4K3A4

(

ψs − ψr
)

(xs − xr)
2 + 1

8K3A6

(

ψs − ψr
)(

θs − θr
)2

(254)

with Bx = xs0 − xr0, Bψ = ψs0 − ψr0, Bθ = θs0 − θr0 andAk = π
(

Rke −Rki

)

for k = 1, 2, 3, 4, . . . , 6.
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Nomenclature

x scalaire

x vector of displacement

ẋ vector of velocity

ẍ vector of acceleration

x0 vector of the equilibrium point

x vector of small perturbations

µ friction coefficient

µ0 friction coefficient at the Hopf bifurcation point

µ̂ small perturbation of the firction coefficient near the equilibrium point

M mass matrix

C damping matrix

K stiffness matrix

y state variables vector

vc center variables vector

vs stable variables vector

h polynomial approximation of the stable variable in center variables

h(k) polynomial approximation of thekth-order

aijl coefficients vector of the center manifold approach

ak,ijl kth-coefficient of the center manifold approach

[m/n]f fractional approximant of the functionf

dαβ denominator coefficients of the fractional approximants

nαβ numerator coefficients of the fractional approximants

V k
i,j Fourier coefficients for thekth-variable
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