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Abstract

Non-linear dynamical structures depending on control petars are encountered in many areas of science and
engineering. In the study of non-linear dynamical systeeedding on a given control parameter, the stability
analysis and the associated non-linear behaviour in acréial steady-state equilibrium point are two of the most
important points; they make it possible to validate and abi@rize the non-linear structures. Stability is investi-
gated by determining eigenvalues of the linearized pestiioh equations about each steady-state operating point,
or by calculating the Jacobian of the system at the equilibnmpoints. While the conditions and the values of the
parameters which cause instability can be investigatedsimguinearized equations of motion, studies of the non-
linear behaviour of vibration problems, on the other haeduire the complete non-linear expressions of systems.
Due to the complexity of non-linear systems and to save tgimplifications and reductions in the mathematical
complexity of the non-linear equations are usually reqiiirEhe principal idea for these non-linear methods is to
reduce the order of the system and eliminate as many noarities as possible in the system of equations.

In this paper, a study devoted to evaluating the instahbilitgnomena in non-linear models is presented. It out-
lines stability analysis and gives a non-linear strateggdystructing a reduced order model and simplifying the
non-linearities, based on three non-linear methods: theeenanifold concept, the rational approximants and the
Alternating Frequency/Time domain method. The computatigprocedures to determine the reduced and sim-
plified system via the centre manifold approach and the ibvaat approximants, as well as the approximation
of the responses as a Fourier series via the harmonic bataatteod, are presented and discussed. These non-
linear methods for calculating the dynamical behaviourariinear systems with several degrees-of-freedom and
non-linearities are tested in the case of mechanical systéth many degrees-of-freedom possessing polynomial
non-linearities. Results obtained are compared with tlestienated by a classical Runge-Kutta integration proce-
dure.

Moreover, an extension of the centre manifold approachgusitional approximants is proposed and used to ex-
plore the dynamics of non-linear systems, by extending timeadn of convergence of the non-linear reduced system
and evaluating its performance and suitability.

1 Introduction

In the field of engineering, the need for consideration of-tiwear effects in the description of a dynamical system
is well recognized. Due to the fact that many structuraleyst of practical interest possess complex non-linear be-
haviour, there has been a crucial and strong developmenheitréatment of non-linear differential equations and in
the application of non-linear methods to enable the arglyGvibration problems. These non-linear treatments are
commonly applied in a wide range of mechanical engineeriafplpms where it is impossible to ensure the stability
of a non-linear system and self-excited vibrations may beegged ([191], [156], [192], [194] and [193]).Though the
instability of the equilibrium position of non-linear sgshs and the associated stability condition can be inveastiga
by considering a linear stability theory, the complete eggions of non-linear systems need to be taken into account
in order to obtain the non-linear behaviour of systems. Awxeédl known, a common procedure for estimating the
non-linear dynamical behaviour of systems is the numeiitafgration procedure. However, the use of this approach
for non-linear models with many degrees of freedom can beeragxpensive and requires considerable resources
both in terms of computation time and data storage. In thases; non-linear methods for reducing, simplifying and
approximating the non-linear responses can be applied.



The main objective of these non-linear methods is to extadtcharacterize the non-linear behaviours of structural
systems by using non-linear interpretations of modes amdlinear extensions of principal coordinate transforma-
tions ([188], [189], [153], [154], [134], [135], [164]). T@se various non-linear methods have been investigated for
obtaining a low-dimensional and simplified system near tbpfHbifurcation point without losing the contribution of
the non-linear terms in the field of non-linear mechanicabaomous systems depending on one parameter. One of
the most powerful and frequently used reduction methods ih¢he centre manifold approach based on the reduc-
tion of the dimension of the original system ([135], [70]9]9[82], [167], [170] and [172]); the lower-dimensional
non-linear system has the same non-linear vibrational\nehaas the original one. One of the bases for simplifying
non-linear models is the method of normal forms that allowgsaieliminate as many non-linear terms as possible
through a non-linear change of variables ([2], [125], [133], [34], [22], [23], [92], [54], [93], [83], [126],[171]
[72], [203], [6], [204], and [206]). Even if the method of moal forms is usually applied after the centre manifold
approach, other non-linear simplification methods sucthad?ade approximants should be applied ([19], [21], [3]
and [18]);all these non-linear methods possess advantagkslisadvantages; the fractional rational approximants
present a great advantages for obtaining information ath@ubon-linear function outside its circle of convergence,
and for more rapidly evaluating the function within its ¢&@®f convergence. However, the use of these fractional
approximants are not commonly used after the centre maniémluction.

In this study we propose to apply non-linear methods to redaura simplify non-linear systems near the Hopf bi-
furcation point. Applications of these ideas will be invgated for mechanical dynamical systems with polynomial
non-linearities. After the estimate of the stable and Wwistareas due to the variation of given parameters, three
non-linear methods will be successively applied to ingadé the non-linear behaviour of dynamical systems around
the Hopf bifurcation point. The centre manifold approacH ke used first, to reduce the original non-linear systems.
Secondly, the rational fractional approximants will be laabto simplify the non-linear reduced system. Finally, a
harmonic balance method, that enables us to obtain themolas an assumed time function, will be developed. The
choices of each non-linear method and more particularlyueeof the rational approximants to simplify non-linear
systems instead of the normal form approach will be justiéied argued.

This paper is divided into four sections. The purpose of iBact is to present a survey of the non-linear methods
ap-plied in mechanical engineering to reduce, simplify emapproximate the non-linear behaviour of structural sys-
tems. These non-linear methods reduce the number of egaaticthe original system and simplify the non-linear
terms in order to obtain a simplified system without losing dlynamics of the original system as well as the essential
contributions of non-linear terms. More particularly, thasic concept of the centre manifold approach, the normal
form approach and the rational fractional approximantsedore are developed; the theory, the classical procedures
to obtain the reduced and simplified systems by using eacHimesr method, and the advantages and disadvantages
of these non-linear methods are discussed.

Following the general theory, Section 2 presents an agfgitaf these non-linear methods for a two-degree-of-
freedom mechanical system with quadratic and cubic naslities. Attention is first focused on the stability theory
and analysis. Second, the complete non-linear analystisfrtechanical system is developed: the centre manifold
approach, the rational approximants and the AlternateUenecy/Time domain method are then considered in some
detail. Each method is accompanied by a computational guweewith practical advice on usage: computational
schemes with generalisation ferdimensional non-linear system are given. Moreover, agnegion is given of
comparative results obtained by these various non-linedhoas and verifications by computational simulation with
a classical numerical integration procedure; indicatiohshe advantages and shortcoming of each method is dis-
cussed. Towards the end of this section, a new procedurg asiextension of the centre manifold approach via the
rational fractional approximants is presented: this métthagy extends the domain of validity of non-linear systems
reduced by using the centre manifold approach and appleesational fractional approximants in order to enhance
the convergence of the series expansions of the centre oldhtiieory. We will show that the interest of these rational
approximants is that they require fewer terms than the #ssocTaylor series in order to obtain an accurate approxi-
mation of the behaviour of the complete non-linear system.

Finally, Section 3 is devoted to the application of this neminear strategy based on the centre manifold, the ra-
tional approximants and the Alternating Frequency/Timmdm method, in order to study the non-linear dynamical
behaviour of complex systems in near-critical steadyestgauilibrium point. The goal of this section is to show the
suitability, capability and computational advantageshef tentre manifold extension via the rational approximants
for a non-linear system with large degree-of-freedom:tifvic induced vibrations in a complex mechanical aircraft



brake system that consists of a set of 15 coupled ordinafgrdiitial equations of the second order with polynomial
non-linear terms are considered. Some basic conceptsaréfiibrake systems, a concise survey of the associated
friction instability mechanisms, and the non-linear metbal model are first presented. Second, the results from sta
bility analyses and determination of the non-linear betnawvof the complex system by applying the centre manifold
extension via the fractional rational approximants aren@rad.

2 Non-linear methods for dimension reduction and simplificéion

2.1 Overview of non-linear methods

Even though the develop of non-linear procedures havecidttancreasing attention in recent years, the earliedt stu
ies of non-linear vibrations were made by Poincare 120 yagos([146] and [144]). It is only during the last 50 years
that advances have been made by researchers in the probleom-¢ihear vibrations with one or many degrees of
freedom in order to understand the non-linear behaviouystiesns ( [7], [8], [112], [14], [101], [183], [1], [13], [39]
[69], [188], [189], [153], [154], [134] and [135]).

A number of techniques have been used in the past by vari@@snehers using numerical integration over time.
These methods appear to be the most common solution forctireglthe non-linear behaviour of systems. How-ever,
they can be both extremely time-consuming and costly tooperin terms of storage requirements for large degree-
of-freedom systems.

Various methods have been introduced by a number of resaarébr calculating the non-linear responses of these
complex systems. Conventional methods are approximagicmiques that can be divided into two categories. The
first category deals with the methods called the "small patans techniques” such as the asymptotic method, the
averaging method, the slowly varying coefficient method amdimber of various perturbation techniques ([132], [1],
[14], [56], [159], [101], [115], [139], [134] and [135]). Gnof the most important disadvantages of these methods
that differ only slightly from one other is that all the nandar terms in the equations of motion are assumed to
be small and only proportional to a given parameter. Thersga@ategory of approximation techniques deals with
the Galerkin method, the Ritz method, the harmonic balanethadls, trigonometric collocation, etc. They require
an initial assumption about the form of the solution of the4lioear system as a function of time and the estimated
approxi-mate response is obtained by minimizing the redgof the equations of motions ([196], [197], [184], [118],
[81], [120], [152] [117], [104], [134], [135], [78], [202],131], [130], [158] [30] and [91]). For this last categoriigt
most popular methods for approximating the non-lineareasps of systems are the harmonic balance methods where
the non-linear solution is assumed to be a truncated Foseiges (harmonic balance method (HBM) [138], [12] and
[157], incremental harmonic balance method (IHBM) [149]11], [107], [108], [109], [143], [142], [113] and [95],
alternate frequency/time domain method (AFT) [25], [122,3] and [174], multi-harmonic balance method (MHB)
[27], [26] and [98]). All these numerical methods are wetlekvn and have been commonly used to solved non-linear
problems in the fields of mechanical engineering.

Another standard approach is the linearized methods ([1Z78], [86], [85], [87], [89], [88] [29]). The principle

of these methods is based on the well-known technique of/alguit linearization of Kryloff and Bogoliubov [101]
and was extended by Ilwan to multi-degree-of-freedom systg¢86], [85], [87], [89] and [88]). The purpose of this
method is to replace the non-linear system by an equivaleeal system in which the difference between the two
systems is minimized. Then, the solution of the associateat system is taken as an approximation of the original
non-linear problem. One of the advantages of this equivdileearization procedure is that the resulting linear prob
lem may be solved by any convenient technique, and this appris easily mechanized and implemented.

An alternative approach to obtain an approximated solutibeystems is to consider reduction and simplification
techniques. The aims of these procedures is to obtain aifiedphnd reduced system that has approximately the
same dynamical behaviour as the original one. Most of thelsenses are concerned with linear reduction and sim-
plification: in structural dynamics, modal analysis tecjugis are based on modal expansions ([94], [57], [65], [77],
[371, [45], [71], [119], [67] and [66]). The purpose of thisdhnique is to define the coordinate linear transformations
from physical coordinates where the dynamical behaviowstrofctures are complex to modal coordinates where the
structural system may be easily solved. Most mechanicaésysare indeed quite complex due to their number of
degree-of-freedom that leads to many vibrational modeweler, it may be demonstrated that certain modes often
dominate in the frequency range of given operating pointstimctural systems. Then, by applying modal reduction



methods, the low frequency modes or the most important modgsbe used to define the reduced and simplified
model.

Since non-linearities are often presented in structurstesys, non-linear model reduction and simplification mésho
have been developed. During the last 30 years, Rosenbé&g] @hd [154]) has defined the notion of the non-linear
normal modes as synchronous motions with fixed relationsdmt generalized coordinates, similar to the linear nor-
mal modes of classical vibration theory. This concept of-fiee@ar normal modes has great potential for reduction
techniques and has been studied by many researchers in yeaea for weak and strong non-linear systems ([14],
[96], [162], [161], [187], [188], [189], [186], [46], [5],15], [163], [165], [164], [61], [160]). Shaw and Pierre [164
proposed a new definition of the non-linear normal modesrimgeof invariant manifold approach and presented a
sort of non-linear modal analysis to the non-linear proldethe non-linear normal mode takes place in an invariant
manifold that is tangent to the linear modal subspaces agbdive of equilibrium. A non-linear trans-formation is
applied to relate the physical coordinates and the noratineodal coordinates. The invariant manifold methodology
has one aspect that seems to be very promising when seaifchingduced models, since one non-linear normal
mode is constructed by projecting the other modes over it bgma of a non-linear relationship. These pro-jections
contain the non-linear effects, and the performance ofédeced model is adapted to weak non-linearities by virtue
of the power series used to obtain the approximation. Howéwve applicability of such non-linear modal analysis is
restricted to a very small class of dynamical systems ([J4it] [198]).

One of the most useful non-linear methods to reduce systémsaa-equilibrium point is the centre manifold ap-
proach ([135], [70], [99], [82], [84], [62], [44], [28] [116 [167], [170] and [172]). This approach assumes that the
non-linear dynamical system at near-equilibrium point averned by the dynamics on the centre manifold when
certain eigenvalues have zero real parts (and all otheneddiges have negative real parts). It may be noted that the
centre manifold appears to be an extremely powerful methedtad the fact that ifn eigenval-ues of the eeigneval-
ues of the non-linear system have zero real parts, then timb@&uof equations for the non-linear system is reduced
by n — m by applying the centre manifold approach. However, thishoeétcan only be used for model reduction
when the system has an eigenvalue with zero real parts atudlibeégm point. Usually, the centre manifold has
complicated non-linear terms. In this case, the non-lisgatem can be simplified by using further non-linear coor-
dinate transformations ([145], [146], [103], [2], [125F][ [22], [23], [54], [93], [83]). The normal form theory is
often applied after the centre manifold approach. The mhjeative of the method of normal forms is to obtain the
simplest possible non-linear system by the use of sucaessin-linear co-ordinate transformations ([133], [92] and
[70]). At the end of these non-linear transformations, dhly resonant terms are retained: they cannot be eliminated
and are essential to the non-linear system dynamics.

Moreover, there exist other non-linear methods called #tmmal approximants that simplify the non-linear terms
by fractional series ([19], [21], [3] and [18]). The aim ofitmon-linear method is to approximate a function from
its series expansion by constructing a fractional ratidoattion such that its power series expansion agrees with
that of the original function, insofar as possible. Sucloral functions are called the Padé approximants and many
generalizations of Padé approximants have been intradoger the past 80 years ([3], [47], [20], [64], [140], [41],
[182] and [181]). The rational fractional approximants éd@und numerous applications in various branches of sci-
ence and mechanical engineering because of their highdyeisting approximation properties and, in particularirthe
potential convergence outside the domain of convergentdgedferies they approximate: they allow simplification of
the non-linear terms and computation of an accurate apmtion of a non-linear functiorf (x), even at values of

f for which the Taylor series of (x) diverge.

There are other reduction, simplification and approximmatizethods used in non-linear dynamical analysis including
the multiple shooting method, the Time Finite Element Meittbe Multiple Scale Method, the fixed point procedure,
etc ([185], [42][43], [24] and [97]).

We will now describe in detail three non-linear methods tduee and simplify non-linear systems: the centre
manifold, the normal forms and the fractional approximaBtg applying these methods, we can reduce the dimension
of the original system and/or simplify the number of noreln terms without losing the non-linear behaviour of the
original system. We do not claim to make an important contidm nor to be exhaustive; the only purpose is to give
an overview of the non-linear methods that underlie thisepapVe refer the interested reader to the books [134],
[135], [3] and [70] for an extensive overview of the non-Emenalysis and non-linear methods that are not the subject
of this study.



2.2 The centre manifold approach

In the field of engineering, the description of a dynamicaltesn is usually given by a-dimensional differential
equation
X =F(x,p) @)

wherey is a control parameter arid is a non-linear function.

The centre manifold analysis is used to reduce the ordereohdm-linear model at near-equilibrium poixg upon
bifurcation ([135], [70], [99] and [82]). This approach iased on the idea that all the dynamical system charactsristi
at near-equilibrium point are governed by the dynamics ercéntre manifold when some eigenvalues have zero real
parts and all the other eigenvalues have negative real. pestsletermine the centre manifold with a fixed pakgt
(defined byf(xq; © = 0)), the transformatiorx = x¢ + y is used to shift the fixed pointy of the system (1) to the
origin. The non-linear system (1) is transformed by

y = F(y +xo, 1) 2)

Assuming that the functioR is at leastC?,the non-linear system (2) can be extanded in a Taylor sakieatx, for
small||y|| as follow
¥ = Ay +Fa(y) + Fs(y) + - + Fi(y) + O(y**) (3)

where A = Dy f(xo; 1) is then x n matrix of first derivatives off' evaluated at the fixed poiriko; 1). Fy is a
degreek polynomial series in the principal coordinates of degyee

Next, the linear transformatioy = Pv whereP = [p1--* Pm,Pm+1 - Pn] IS introduced. p;1 - - - py, and
Pm+1 - Pn are the generalized eigenvectors of theigenvalues oA with zero real parts, anth —m) eigenvalues
of A with nonzero real parts, respectively. The system (3) issfiarmed by

\'f:JV+P*1F2(PV)_|_..._|_P*1Fk(PV)_|_... (4)

whereJ = P~1AP. At the Hopf bifurcation point, the system (4) may be reweritin the form

{ V.C = Jc (,U()) Ve + Fc(Vc7Vs7,UO) = JCVC + G2(VC,VS,M0) +-+ Gk(VC,VS,MO) + - (5)

st = Js (NO) Vs + FS(V07 Vs, NO) - JSVS + H2(V07 Vs, MO) + -+ Hk("c; Vs, MO) + -
wherev, € R” andvs € R™~". J. andJs have eigenvaluea such thatRe (Ay, (110)) = 0 andRe (Az, (10)) # 0
whereyy is the value of the control parameter at the Hopf bifurcapioimt. It may be noted that. andv are linearly
uncoupled but non-linearly coupled. Moreov€y; (0,0) = 0, H; (0,0) = 0, and the Jacobian matricésG; (0, 0)
and DH; (0, 0) are matrices with zero entries (with< i < k).

Now, a simple extension to the centre manifold method ([11835] and [70]) which is useful when dealing with
parametrized systems may be defined by augmenting the airigystem (5)

Ve =J¢ (ﬂ) Ve + FC(VCaVsaﬂ)
V:s :Js (/l) VS+FS(chvsuﬂ) (6)
p=0

where [ defines the modification gfy around the Hopf bifurcation pointF. andFg are polynomial non-linear
functions in the components of. andvg and infinitely differential. At(v.,vs, i) = (0,0,0), the center space is
(Ve, 1). Foronly small|v.|| and||/|, a local centre manifold exists and the centre manifoldhédarr [28]) allows
the expression of the stables variablgsas a function of the center variableg,, i) such that

vs = h(ve, /1) (7)
where the functiorh verified at the fixed poin¢0, 0, 0)
h=0 (8)

Dy hi (0)=0 1<i<n-—2 9)
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whereh; are the scalar components laf Due to the fact that the expressionlotannot be solved exactly in most
cases, the stable variables are usually approximated asex geries in(ve, /i) of degreem

0 (10)

p

vs = h(ve, fi) = > ST DTS agvl vl vk i (11)

p=itj+-+k+=2j=0  k=01=0

wherea;;...,; are vectors of constant coefficients. It may be notedlihiata power series without constant and linear
terms in order to satisfy equations (8-10). The choice ofgpr@imation of the stable variableg as a power series
in the centre variablesg,. is not an obligation; however, that makes it possible to kleasily the conditions defined in
equations(8-10). The determination of the veeitgr..;; is obtained by substituting ther — n) dimensional function

h into the second equation of (6). By combinaison with the &wtation of (6), the functioh verified

DVC,[L (h (V07 ﬂ)) (JCVC + FC (VC7 h (VC7 /l) 7ﬂ)) = Jsh (VC7 ﬂ) + FS (V07 h (VC7 /l) 7ﬂ) (12)

To solve equation (12), we equate the coefficients of themifft terms in the polynomials on both sides and we obtain
a system of algebraic equations for the coefficienis.;; of the polynomials. By solving these equations, we obtain
an approximation to the centre manifold = h (v, ). After h is identified, the reduced order structural dynamic

model, which is only a function of. , is given by

{ V:c = Jc (/l) Ve + Fc(vm h (chﬂ) 7ﬂ)

o (13)

If n of them eigenvalues have zero real parts, then we reduce the nurhbquations of the original system from
m to n in order to obtain a simplified system. In the field of mechaerigineering, the centre manifold is frequently
composed of only two centre variables so that the reducedinear system (13) contains only two degrees-of-
freedom with a control parametgr called an unfolding parameter.

2.3 The Normal forms simplification

As explained previously, the centre manifold reduces thelimeear system on the centre variables. However, the
associated centre manifold equations can have complicatedinear terms due to the approximation of the stable
variables in a power series in centre variables and theistgubons in the centre manifold equations. For such
systems, non-linear successive coordinate transformstian be used to reduce this non-linear system to its sitples
form, called the normal form. The idea of the normal transfation comes from Poincaré ([145] and [146]) and
this normal forms theory has been studied by several grda@sy [2], [125], [133], [7], [34], [22], [23], [92], [54],
[93], [83], [126] and [171]). The main idea of the normal foapproach is to eliminate as many non-linear terms as
possible through a non-linear change of variables. Thisnabforms theory is a very powerful tool for the analysis
of the local dynamical behavior near a singularity ([72PD32, [6], [204], and [206]).

2.3.1 Normal form theory
Consider the nonlinear system described by

;= fi (x) i=1,...,n (14)
where eacly; is a function ofx. By introducing the formal invertible transformation

zi=&(y)=ui > higy? i=1...,n (15)
qeEN;

every system (14) may be transformed retaining the Jordan &6 the system (14) in the normal form defined by

i=vyi Y, 9iqy? i=1...,n (16)
q.A=0



where

yq = (y(1]17yg27 e 73/3") (17)
N; = {q integral wvector :q; > -1, q. >0 if k#1i, ZQZ' = O} (18)
i=1
Giq=0 if q-A=> g\ #0 (19)
i=1
A={A 0, (20)

where A defines the vector of the linear eigenvalues of the nonisgatem (14). Due to the relation (20), it may
be observed that the right side of the expression (16) aomtainly the resonant termgg;qy? verifying q - A =
>ty @A = 0.

2.3.2 Transformation to normal form

In this section, it is proposed to compute the normal formgfarmation by using a successive change of variables
according to the increasing degrees of non-linearitie®]([[@2] and [206]). Effectively, as explained previously,
the basic idea of the method of normal forms is to employ ssgige coordinate transformation to systematically
construct a simple form of the original non-linear system.

By considering the previous system (14), we expand the véield f(x) into a Taylor series

N
% = £(x) = Ax+ £2(x) + £ (%) + - + £V (%) + O (V) = Ax+ D) + O (IxV1)  (20)
k=2

wherex € R”. The matrixA may be assumed to be in the Jordan standard form; if this itheotase A may be
changed easily to block Jordan form by a linear transforomatiWe havef* ¢ H* where H* defines ther-variate
polynomial space of orde¥ (with k& > 2).

Introducing the non-linear transformations

X =yg + P2 (y2) with P2 (y2) € H%
y2 =ys+P?(ys) with  P3(y3)ec H,

] ‘ 22
Vicr =i+ PE(yi) with  PF(y) € HY 22
yn-1=yn+PV(yn) with PN (yn) € HY
and substituting these expressions in the non-linearsy&é), the left side is
. d .
x=— (y2+ P (y2)) = (I+ Dy.P? (2)) ¥2
. d .
Y2 = o (}’3 +Pp? (}’3)) = (I + Dy, P? (Y3)) Y3
(23)

v = 0 (e + PE ) = (14 Dy P (310 v

YN-1 = % (yN +PY (yN)) = (I + Dy, PV (yN)) YN



and the right side is

£(x) = A (y2 + P2 (y2) + -+ £V (y2 + P2 (y2) + O (Ix/V+)
£(y2) = A (ys + P2 (ys) + - + £ (ys + P° (ys) + O (jx|¥*1)

' 24
£ (k1) = A (v +PE (i) + - + B (yic+ PF () + O (IxIV+) )
flyn-1) = A (yn + P (yn)) 4+ 8, (yw + PV (yn)) + O (jx|¥*1)

By identifying (23) and (24), we obtain for tHé"-transformation

_ kN Difi i
yi = (I+ Dy, P* (yk)) Ay + AP* (yy) Z Z i 2 (P*(yw)) (25)
— 2 .

Finally, after a number of computations [70], the reducestesy for eachk!"-normal form is obtained successively
by

N
Y2 = Ay2 + 7 (y2) + Y _fi (y2)
=3

ys—Ay3+Z 1 (y3 +Zf2 ¥s)

=2 =4

N (26)

Yk—AYk+Z L+ D o (ve)

=2 i=k+1

N

yN =Ayn+ > £ (yN)

=2

As illustrated in the previous equations, the normal foram#formations absorb lower degree non-linearities inide
coordinate definitions while generating higher degree limogarities. These coordinate transformations are gdpera
good computational tool because by applying transformatiave simplify the original non-linear expression without
losing the mathematical and physical properties of systdtmaay be noted that the normal forms are generally not
uniquely defined and finding a normal form of non-linear systés not easy. However, all the expressionf;faind
the related coefficients can be obtained by using symbolautzions and solving successively a series of algebraic
equations according to the increasing degrees of nonttiema([70] and [92]). The normal forms method greatly
simplifies the analysis of dynamic behaviour of the originah-linear system. However, this procedure may be not
very convenient, and other procedures have been developetbiie easily obtain the normal form of a non-linear
system([203], [6], [147], [206], [73] and [72]).

2.4 The Padk and multivariable approximants

As shown in Sections 2.2 and 2.3, the centre manifold equaittan have complicated non-linear terms. These non-
linear tems can be simplified by using further non-linearhrods, such as the normal forms approach. One of the
other most interesting possibilities is to apply the Pau@&aximants and the general rational fractional approxitaa
([19], [21], [3] and [18]). As explained previously, the @nest of the Padé approximants and general rational draiti
approximants is that they need fewer terms than the asedciatylor series in order to obtain an accurate approxi-
mation of a solution of a given problem. The aim of this sati®to provide an introduction to Padé approximations
and the general rational fractional approximants in 2alalgs that will be applied after the centre manifold analysi

In many branches of engineering sciences, Padé approtsraad rational fractional approximants have found nu-
merous applications ([40], [35], [36], [201], [200], [531,55],[170], [169], [168] and [175]); the solution of a give
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problem in applied sciences is often described as a powiassexpansion. In this case, one of the interesting aims
is to approximate the function from its series expansiorchStonstructions of rational functions are called the Padé
approximants and general fraction approximants. They kaite interesting approximation properties and possible
convergence outside the domain of convergence of the dbggsapproximate; a sequence of rational fractional ap-
proximants may converge even if the associated series diesathat the domain of convergence may be extended
by employing rational fractional approximants [174].

2.4.1 Pac approximants

Let the functionf(z) be represented by a formal power series, so that
flz)= Z 2t (27)
i=0

A Padé approximanij(z) is a rational approximation of the functigf{z) such that its power series expansion matches
the formal power serieg(z) insofar as possible. The Padé approximgnt) associated with the formal power series
f(z) = 3532, ¢zt is the rational function

9(z) =

ap + a1z + -+ + apmz™

28
bo +brz+ -+ by2” (28)

such that
f(z) = g(z) = O (=) (29)

The Padé approximant(z) with a numerator of degreé at most, and a denominator of the degreat most is
usually denoted by

[m/n]g (2) (30)
Next, the aim is to determine the unknown coefficigas a1, - - - , a,,) and(bg, b1, - - - , b, ). There aren+1 unknown
numerator coefficients and+ 1 unknown denominator coefficients. By considering the dqug8), we note that
the coefficient§ay, - - -, a,,,) @and (b, - - -, by,) will be determined at most up to a common multiplicative éactSo,
for definiteness we assume thigt= 1. So there aren + n + 1 unknown independent coefficients in ath (+ 1
unknown independent numerator coefficients anchknown independent denominator coefficients).
By multiplying the difference betweefi(z) and[m/n], (z) by the denominator dfn/n], () , we find that

(bo+biz+ - +b2")(co+c1z+-)=ap+arz+ - +apz"+0 (zm+”+1) (31)

By equating the coefficients af**! »m*2 ... »m+" \we obtain

boCma1 + - + bn1Cm-ni2 + bnCm_ni1 =0
bocmia + -+ bn_16m—n+3 + bncm—nia =0
(32)
bocmin + - +bn_1cmy1 +bney =0
with ¢ =0 if i<0

It may be noted that the system (32) is a setndinear equations for thes unknown denominator coefficients

(by,---,by) (by assuming = 1). Then, them + 1 unknown coefficient§ag, a1, - - - , a,,) can be obtained directly
from the equation (31) by equating the coefficientgbfz?, - - -, 2™
ag = C()b()

a; = ClbO + Cobl
as = Czbo + Clbl + Cobz
(33)

min(m,n)

am = Cmbo+ Y biCm—i
i=1




2.4.2 The multivariable rational fractional approximants

A natural problem in applied sciences is the generalisaifdhe Padé approximants to more than one variable. In this
section, we limit our attention to the case of the rationdypomial approximants in two variables that will be studied
in this paper. All the problems associated with many vaealilave the same kind of solutions and the determination
of the numerator and denominator coefficients of the fraeti@pproximants follows the same steps [75].

Let f (z,y) be a function of two variables of the form

[ee] [ee]
fx,y) = Z Z Coz,é’xayﬁ = Z caﬁxayﬁ (34)
a=0 =0 (a,8)€S
where
S={(e,B) | o, B nonnegative integers} (35)
We define
Az,y)= Y. aapz™y’ (36)
(a,B)ESM
and
B(z,y)= > bagz™y’ 37)
(e, B)ESH
such that
A®,Y) | o
T,y) = 4 dagzy”® 38

where as many coefficients,z as possible are zero and wifl, et S,, defined as follows

Sm={(a,8) | 0<a<m,0 <3 <my} (39)
Sp={(a,8) | 0< a<n,0< B <ng} (40)
In this case,gg’gg is the rational fractional polynomial approximants in twaxiables off (x, y). It has the form
mi1 Mmo
Z aaﬁfﬂay’g Z Z aa/gxayﬁ
[m/”]f(l‘,y) == Z N = [ml,mg/nl,ng]f(a:,y) = (41)
B b a, B
(a,B)ESn C;)BZO BT Y

By assuming thabyy, = 0, there are(m; + 1) (ma + 1) + n; (n2 + 1) unknown coefficients to be found in the
fractional approximant (41). In order to understand thecpdure to determine the unknown coefficients and to
illustrate the various types of regions in which the ternis/® are to be matched, it is useful to consider a few
diagrams in the two-dimensional lattice sgtas illustrated in Figures 1-3. Figures 1, 2 and 3 illusttagesituation

for a Chisholm Approximantifi; = ms = n1 = ngy = m), a Simple-Off-Diagonal approximant«{; = ms = m and

n1 = ny = n), and a General-Off-Diagonal approximant( £ msy # ni # ns), respectively.

We use the following convenient notation:

m; = min (m;,n;) (42)
n; = mazx (mg,n;) (43)
Pm = min (my, ma,ni,ng) (44)
and the following sets
P={(p,p) |0 <p<pnm} (45)
Rip={(p.p)} U{(e,p) [p<a <mi}U{(p.B) | p< B < my} (46)
Ry = {(a,p) | my <@ <ni}U{(p, B) [ my < B < ny} (47)
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Rsp = {(a,p) | n) <@ <mi+n1—p}U{(p,B) | ny < B <mg+ns—p} (48)

Ryp={(m1+nm—p+1p),(pme+n2—p+1)} (49)
Finally, the various types of regions indicated in Figure® dre defined as follows

S1=85,NS, (50)
So=5,US, \ S (51)
Sy = U Rz (52)

peP
Si=J Rap (53)

peEP
S5 =S\ | U Reyp (54)

peP

Next, by considering equations (38) and (41), and by myitigl the difference betweefi(z, y) and[m/n]; (z,y)
by the denominator dfn/n|; (z, y), we obtain

( Z bagzco‘yﬁ).< Z cagxay6>— Z aagazo‘yﬁ: Z dagxayﬁ (55)
(

with
daﬂ =0 (Oé, ﬁ) € Rl;p @) Rz;p @) Rg;p (56)
and
Z dm, +n1—p+lp t+ d ;ma+ng—p+1 = 0 (57)
p#0
Finally, by matching the coefficients for identical powendfy? in (55), the following relations are obtained
Z bycCp—yp = a, pE Sm (58)
YESn
> bycpy =0 Y E(Sy\ Gm)USs (59)
YESn
> D> by =0 peP (60)
w€R4;p pGSn

wherec, s = 0 if either o or 3 is negative. Then, after normalising, to unity, the computation of the coefficierits
can be achieved by solving the linear equations which ar@a {59) and (60). Next, the linear equations given by
equations (58) enable the coefficienfsto be determined, with the coefficierits found previously.

o

2m |

Figure 1: Various types of regions for the Chisholm Approats (CA) of two variables
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®p "

n m m+n [94

m,

em T

>

m;+n; o

0 ‘ ‘ n,
Figure 3: Various types of regions for the General-Off-Qiagl (GOD) approximants of two variables

2.4.3 General fractional approximants ink-variables

It may be observed that the generalisation for the ratioredtional aproximants ik-variables is a fairly natural
process. Lef (z1,z2, ..., xx) be a function ofc-variables defined by a formal power series expansion

(e} o
f@nma,me) = D 0 > Cageap @l TRt (61)
a1=0 a=0
with
x = (21,...,xk) (62)
o= (alv"'>ak) (63)
X =itk (64)
I, = {1, ..k} (65)
S = {Oé | Q4 € NJr, 1€ Ik} (66)
The power series defined in (61) withvariables has the compact form
fx) =3 cax® (67)
a€Ees
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The associated rational approximants:imariables are given by

o
D ax

m/n]; (x) = "2 (68)
Z bex’
oSy
with
and

There ardl;cs, (m; + 1) +1cr, (n; + 1) unknown coefficients in the equation. We note that the coeffisa,, and
b, will be determined at most up to a common multiplicative éacSo, we assume thag o= --- = by = 1. By
multiplying the difference betweefi(x) and[m/n], (x) by the denominator dfn/n|, (x) , we obtain

Z byx? Z CaX™ — Z a,x" = Z dgx” (71)

0ESh a€eS HESm Bes

with
dz=0 Be€S,US, (72)
dg =0 ﬁ € Sg (73)
> dg=0 peP (74)

BeR4;p

with

R4;p:U{a‘a:mi+”i—P+1§Qj:Pjuj7éi} (75)
i€,

P={p|peSnnSnl,=1{j|pj =mazx(p;) with i€ly} has at least 2 elements}  (76)

wherem,; = min (m;,n;) andn; = max (m;, n;). Next, the equations obtained by matching coefficients iratign
(71) are

Z boCu—o = ay e Sp 77)
UESn
> beCu—o =0 p€(Sy\Sm)USs (78)
O'GSn
> > betuo=0 peP (79)
HER4;p pESH
with
Sy = |J{Vier,{a | ny < i < ng+m; —piaj =pj,j #i}} (80)
peP
wherec, = 0 if o; < 0 for at least oné € I;. Then, after normalisingo . o, - -, bo to unity, the computation of

the coefficientd, can be achieved by solving the linear equations which ar@a {78) and (79). Next, the linear
equations given by (77) enable the coefficiefji4o be determined, with the coefficierits found previously.
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3 First example

In this section a simple example with two degrees-of-freeds presented in order to explain all the computational
developments for each non-linear method and to discuss diremimerical results. In this example, we first illustrate
the reduction of the order of the non-linear system at ngaitierium point upon bifurcation, the simplification of
the non-linear terms due to the fractional approximantsthadgpproximation of the non-linear solution as a Fourier
series by using a harmonic balance method. The advantagescbfnon-linear method will be demonstrated by
comparing the non-linear behaviour obtained by using tiheselinear approaches with those obtained by a classical
integration scheme (Runge-Kutta of order 4). More partidy) the advantages of the fractional rational approxitean
after the centre manifold will be illustrated and discussee will demonstrate that the rational approximants have
a greater range of validity than the polynomial one and they allow us to obtain an approximation of the solution
even if the associated approximation obtained by the cemargifold reduction is not sufficient or diverge.

3.1 Non-linear model: general presentation

In the field of mechanical engineering, the non-linear dyicahsystem defined in Figure (4) is a classic example
of friction-induced vibrations in a brake system. It presetie grabbing vibration in heavy trucks that results from
coupling between the normal mode,, m,) of the brake control and the torsion mode of the front aXig ms). In
order to simulate a braking system placed crosswise dueddhaxging caused by a static force effect, we consider
the moving belt slopes with an angle This slope couples the normal and tangential degreeeeidfsm induced only
by the friction coefficientu that is assumed to be constant. The braking fdrge.. transits through the braking
command, that has non-linear behaviour. Therefore, weidenshe possibility of a non-linear contribution. This
non-linearity is applied in order to indicate the influencel #he importance of non-linear terms in under-standing the
dynamic behaviour of systems with non-linear phenomereptbdiction of dangerous or favourable conditions, and
the exploitation of the full capability of structures by ngisystems in the non-linear range. In this study, the non-
linear behaviour dynamic of the brake command of the sygtemm,), and the non-linear behaviour dynamic of
the front axle assembly and the suspengibn ms) are concerned, respectively. These non-linearities diratbas
non-linear stiffnesses. The non-linear behaviour is themassed as a quadratic and cubic polynomial in the relative
displacement:

ki = ki + ki (Y —y) + kiz (Y —y)°

81
ko = kay + koo X + ko X2 (81)

Fbrake ;

Figure 4: Non-linear model of the braking system

With reference to Figure 4, and considering the non-linegression of the stiffnesses defined in equations (81),
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the three equations of motion can be expressed as

mY + ¢ (Y - 3/) + ki (Y —y) + ko (Y —9)° + ki (Y —9)° = —Firake
maX + X + kor X + koo X2 + kyg X3 = —N'sin 6 + T cos 0 (82)
maij e (5= V) + ki (= Y) + ko (y = V)2 4 his (5 — ¥)* = Ncos + Tsinf

Considering Coulomb’s friction laW’ = p N, and the transformationg = X tan ¢ andx = {X Y}T, the non-
linear 2-degrees-of-freedom system is given by

M + Cx + Kx = F 4 Fnp () (83)

wherex, X andx define the acceleration, velocity, and displacement resp@rdimensional vectors of the degrees-
of-freedom, respectivelyM, C andK are the mass, damping and stiffness matrices of the mechaystem.F
defines the vector due to the brake force, &g, (x) is the vector containing all the non-linear terms of the eyst
(82). By considering the equations of (82) the expressidmrdl the matrices and vectors are

tan’6+1) 0
M:[mQ(an 1) 1 (84)
0 mq
C— l c1 (tan?0 — ptan @) + co (1 + ptand) c; (—tanf + p) (85)
—cy tan6 1
K — ko1 (14 ptan®) + ki (tan?0 — ptan )  kiy (—tan6 + p) (86)
_kll tan 6 kll
(— tan 6 + M) (klz (X tanf — Y)2 + k13 (X tan 6 — Y)3)
Fnr = +k22 (1% ptan 0) X2 + koz (1 + ptan ) X3 (87)
—]Clg (Y — X tan 9)2 — ]{Jlg (Y — X tan 9)3
0
F:{ } (88)
_Fbrake
The general form of the equation of motion for the non-linggstem is given in the following way:
2 2 2 2 2
Mk + Cx + Kx =F+ Y Y £ ziw; + > > > £ wiwm (89)

i=1j=1 i=1 j=1k=1

wheref(i;) et f(‘g,f)‘ are the vectors of quadratic and cubic non-linear termpeesvely.

3.2 Stability analysis
3.2.1 Methodology

The stability analysis is the first step in instability pherena and allows us to obtain the stable and unstable areas
versus the evolution of parameters. This methodology cadiladed into two parts; firstly, the equilibrium point

of the non-linear system is obtained by solving the nondirgtatic equations for a given parameter. Next, stability
analysis is investigated by the determination of eigeregbf the linearized equations for each steady-state apgrat
point of the non-linear system or by calculating the Jaaolithe system. The linearized equations are obtained by
introducing small perturbations about the equilibriummonto the non-linear equations. The equilibrium pakpt

of the non-linear system (89) satisfies the following cdods:

Kxog =F + Fn1L (XO) (90)
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Then, stability of the non-linear system is investigatedttun linearized equations by assuming small perturbations
— T
X = {X Y} about the equilibrium pointg = {X, Y;}” of the non-linear system :

X =Xg+X (91)

By substituting equations (91) in the linearised exprassibthe non-linear system (89), we obtain the linearized
system

Mx + CXx+ K (X+x¢) = F + Fnr (%0) + Fi (X) (92)
with
OFR, OF3,
_— 0X o oY w | = 93)
X) = X
z (%) oFY,|  aFY,
0X o oY o

T
The terms of the vectdFy, (X) = {Fg( x) FY (i)} at the equilibrium pointq for small perturbations are
given by

FX(®) = (—tand+p) (2k (tan? 0X0X + YoV — tan 0YpX — tanfXoY)
+3k1y (tan® OXZX + 2tan? 0X(YoX + tan 0¥ FX + 2tan 0XoYoY — YV )) (94)
+ (1 + ptan 9) (2]{322X07 + 3]{323ng — tan@X&?)

FY (®) = —2kiz (YoV + tan 0%,X + tan® 0X,X — tan 0X,Y — tan Y, X )
+3k13 (2tan 0XYp X — YZY + tan 0YZX — tan? XZY — 2tan? XY X + tan® HXgY)
(95)
Finally, the linearized equation of the non-linear systénia equilibrium pointkg is given by
Mx+ Cx+ (K- Kp)X=0 (96)
with
Fr (x) = Kix (97)
Then, the stability analysis may be carried out by detemgjithe eigenvalues of the matrix given by
0 I
A= . . (98)
-M ' (K-Kp) -M~'C
The eigenvaluesa of A can be expressed as
A=a-+1ib (99)

wherea is the real part, and is the imaginary part of the eigenvalue, respectively. llealenvalues have their real
parta negative or zero, the system is stable. If one or more eigeesdhave their real patt positive, the system is
unstable. Thereforé, represents frequency of the unstable mode. It clearly apibat the stability analysis may be
applied for large non-linear systems and practical contfmrtal implementation can be easy and systematic.
Another classic approach for investigating the stabilityhon-linear systems is the Routh-Hurwitz criteria [48]. In
this case, the fourth-degree characteristic polynomiaheflinearized system (96) is investigated. It has the form
A+ asA? + ap\? + a1\ + a9 = 0. The system is stable if the three following relations arefieel: (a)as > 0;

(b) azaz — a3 > 0; (€) a1 (azas — a1) — aya3 > 0. Even if this approach has advantages in determining doalyt
expressions of stability criteria versus all the paransetéthe non-linear system, the estimate of these expresgon
very difficult to obtain for non-linear systems with many degs-of-freedom.
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3.2.2 Hopf bifurcation point

Moreover, one of the important points is the determinatiébrthe Hopf bifurcation point. This point defines the
limit between the stable and unstable areas of non-linestiesys. Moreover, the non-linear behaviour of an unstable
dynamical system is usually estimated around this Hopfr&étion point when the system becomes unstable. The
Hopf bifurcation point can be defined as follows

Re (Acenter (1)) ‘X:XOJJ«:HO =0
Re (Ano—center (1)) |x=xo,u=po 7 0 (100)

% (Re (A (1)) [y # 0

The first condition implies that the system (96) has a painupély imaginary eigenvalues...:.. while all of its other
eigenvalues\,,,_cenire NAve nonzero real parts @ = xo, 1 = po). The last condition of (113), called a transversally
condition, implies a transversal or nonzero speed crossitige imaginary axis, as shown in Figure 6.

3.2.3 Computational stability analysis

The following parameters will be used for the computaticstability analysis and the associated parametric studies:
the friction coefficienty = 0.3; the brake forcefy,.e = 1NV; the equivalent mass of the first and second modes
my = my = lkg; the equivalent damping of the first and second mades ¢, = 5N/m/sec; the coefficients of
the linear, quadratic and cubic terms of the stiffnésgor the first modek;; = 1.10°N/m, k12 = 1.10°N/m and

ki3 = 1.106N/m, respectively; the coefficients of the linear, quadratid anbic terms of the stiffnesk, for the
second modek o = 1.105N/m, k12 = 1.10° N/m andki3 = 1.10° N/m, respectively; the anglé = 0.2rad..

Firstly, the computations are conducted with respect tabtiade friction coefficienfu. The Hopf bifurcation point

is detected fopr = pp = 0.204. A representation of the evolution of frequencies againské friction coefficieni

is given in Figure 5. In Figure 6, the associated real pagspéotted; the real part of eigenvalues is negative when
u < po. As the friction coefficien: increases, the two modes move closer until they reach thechiion zone. We
obtain the coalescence far= p of two imaginary parts of the eigenvalues (frequency ab@uts). Fory = g ,
there is one pair of purely imaginary eigenvalues. All ottigienvalues have negative real parts. After the bifuroatio
the real part of eigenvalues is positive. In conclusion,system is unstable for < po, and stable fof, > pyg .

Then, stability analysis versus two parameters can beyegeitied out by numerically determining the evolution of
the real part and imaginary part of the eigenvalues. For @@mparametric studies are shown in Figures 7-14; Figures
7(a)-14(a) indicate the stable and unstable areas versusstiution of parameters and Figures 7(b)-14(b) show the
evolution of the frequencies in the complex plane. Conseilyestability analysis is a very complex problem: stable
and unstable regions can be obtained by varying parametershare are an infinite number of combinations of
parameters that could be examined. This is why computdtjmsrametric studies are very interesting and useful in
order to obtain general indications for parametric desigiliss.
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3.3 Non-linear dynamic: classical approach

While stability analysis conducted using the determimatib the eigenvalues of the linearized equation at the equi-
librium point are extremely useful in evaluating the effeEthanges in various parameters, they can not evaluate the
vibration amplitudes at the instability region and moretigatarly near the Hopf bifurcation point. In this case, the
time-history solutions of the full set of the non-linear atjans (89) can evaluate the non-linear dynamic behaviour
of a system in near-critical steady-state equilibrium poin

These time-history responses of the non-linear system eaaloulated by using a classic fourth-order Runge-Kutta
algorithm. Figures 15 and Figures 16 show the transientoresg analysis and the predicted non-linear vibration
amplitudes of the displacemet(t) and the velocityX (¢) at the instability region: = 1.0014, respectively. We
observe that the displacemeki{z) and velocityX (¢) grow until we obtain the periodic oscillations of the nonelar
dynamical behaviour of the system. Then, the evolution efdksociated limit cycle amplitud(eX, X) can be
evaluated at the instability regigm = 1.001.¢, as illustrated in Figure 17. The time-history of the digglaent

Y (t) and the velocityY (¢) at the instability region. = 1.001y are plotted in Figure 18 and 19, respectively; the
associated limit cycle amplitud(eY, Y') is shown in Figure 20.

Even if the time-history response solutions have been wbtiaising a fourth-order Runge-Kutta algorithm to integrat
the non-linear equations (89), this procedure is ratheergpe and consumes considerable resources both in terms
of the computation time and in terms of the data storage remgnts when extensive parametric design studies are
needed. As explained in Section 2.1, various non-lineahatkt can be applied to find the non-linear response of this
dynamical system. For example, it may be possible to assher@an-linear vibration amplitudes of the displacements
X (t) andY (t) as truncated Fourier series. The numerical estimate oftiligion should be obtained by applying
such non-linear methods as the trigonometric collocatiathod, and the various harmonic balance methods for
example ([132], [134], [149], [111], [109], [143], [113]25], [129] and [174]). All these numerical methods can be
commonly applied to solve non-linear problems; howeves,rtiost efficient methods are those that first reduce and
simplify the non-linear original system. Then we may useriba-linear methods that enable approximation of the
solution. By adopting this step and a succession of norafimeethods, each method is used in an optimal way and the
final reduced and approximated system can be considereceas tire simplest forms possible. So an understanding
of the behaviour of the non-linear system first requires $finption and reduction of the equations. In order to obtain
the non-linear reduced and simplified system, the centraefaldmpproach and the rational fractional approximants
will be used in this study.
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Figure 15: Evolution of the displacemest(t) for u = 1.001u by using Runge-Kutta 4
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Figure 16: Evolution of the velocity (¢) for ;. = 1.001u by using Runge-Kutta 4
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Figure 18: Evolution of the displacemeit(t) for u = 1.001u by using Runge-Kutta 4
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Figure 19: Evolution of the velocity (¢) for . = 1.0011 by using Runge-Kutta 4
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3.4 Reduced non-linear system via the centre manifold appexh
3.4.1 Non-linear formulation of the problem

In order to apply the centre manifold approach to reduce asthiplify the original non-linear system without losing
the effect of the non-linear terms, the complete non-lirmdem (89) may be rewritten about the equilibrium point

xo for small perturbations in state variabley = {X X
The complete non-linear equation of the system (89) is gixen

MX + CX + KX = Py, (X) (101)
wherex, X etx are the acceleration, velocity and displacement respansalimensional vectors of the degrees of

freedom, respectivelyM, C andK are the mass matrix, the damping matrix and the stiffnessixmagspectively.

T
PnL = {P]{,(L (X) Py (i)} contains the linear and non-linear terms of the system. Bsidering equations
(93-95),Pnr, has the form
Py (%) = Ff () + Fyp, (%) (102)
Prp (%) = Fp (%) + Fy (%) (103)

where F'X () et F) (%) are the linear terms oP3}; (X) and Py (X) at the equilibrium pointkg, as defined in
equations (93) and (95)F%; (%) and Fy; (X) deflnes the purely non-linear term &%y, (X) et Py, (X) at the
equilibrium pointxg. These expressions are given by

F¥, = kiz(—tanf + p) (tan2 60X’ +Y" — 2tan Hﬁ) + k13 (—tan6 + p) (tan3 0 (73 + 372X0)
_3tan20 (WQ LIV X Xy + YQXO) + 3tanf (WQ LYXY, + YQXYO) Y- 372Y0)
oo (14 putan ) X + kg (1 + ptan 6) (73 + 372X0)

(104)
FYp = ki (V' —2tan XY + tan? 0X° ) + kg (Y +3Y°Yp) - 3tanf (V'X + 2XV Yy + Y Xo)
#3tan’0 (L7 + 277 Xo + X°%) — tan® (X° 4 3X°%,)
(105)

Then, the non-linear system can be rewritten at the equifibrpoint xo = { X YO}T for small perturbations

x={x v}
Mx+Cx+Kx_Zf )J:Z—FZZfJxla:j—i-ZZZf TiT; T (106)

i=1j=1 i=1j=1k=1

where the coefﬁuentﬁ(1 , f(”2 andfggl; define the linear, quadratic and cubic terms of the system.

By rearranging the linear terms on the left wikx = Kx — Y2 f(il)x_l- the expression of the non-linear system is
2 2

Mx +Cx+Kx =" f} a:a:j—kzzz ARG (107)

i=1j=1 i=1j=1k=1

AT
Finally, the non-linear equations of the system are writtestate variabley = {i i}

4 4 4 4 4
V=AY + YD A iy Y>> A vy (108)
i=17=1 i=1j5=1k=1
with .
C M K 0
A_[I 0] [OI] (109)
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-1
d2) = [ (Ij 1\(;1 ] { f(g) } (110)

-1
M £
0 1 { <§> } (111)

AT
Whereq( andq( are the quadratic and cubic non-linear terms of the syst@) (b state variableg = {i i} .

= Q

d() = [

3.4.2 Application of the centre manifold approach

The centre manifold method allows reduction of a non-linggstem to a lower-dimensional form near the Hopf
bifurcation point. As explained in Section 2.2, the prew@aystem (108) can be written at the Hopf bifurcation point
in the form

(112)

Ve =Jeve + G2(V07Vs) + G3(V07Vs)
Vs = Jsvs + Ha(ve, vs) + Hs(ve, vs)

In this example, we consider the physically interestingecafsthe stable equilibrium losing stability and the first
coupling modes that is the most commonly studied cases ifiglieof mechanical engineering. So, there are two
centre variables . = {vq UCQ}T and two stable variablegs = {vs; USQ}T. J. andJg have eigenvalues such
that Re (A3, (no)) = 0 andRe (Ag, (10)) # 0. Ga, Gg, Hy andHg are the matrices containing the quadratic and
cubic terms for the centre variables and the stable variablag, respectively. All the properties &&=, Gs, H2 and

Hj3 are given in Section 2.2.

In this study, we consider the application of the centre fiadshepproach near the Hopf bifucation point. In this case,
the previous system (112) is augmented with the contradldinfg parametef. = ug + 1z as follows

VC _J ( )VC+G2(VC7VS7 ) +G3(V07VSJH)
VS - J ( )VS + H2(V07vsa ) + H3(VC7VS7,Uf) (113)
=0

At the point(ve, vs, 1) = (0,0,0), the non-linear system has three centre variables with ¢énére spacév,, /1)
associated. As explained in Section 2.2 the centre manifadry (Carr [28]) allows the expression of the stable
variablesvg as a power seriel in (v, i) of degreep (with p < 1). We obtain

m p p
ve=h(ve,)) = > Y > ayvyvki (114)
p=itj+l=2j=01=0
whereay;; is the vector of the centre manifold coefficients. We redaditthe polynomial approximatioris do not
contain constant and linear terms in order to verify the ¢amog conditions at the Hopf bifurcation point to the centre
eigenspaceh (0,0,0) = 0; Dy_h; (0,0,0) =0for1 < <?2; g—lﬁ (0,0,0) = 0.
More precisely, the stable variables are defined by

m PP o
Z Z > ay vl vt
AL (115)

Z

m

>

+
p
p=i+j+l=27

Y ag vl vl

=0

It may be noted that the terms, i, veofi, vs1fi €tvgafi are now used as non-linear quadratic terms. The value of the
coefficientsay, ;;; (with 1 < k& < 2) is obtained by solving the following system

Dy, ji (B (Ve, 1)) (Jeve + Gz (Ve h (Ve, i), 1) + G (Ve, b (Ve, 1) , ) (116)
= Jsh (Vm/l) + H2 (v07 h (V07 ) y b ) + H3 (V07 h (Vm/l) 7ﬂ)

By substituting the assumed polynomial approximafiomto (116), and equating the coefficients of the different
terms in the polynomials on both side, a system of algebrgimtons is obtained and the coefficienis;;; (with
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1 < k < 2) are obtained.
Then, the reduced system is defined by

{ V:c - JC (/l) Vc + G2(VC7 h (V07 ﬂ) 7/]') + G3(VC7 h (VC7 /l) 7/]’) (117)

=0
Even though the centre manifold approach is very intergstire to the reduction of the system to a lower-dimensional
form near the bifurcation point, we observe that deterngrtime coefficients, ;;; (with 1 < k& < n wheren defining
the number of the stable variables is a complex problem. #aisy to obtain the analytical expressions of these
coefficients for a small-dimensional system with few noveér terms. However, in the case of large-dimensional
systems with complex non-linear terms, it would be impdssib obtain an analytical expression of the coefficient
ar,q; (With 1 < k& < 2) due to the complexity of the polynomial approximations ahd important number of
non-linearities where the centre, stable and unstablabias are non-linearly coupled.

In the next section, we propose a computational procedudetermine the numerical values of the coefficients
ai; (With 1 < k < n wheren is the number of stable variables) in the general casepedlianensional system with
three centre variable&.1, ve2, i) andn stable variablesrs = {vg; wvso -+ vsn}T. The general form of the
non-linear system (113) is

Ve =Jeve + [Gg)} VRVt {G%g)} VRIVRV
Vs = Jgvs + [Hg)}v@)v—l- {H(i:’,f)}v®v®v (118)
=0

~

T
with v = {VCT vsl u} . ® defines the Kronecker product [180]. We assumedhat(v,.) = 2 anddim (vs) =

n. So, thadim (v) = n+3. Gy, G, H} andH{% are the quadratic and cubic terms (with i < 2,1 <1 <mn,
1<ji<(n+3)?andl <k < (n+3)3%).

3.4.3 Computational determination of the second order appsximation

The computational procedure applied for determining thegreemanifold coefficients consists of a systematic method
using the increasing power of equation (116).
If the stable variables are approximated by using only arsg¢@oder polynomial expression in the centre variables

T
{VCT /l} ={va Ve ﬂ}T, the expressions of the stable variablgsare given by

2 p p ,
ve = hW(ve, i) = >y Zaijlvéﬂizﬂl

p=i+j+1=27j=01=0
= a00v2; + 2110Vc1Ve2 + A020V2% + a101Vc1 i + A011Vc2il + Ago2/1” (119)
with asg0, a110, 2020, 2101, ao11 andagoz then-dimensional unknown vectors of the stable variables. ®ierdi-
nation of then x 6 coefficients (withn the number of the stable variables) is obtained by considernly the second
order terms of (116) that are defined by
Dy i (0 (ve, 1)) Jeve = Jh® (ve, 1) = Ha(Ve, i) = O (120)

This expression is the exact system for second order poliai@pproximation. By considering tHé"-vector of the
second order coefficients for ttié&"-state variable

2 _ T
ak—{ak,zoo Gk, 110 0k,020 Qk,101 Qk011 ak:,002} (121)
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and by equating the coefficients of the different terms inptblgnomials on both sides, the relation (120) has the form

O . .

T o af } ={ Cy2 (122)
: 0 :
0 -+ - 0 Jno a2 Ch2

where
Jk,2 - diag [2Jc1 - Jsk‘ Jcl + JCQ - Jsk‘ 2J02 - Jsk Jcl - Jsk‘ JCQ - Jsk Jsk] (123)

T k,1 k,2 k,n+2 k,n+3 kn+1 kmn(n+1)+1 k,2(n+1) En(n+1)+2 77k, (n+1)?
Cua = diag [Hpy)  H + HEG™ HE™ HG + 1 Hey 7+ H |
(124)

Je1 andJ.o are the first and second terms of the diagonal makghas defined in (118).Jy; is the kth term of the
diagonal matrixJs as defined in (118)H£“2’§ defines thé:*"-line andi‘*-column of the matricdd,. Then, the linear

equations (122) can be written in the compact form

Joa? = C, (125)
with
Jo=diag[J12--- k2 Inal (126)
azz{a%---aﬁ---ai}T (227)
Cy =diag[Ci2---Ck2- - Cpnp2] (128)

Finally, then x 6 unknown coefficients of the second order approximationaiogtl in the vectoa? are obtained by
a2 =J,71C, (129)

Jaisa(6 x n) x (6 x n) diagonal matrix.Cz is a(6 x n)-dimensional vector containing constant terms. All these
matrices can be obtained numerically by using the relatid®). As indicated in equations (120) and (124), only
the non-linear terms of the second order polynomial exjppassof Hy are considered for the determination of the
second order coefficients® of the centre manifold approximation. We can easily show tinaugh the second order
approximation is not sufficient to correctly describe the+ioear dynamic of the original system, the methodology
and the centre manifold theory are not in question; thisrdancy reflects only the fact that the approximation
of the stable variabless as a power series ifwve, i) of degree 2 is not sufficient and does not represent a good
approximation of the effect of the stables variablgon the centre manifold basis.

3.4.4 Computational determination of the third order approximation

In many cases, the second order approximation is not suffitteobtain a good approximation of the non-linear

behaviour of the original system. This is due merely to thet fhat the reduced system obtained by using only the
second order approximation contains only a small portiothefnon-linear expression of the original system. As
explained previously, the second order approximation ossthe quadratic terms of the centre variables of the left
of (116).

So, the third order approximation can be used to enhancep®xdmation of the stable variablag as a power

o _ T
series in the centre vanabl%s\/CT /1} . We have
3 p P o
ve=h(ve,2) = > D D aywivlyi (130)

p=i+j+1=25=01=0
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This developped expression can be written as follow

2 . 1 N 3 2 2 2
Vg = h )(Vm i) = h' )(V07 ) + agoovy; + A210V2Ve2 + A120Vc1V9 + 2030055

2 A . 2 A ~92 ~9 3
+a201V.1 44 + A111Vc1Ve2/t + @021 Va2t + @102Vc1 47 + A012Vc2/L” + Q0031 (131)

All the coefficients of the second order have been determprediously. Now, we only need to find thi® x n
coefficients of the third order approximation (withdefining the number of stable variables). This can be obdaine
by considering the third order terms in the polynomials othtsdes in (116):

Dy, i (0 (ve, 1)) Jeve + Dy (W) (e, 1)) Ga(ve, ) — Ish®) (ve, 1)

X o . ) N (132)
~H ([Ve, 0, /1] @ [Ve, W (v, 1), ] + [0, 0 (ve, 2)] @ [ve, 0, i] ) — Ha(Ve, 1) = O

Then the determination of the coefficients;;; of the third order can be obtained by augmenting the systdmettk

in equation (125):
Jz 0 a2 _ C2 (133)
D23 Js a3 Cs

a3:{a§---aﬁ---a3}T (134)

where

3 T
ag = {ak300 Gk210 k120 Gk030 k201 Cko021 k102 Ck012 Gk 111 Gk003} (135)

J2, C2 anda? have been previously defined in equations (126-128)s a(10 x n) x (10 x n) diagonal matrix and
D, 3 is a(10 x n) x (6 x n) matrix that defines the contribution of the second orderfaefts. Cs is a (10 x n)-
dimensional vector containing constant terms. All thes¢riges can be obtained numerically by using the relation
(132). Then the coefficients® of the third order approximation are obtained by

a®=J;7! (Cs + D2,3az> =J37! (Cs + Dz,stflcz) (136)

We note that the third order approximation uses the valudissofoefficient of the second order approximation. More-
over, a part of the quadratic non-linear terms in centreaides on the left side of (116) containedGiy defined in
equation (113). Cubic terms of the centre variables coathin Hs, defined in equation (113), and quadratic terms
of stable variables contained H,, defined in equation (113), are used. This clearly indictltas the third order
approximation enables consideration of more non-lineansgethan the second order approximation. So, it is clear
that the third order approximation allows a better appration than the second order approximation with the con-
tribution of most non-linear terms. As in the case of the secorder approximation, if the estimate of the stable
variablesvg in a power series iffive, /1) of degree 3 is not sufficient and does not represent a good:@ppation of

the contributions of the stables variables on the centrefoidrbasis, the determination of thé"-order is necessary
(with ¢ > 4).

Finally, one of the important points to be noted here is thatriumber of equations in terms of the unknown co-
efficientsay, ;;; naturally increases in comparison with the second ordas; ithplies that obtaining an analytical
expression of these coefficienst ;; may quickly become impossible if the order of the stablealzds in power
series of centre variables increases.

3.4.5 Computational determination of theq?” order approximation

The determination of the" order approximation can be generalized by using the sanmegue as in Section 3.4.4.
The expression of the stable variablesas a power series ifv., /1) of degreey is defined by

q P P )
ve=h(ve,i) = > DD aywivli (137)

The vector of they'” order approximation for the stable variables has the form

ad=[ad...ad...a9]" (138)
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It may be determined by solving the following system thatrissatension of the system (133) for thé order:

J 0 e . 0
2 a2 Cs 0
D23 Js a3 Cs 0
D24 D3s Ja at Ca Fy (a?
a5 = C5 —+ F5 az7a3) (139)
D2s D3s Dss Js
: : : : . 0 9 L
ad Cq Fq (a2,---,a972)
D27q D3,q D4,q T Dq—l,q Jq

Then the determination of the centre manifold coefficieatssich order, and more particularly tfi€-order may be
obtained successively:

a2 =J371Cy

a® =J37! (C3 + Dy 3a?)

at=J;7' (Cyq+ Dzg4a2 + Dgqa + Fy(a2))

a® =J5 ! (Cs + Dasa? + D3 sad + Dysat + F5 (a2, a?))

(140)

q—1
al= Jq_1 (Cq + Z Di,qai +Fq (az, e ,aq_2))
=2

Moreover, the more the higher-order terms are used in omapproximate the stable variableg as a power series
of the centre variableév, /1), the more the effects of the non-linear terms appear in @nps(116) and (139-140)
for the determination of coefficients? (with ¢ > 2). As can be shown in equations (139-140), the determination
coefficientsa? (with ¢ > 2) can be obtained order by order, and there is no need to tdatdcthe lower-order for a
new evaluation of polynomial approximationy = h(ve, 1). Finally, the analytical expressions for the coefficients
a2 anda?® of second-order and third-order polynomial approximatiofivs = h(v,, /i) are proposed in Annexe A.

3.4.6 Numerical estimate of the reduced system via the cemtmanifold approach

By using the procedure defined in Section 3.4.5, the origigaiem (112) is reduced to a three-dimensional form near
the Hopf bifurcation poini = uo + & wherepy is the Hopf bifurcation point anft = e (with e < 1):
{ ;c_:OJc (,U) ve + Go (Vc> h (Vc) 7,“) ++Gs (VC> h (VC) mu) (141)

When the limit cycles are determined near the Hopf bifuarapoint (withe very small), the expressiols(ve, i)
may be approximated by the simplified expressiofv.) with negligible errors; in this case we haye= O (v.).
The purpose of this consideration is to simplify the expmessf the reduced system (141). This approximation thus
amounts to the expression of at the Hopf bifurcation pointy with a;; = 0 for I # 0. In other words, it is not
necessary, but nonetheless allows the simplification oe#peession of (141); this simple extension and simplifica-
tion to the centre manifold method is useful when dealindhwidrameterised families of sys-tems. Therefore, the
non-linear terms may be approximated by their evaluatidhebifurcation poinf.g, provided that none of the lead-
ing non-linear terms vanish here; so the approximatn(ve, h (ve), 1) andGs (ve, h (ve) , 1) are equivalent to
Gz (Ve,h (ve), o) andGs (ve, h (ve) , o) with negligible error due to the fact thatis very small.

Finally, an application of the centre manifold theorem te thiginal system (112) shows that if the equilibrium is
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preserved, then the reduced dynamicg at uo + 7 is given with small errors by

Ve =Je (1) ve + G2 (Ve, h (ve) , po) + Gs (ve, h(ve) , o)

p=0

p=po(l+e) (e<1) (142)
g p ,

vs =h(ve) = Z Zaijvlevé (¢>2)

p=i+j=23j=0

Now, the centre manifold reduction is applied to the systédP). Using an approximation af of order 2 causes
divergence in the evolutions of limit cycle amplitudes. g only due to the fact that a polynomial approximation
of h of order 2 is not sufficient to describe with low errors the @gsions of the stable variables and their effects

in the reduced system (142). Using an approximatioh of order 3, 4 or 5 allows good correlations between the 4-
dimensional original system and the 2-dimensional redsgstem, as illustrated in Figures 21 and 22. Consequently,
the centre manifold approach is validated; in this case agace the number of equations of the original system (112)
from 4 to 2 in order to obtain the simplified system (142) withtpsing the dynamics of the original system as well
as the effects of non-linear terms. Then, this reduced syst#l be easier to study than the original one. Moreover,
one of the most important points is the determination of polyial approximations and the estimate of power that
defines the expressions of stable variables versus cenisbls: the more complex the expressions of the stable
variablesvg and the associated polynomial approximatiorare, the more interesting the estimate of the reduced
system is, allowing us to obtain an estimate of the non-fidgaamics of (142) near (112), as illustrated in Figures
21 and 22. However, the more complex the expressions ofdfemdh are, the more costly and time consuming the
computations are.

Finally, it may be noted that the more complex the non-lirggtem is, with many degrees-of-freedom, the more
interesting the centre manifold approach is, allowing usethuce the original system from a m-dimensional form to
a lower-dimensional form and to save time.
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Figure 21: Limit cycle (¢, X) by using the center manifold approach for= 1.001
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Figure 22: Limit cycle ¥, Y") by using the center manifold approach for= 1.001 4

3.5 Simplified non-linear system via the multivariable appoximants

As indicated in the previous section, the centre manifolgregch reduces a non-linear system with many degrees
of freedom to a lower-dimensional form near the Hopf biftima point. However, it may be observed that this non-
linear method swaps a non-linear system with a high numbeiegfees of freedom with a "simple” non-linearity
for one with fewer degree of freedom, but a more complicatedtimearity. Moreover, the formal centre manifold
approximation is not difficult to determine; but, obtainitige coefficients associated which each term of the stable
variables may pose particularly serious difficulties. Tikisvhy the sole use of the centre manifold approach is not
very convenient, requiring a great deal of labour, esplciat the calculation of the coefficients defined previously
Due to the fact that the centre manifold can have complicatedlinear terms, further non-linear methods are applied
after the centre manifold reduction. In this study, theonaai fractional approximants are used; the interest ofethes
multivariable approximants is that they require fewer tertinan the associated Taylor series in order to obtain an
accurate approximation of a non-linear function: theywltbe computation of an accurate approximation of the non-
linear functionf (x) even at values at for which the Taylor series of diverge. We will consider this last property

of the rational fractional approximants in this paper inartb augment the domain of validity of the series previously
obtained by using the centre manifold approach witl{*aorder polynomial approximatioh of the stable variables

vs in the centre variableév.). This property may be very interesting in regard to the appate order of the centre
manifold polynomial approximatioh needed to obtain a good correlation between the reduceensysa the centre
manifold method and the original system.

Moreover, the objective is to approximate the non-lineanteby using rational polynomial approximants: the use of
the rational approximants allows us to simplify the noretinsystem and to obtain the non-linear dynamical responses
of the system more easily and rapidly.

3.5.1 Transformation from the centre manifold form to the fractional approximants form

Before applying the fractional rational approximants, tloa-linear reduced system expressed in the centre manifold
basis is transformed in a power series andv.e. The expressions d&s (ve, h(ve)) andGs (ve, h (ve)) can be
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developped as follows

2m P ] )
> eriviavl
) p=irj=2j=0
Gz (ve,h(ve)) = o p (143)
ST paiviivl
p=itj=2=0
3m p ) )
> D vl
) p=irj=2j=0
G3 (VCv h (VC)) - 3m D (144)
> vl
p=itj=2j=0

wherey; ;; andy, ;; are the constant coefficients from the quadratic expressibil42), andy; ;; ety.;; are the
constant coefficients from the cubic expressions of (142).
By considering (142-144), the non-linear system (142) carelwritten as follows:

3m 3m ) )
Ve =Y Y, CLijubvl
=0 j=0
1<i+j5<3m
(145)
3Im 3m ) )
Va =) D C2ijUL Ul

i=0  j=0
1<i+j5<3m

wherec; ;; etcy ;; are the coefficients associated with the powgng (i + j > 1) for v, andu.o, respectively.
Finally, the reduced system (142) may be rewritten as falow

3m 3m ) )
Vek = [ (Ve1,0e2) =D D CrijUig Uy (1<k<2)
=0 1§i+;0S3m (146)
f=0
p=po (1 +e¢) (ex1)
We now consider the Symmetric-Off-Diagonal (SOD) appraximts (n, = ms = M andn; = no = N) to
fx (ve1, ve2). The choice of the SOD-approximants instead of the GODeaprants is only due to the fact that the
two centre variables.; andv.; are assumed to be of the same order and then to have the satief@ffthe non-
linear dynamical befaviour of the system. Moreover, the S&pproximants are preferred instead of the Chisholm
approximants because they enable consideration of morglegrexpressions of the non-linear approximation. As

explained in Section 2.4 the SOD approximalits/ N | i (ve1, ve2) @ssociated with the system (146) have the general

form
M M

D D ks

[M/N];, (ver,ver) = 2220 (for 1<k<2) (147)

Z Z dk,aﬁ’”?lvc%

a=0 =0

where[M/N]; (ve1,vc2) is the rational function for thé!"-variablev,;, with a numerator of degre&/ and a denom-
inator of degreeV.

3.5.2 Computational determination of the fractional apprakimants coefficients

As explained in Section 2.4, the SOD approximddt§/ V|, satisfies the: relations

3m 3m oo 00
oY ckivhivdy = [M/N); (e vea) + 3. D ekaptiives  (for 1<k<2)  (148)
i=0 j=0 a=0p=0

2<i+j<3m
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where as many coefficients, .3 as possible are equal to zero. Then, the coefficientss (for 1 < k£ < 2,0 <

a < M,and0 < a < M)anddy .z (for1 <k <2,0<a < N,and0 < a < N) are determined by matching
the coefficients for identical powezﬁlvg, as indicated in equations (58-60). The equations obtdigadatching the
coefficients in (148) are

dy,00 =1 (149)
a B
DD dkijha-ipj =Nkap O0<a<M, 0<B<M (150)
i=0 j=0
a N
Y drijcka—ip—j=0 0<a<N, M<B<M+N-a (151)
i=0 j=0
N B
Z de,ijck,a—i,ﬁ—j =0 M<a<M+N-8, 0<B<N (152)
i=0 j=0
v N
SN diichv—i Nt 1-v—j + D jiCh M N41—v—ip—j =0 I1<v<N (153)
i=0 j=0

with 1 < k < 2. After normalizingdj. o to unity as indicated in (149), there aex ((M +1)° + (N +1)* - 1)
unknown coefficients in equations (150-153). The first st¢peé determination of thie x ((N + 1)2 — 1) unknown

coefficientsd,, ;;. It is useful to introduce the lattice space diagram to iatiche regions in which the ternnslvf2

are to be matched, as illustrated in Figure 2% (N (N + 1) /2) equations arise from each of (151) and (152) which
are obtained by matching terms of the two triangular regignsNow, k£ x N equations arise from (153) obtained by
equating to zero the sums of the coefficients of the ngilrsf2 andvflvgg. These pairs are indicated in the regichs

by the the two associated points, (with £ = 1,2, ..., N). Finally, thek x ((N +1)% - 1) coefficientsd, ;; can be
achieved by solving the x ((N +1)% - 1) linear equations (151-153). Next, thex ((M + 1)2) coefficientsny, ;;
may be found by directly solving the equations (150); th@aissed termau‘jlvf2 are in the regions, |J So U S5.

In conclusion, It is easy to obtain the unknowm coefficients; anddj, ;; from equations (149-153). However, the
resolution of thek x ((M + 1)2 + (N + 1)2) linear equations may be both time consuming and costly tiopar
and require a very large storage space. However, it is pedsilapply a special process, called the "prong method™,
to rapidly compute the coefficients by taking the equatid#9(153) in a special order. This computational process

reduces the calculation of all the coefficients to lineaehtg with a lower triangular block by block resolution which
greatly simplifies the determination of the coefficients;; anddy. ;;.

ol‘ll“f\(llM‘lll“l\flﬂ\]“a

Figure 23: Lattice space for the SOD approximants
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The first step in the ™prong method™ ([3], [74] and [75]) csists of determining the denominator coefficients
dy,i;- As explaind previously, the determination of this coeéfits can be achieved by considering the pairs of two
regions.Ss and.S;. However, it may be observed that thex (IV + 1) coefficientsdy, ; o (with 0 < i < N) are
matched by considering the segment of the lattice spafe- 1 < o < M + N, 5 = 0). These equations written in
matrix form become

Ck,M—N+1,0 *°* Ck,M+1,0 dr, N0 0
= (154)
Ck,M,0 “t CRkMAN,0 dk.,0,0 0

Similarly, the matching of théx (N + 1) coefficientsiy, o ; (with 0 < j < N) located onthe segmeft =0, M +1 < 5 < M +
produces

CkOM-N+1 *°°  Ck0,M+1 di.o,N 0
=3 (155)
Ck,0,M “ CRO,M+N dj.0,0 0
By normalizing equatiomlk,o,(; = 1, the two systems (154) énd (155) may be rewritten in theviatig form
[ CckoM-N+1 e Ck,0,M 0 E 0 ckom+1 | [ dron 0
Ck,0,M ot CROM+N—-1 0 e 0 Ck,0,M+N dy.0,1
0 e 0 Ck,M—-N+1,0 "° Ck,M,0 Ck,M+1,0 dgno (=14 0 (156)
0 e 0 Ck, M0 "t CRM+N-1,0 Ck,M+N,0 dg.1,0 0
i 0 e 0 0 e 0 1 l di.0,0 1
The previous system (156) may be written in the compact form
Ay 0dk0 = ux (157)

wheredy o defines thg2 x N + 1)-dimensional vector of the coefficient ¢ o, di 0, anddy ; o(with 1 < i < N).
uy is a column vector of dimensiah x N + 1 with unity in the(2 x N + 1)th place and zeros elsewhere. Finally,
the k" vectordy o may be obtained:

dko = Axo Tuk (158)
Next, thek x (2 x N — 1) coefficientsdy, 1 1, di ;1 anddy 1 ,; (with 2 < i < N) are obtained by matching terms
on the segments of the lattice spadd + 1 <a< M+ N-1,=1)and(a=1,M+1<<M+N —1)
(defined in the two regionS; by the lines marked1)), and on the symmetrized linked pair of poiris M + N) and
(M + N, 1) (defined by the two pointgl;). The equations of the determination of these coefficiersty be written
in the matrix form

By 11dko + Ak 1dk1 =0 (159)
wheredy ; defines thg2 x (IV — 1) + 1)-dimensional vector
T
diei1 ={driN-dii2 deni---di21 diia} (160)
and
[ ChoM—N+1 - ChoM—1 0 0 Ck,0,M ]
CkoM—-1  *°° Ck0,M+N—3 0 0 Ck,0,M+N—2
Ay, = 0 0 Ck,M=N+1,0 "**  Ck,M—1,0 Ck, M0 (161)
0 0 Ck,M-1,0 " Ck,M+N—-3,0 Ck,M+N—2,0
L Ck,0,M o CROM+N—-2 Ck,M,0 ©tt Ck,M+N—-2,0 CkM+N-1,0 1 Ck0M+N-1 |

34



By 11dk o defines 2 x N + 1)-dimensional vector of known quantity. Finally, theé vectordy ; may be obtained:
di1 = —Ax1 '‘Bri1dko (162)

By using an iterative process, the overall system of the taopminvolving the determination of thi, ,, vectors (with
1 < p < N)is defined by

[ Ao 0 0
_ dy.o un
Bk11  Axa - : dy 1 0
Bik21 Bk22 Ax2 - : dz [ _) 0 (163)
dy 3 - 0
Bx31 Bxks2z Bikss Axgs
0 : :
dk,N 0
| Bknt BNz BNz o0 Benn AgN

The matricesBy ;; (with 0 < ¢ < N and1 < i < N) are known. Theg2N — 2i + 1)-dimensional vectod ; (with
1 <4 < N) may be obtained by a block by block inversion process.

These equations written in matrix form become

dxo = Ako 'un

dik1 = Ak1 ' (—Bi11dk)

di2 = Ax2 ' (-Bk21dk o — Br22dxk 1)

dik3 = Az ' (—Bk31dko — Bks2dk1 — Bk asdk2) (164)

N
diN = AN ! <— Z Bk,Nidk,i—1>
i1

This block by block process has been termed the "prong nBt{jd4] and [75]). It may be observed that this process
takes the equations defined by (149) and (138-153) in a dmerdier so that the computation of the coefficiedts;
are simplified.

Finally, thek x (M + 1)* numerator coefficients;, ;; can be found easily by considering the relations (150). ¥ ma
be observed that the determination of these coefficientbeathieved by considering the succesive orders:

r C P PO i dk7
ng o k0 0 ° X
di1
ny 1 Dxi11  Cxa d
Kk,2
M2 0 =] Doy Dyaz Cuo e : di,3 (165)
0
nkx.M i Dk,Ml Dk,MZ ce Dk,MM Ck,M i dk,M

All the matricesCy ; (with 0 < ¢ < M) andDy j; (with 1 < j < M and1 <[ < M) are known and the vectal ;
(with 0 <7 < N) have been obtained previously by using the “prong methdéihally, the vector coefficientsy, ;
(with 0 <4 < M) are defined by

ny o = Cy odk0
nyg 1 = Cy1dk1 + Dy 11dko

ny o = Cy 2dy 2 + Dy 21dk o + Dy 22dk 1
(166)

M
ng v = Cy mdi v + Z Dy nviidii—1
-1
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3.5.3 Numerical estimate of the reduced and simplified systevia the fractional approximants

The Symmetric-Off-Diagonal (SOD) approximants and the potational technique previously explained are applied
in order to simplify the non-linear expression of (146), ttima power series ifv.1,v.2) of degree 15, without
constant terms. The system (146) can be rewritten in SODoappants by

M M
o> n1as (1) vhvg
a=0 =0
Si Si c1ij (1) vy v’ [M/N1f, (1 02) = W
{ : i=0  j=0 " e Z Z d1,a8 (1) Ve1 Ve
Vel } 1<i4-57<3m a=0 =0
= = (167)
. 3m 3m M M
Ve2 . .
oY o (wviavd ST noas () v
i=0 j=0 a=0 =0
1<i+j<3m [M/Nfy (0 0) = & W
S daas (1) viivl
a=0 =0

where all the coefficients; g, d2 o5 (fori,j = 0,1, ..., N) andny 43, n2 o (fori, j = 0,1, ..., M) are estimated by
using the "prong method™ [75] defined in the previous SentB.5.2.

In order to obtain a good estimate of the non-linear behanabthe system (167), thig /4] Fo(vet ves) (with1 < k <2)
approximants are applied. Ad//N] Fo(ve1,0e2) approximation withM < 4 and N < 4 appears to be insufficient to
describe the dynamics of the original system: effectivielgome cases, computations diverge since the non-liresarit
retained are not sufficient, and in other cases, the limikecgmplitudes obtained are not acceptable due to the same
reasons. Ar[M/N]fk(Ucl,Uc2) approximation withM > 5 and N > 4 gives a good correlation with the original
non-linear system as illustrated in Figures 24 and 25. Wemo#g in fact that the results from the SOD approximants
and the "exact” solution obtained by using tH& Runge-Kutta process are hardly distinguishable.

Moreover, one of the interests of multivariable approxitsas that they require fewer terms than the Taylor series
for obtaining an accurate approximation of the limit cyclamitudes. In this case, it may be observed that the
centre manifold approach requires at least order 5 to hasdme estimate of the limit cycles as {54 Fo(vet vez)
fractional approximants. So, the non-linear terms becomeveer series of degreks in which all terms are relevant
when considering the centre manifold approach. In the cheedractional approximants, fewer terms are used to
obtain the same solution. Moreover, the determinationroiticycle amplitudes by the integration of the differential
algebraic equations of the system is faster using the nauitilsle approximants. All these properties of the fraaion
approximants will be discussed later and analysed in detail
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Figure 24: Limit cycles K, X) for . = 1.001 0 by using the fractional approximants
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—— Original system
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Figure 25: Limit cycles Y, Y") for . = 1.001u0 by using the fractional approximants

3.6 Estimate of the solution via the Harmonic Balance Method

By using the two previous non-linear methods (the centreifolarapproach and the fractional rational approximants),
reduction and simplification of the mathematical complexit the non-linear equations has been carried out. The
non-linear system resulting from these procedures may hsidered one of the most simple forms of the original
non-linear system. Now we may investigate a classical m@at method which requires an initial assumption about
the form of the solution as a function of time. In this studhe tlassical approximation of the solution as a truncated
Fourier series will be used. We use the harmonic balance adettalled the Alternate Frequency/Time domain
method (AFT method), to approximate the final solution ofréduced and simplified system as a periodic solution.
This method and the global harmonic balance methods areugeifyl non-linear approaches to systematically obtain
the non-linear behaviour of general non-linear vibratioalgems ([33], [151], [25], [129], [143], [110], [111], and
[173]). The non-linear system in (167) can be described bst @fsnon-linear ordinary differential equations of the
form

N (ve) (168)
whereve = {v UCQ}T, andfNU s the vector of the SOD approximants (in.;, v.2). Then, the Alternate Fre-
guency/Time domain method is based upon assumptions aldentiréer expansion for the non-linear response of
the non-linear system (168). We assume that the vectorisolut = {v.1 ’UCQ}T can be expanded as a truncated
Fourier series:

Ve =

H
ve (t) = Vo + Z (Vaj_1cos (jwt) + Vy;sin (jwt)) (169)
7j=1
wherew = 27 /T and7 defines the period of the systeiMy, V251 andV; are the vectors of Fourier coefficients.
Usually, harmonic components become less significant whiecreases, and hence we may ignore the harmonic
components ifj is superior toH; in this case, the number of the harmonic coefficiefitare selected to retain only
the significant harmonics.

3.6.1 Computational estimate of the harmonic coefficients

The coefficients for all the harmonics of (169) must be batdnia order to obtain the final solution of the non-linear
system (168). The determination of the harmonic coeffisigntfound by using an iterative process. Substituting
the truncated Fourier series expansion (168) into equdiié8) yields a set of linear algebraic equations for the
k" -iterative periodic solution for the Newton-Raphson metho

A-J)VF+FNE L (A -J)AVF =0 (170)
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whereV* defines the!"-incremental vector of the Fourier coefficientswf
T
Vk = {VISTa 7V]2€j71T7V]2€jT7"' >V]2€HT} (171)

A andJ are the jacobian matrices associated with the linear andinear parts of (168) FN! defines the vector

of the Fourier coefficients of the non-linear functi®f. By considering the expressidi'l = {leL fQNL}, the
matricesJ and A are given by

o ot

B p) .
J=(Tal) aéﬁ 8&@ (rer) (172)

82}61 82}62

" 0 -

O ul

—wIl O

A= 0O jwl A73)
—jwl O
O Hwl
I —Hwl O ]

with the matriced = é (1) ] andO = l 8 8 ] and H represents the retained number of harmonic components

for the solution’s estimate.

The vectorsI’ andI'~! make it possible to pass from the time domain to the frequetmyain and vice versa.

This procedure is called the Discret Fourier Transform {[@8d [129]) and the expression BfandI'~! are (with
qg=2H +1):

1
— i=1 and 1<53<q
q
2 ) — 1
2 —1)(t—1
—5in<(‘] ) (@ )W) 1=3,5,---,q and 1<j<q
q q
1 j=1 e 1<i<gq
i—1)jm ) ‘
[Fij]_lz cos (%) 73=2,4,---,g—1 and 1<i<q (175)
—1)(j—1
sin<(2 ) )W) j=3,5,---,q and 1<i<gq
q
Moreover, by considering the expression of the functfpdefined in (168) as a SOD approximaiM/N]fi:
M M
Z Z ”i,aﬁvglvcﬁz
a=0 =0
fi (ver, ve2) = 22 (176)
>N d; VS0
a=0 =0
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the expression of (172) may be easily obtained by calcgatie expression8f; /0v.; anddf;/dv.a:

a=0 =0 a=0 g=0 a=0 =0 a=0 =0

M M
@f o (Z Z ni,aﬁvcl 9 X Z Z dl aﬁvclvd Z Z 1 aﬁvclvd X Z Z dl Olﬁvcl vc?)
Dver N ; (177)
(& S

a=0 =0

a=0 =0 a=0 =0 a=0 =0 a=0 =0

M M
af /B (Z Z g aﬁUCIUCQ X Z Z dl aﬁUCIUCQ Z Z g aﬂvcvaQ X Z Z dl aﬁvclv(ﬁ )
dues N N 2 (178)
(Z Z di,aﬁ”?l”fz)

a=0 =0

The vectorFNL that represents the vector of the Fourier coefficients ofriie-linear functionf™N", is calculated
by an iteration process ([25] and [129]), and by considethg Discret Fourier Transform DFT defined previously.
Cameron and Griffin [25] indeed pointed out that the estinaditthe vectorFN was often difficult to obtain from

T
vk = {V’“T,-' VE ,V’ng,---,V’gHT} directly. Hence, they suggested that the ve®étt of the non-
linear functionfN be calculated by following the process:

DFT—1 DFT
V —————= vet) =fL(t) ———— > FNL (179)

Finally, the(k + 1)th—iterative Fourier components estima&*! is obtained from (170)
AVE=—(A+3)7 (FNV 4 (A + ) VF) (180)

VL = vk AVE (181)

V#+1is then used as a new estimate for the next iteration. Thedoiation of the system is obtained by considering
the minimization of the error vectd® and the associated convergenéegandd,:

R = AVF 4 FNE (182)
H
o1 = | B3+ > (B3, + R)) (183)
j=1
H
5 = \|AVE+ > (AVE,_, + AV3) (184)
j=1

The complete scheme of the computational process is exguréssigure 25.
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Figure 26: Computational process for the AFT method

3.6.2 Numerical estimate of the system via the AFT method

The numerical results in the time domain by using the Alterriaequency/Time Domain method are shown in Fig-
ures 27 and 28 for various ordéf of the harmonic coefficients. The results are compared whitiseé obtained by
using the SOD approximants solution that can be considesdldea’exact” solution of the non-linear problem. The
first order of the harmonic coefficient$/(= 1) allows us to obtain a good estimate of the limit cycles. Moes,

the second or higher order of the harmonic coefficiedifsX 2) enable us to obtain the same limit cycles as those
obtained by the Padé SOD approximants. The values of adhmonic coefficients for one, two and three harmon-
ics are given in Table 1. The associated evolutions of thasmdnic coefficients during the iteration process of the
Alternate Frequency/Time Domain method are given for threate v.; andv.s in Figures 29-30, and Figures 31-32
respectively. It appears that the calculation of Fouriefiicients (and the associated limit cycles) requires only a
small number of iterations. Therefore, it may be noted thatvalue of the Fourier coefficients are complex, since
they are defined in the centre manifold space. So, the lintliesyof the non-linear system are obtained by using the
reverse transformation in order to go from the centre maaigpace with complex variables to the physical space
with real variables.

Finally, one of the practical computational problems fodeviapplication of methods based on the balance of har-
monics, such as the Alternate frequency/Time Domain metisogelieved to be the determination of a good initial
estimate for the iteration process. We may indeed obseatetlie Newton-Raphson approach may fail to converge
with the solution in the AFT method if the initial estimate tbe solution is not sufficiently accurate [25]. In many
applications, a perturbation approach is suggested talahié problem when the Newton-Raphson method fails
[151].
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dx/dt (m/s)

0.41

0.2r

o
T

_0.2,

Fourier componentd H=1 | H=2 | casH=3 |
Vi -0.685-0.0102i || -0.686-0.0102i | -0.685-0.0102i
Va0 -0.685+0.0102i|| -0.686+0.0102i|| -0.685+0.0102i
Vi 1.7453+1.0786i| 1.7453+1.0812i|| 1.7458+1.0808i
Vaa 1.7453-1.0786i || 1.7453-1.0812i| 1.7458-1.0808i
Vio -1.0775+1.7377i| -1.0805+1.739i | -1.0801+1.7385i
Vao -1.0775-1.7377i|| -1.0805-1.739i || -1.0801-1.7385i
Via 0 0.0171+0.0215i|| 0.0166+0.0212i
Va3 0 0.0171-0.0215i| 0.0166-0.0212i
Via 0 -0.0147+0.0388i|| -0.0144+0.0382i
Va4 0 -0.0147-0.0388i| -0.0144-0.0382i
Vis 0 0 0.0002+0.0007i
Vas 0 0 0.0002-0.0007i
Vie 0 0 -0.0002+0.0008i
Vas 0 0 -0.0002+0.0008i

Table 1: Fourier components for various ordérof the periodic solution
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Figure 27: Limit cyclesk, X) for @ = 1.001y by using the AFT method
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Real part of the Fourier coefficients
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Figure 28: Limit cyclesY, Y for @ = 1.001x by using the AFT method
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3.7 Advantages of applying non-linear methods

The purpose of this section is to demonstrate the advantfgée non-linear methods and more particularly the
fractional approximants. First, comparisons of the CPUesrfor the classical’-order Runge-Kutta procedure and
each non-linear method are investigated. Second, somé&eoasons about the advantage of the fractional approx-
imants are described; the possible convergence of thaedrnattapproximants outside the domain of convergence of
the series they approximate is investigated. Finally, wieshibw that one of the most important aspects of applying
the fractional approximants after the centre manifold apph lies in the fact that they require fewer terms than the
associated Taylor series (obtained by using the centrefald@ipproach of:‘"-order) in order to obtain an accurate
estimate of the non-linear solution of the problem, and ithaiay be possible to obtain a good approximation of the
solution even if the associated centre manifold estimate/obrder diverges or is not sufficient to approximate the
non-linear system.

3.7.1 Computational Time

Using the non-linear investigation and a classical intégnascheme4*"-order Runge-kutta procedure) an estimate
and comparison of the methods’ CPU time may be investigdtbd.computational calculations need about 2000 CPU
seconds by using the classid#t-order Runge-Kutta procedure. By applying the centre naéahdipproach3’-order

for example) and the fractional SOD approximafiisd] ;, these calculations only need about 200 CPU time and 50
CPU seconds. All the CPU times for various orders of the eentanifold approach and various humerators and
denominators of the SOD approximants are given in Table 2 ¢@mtre manifold and the fractional approximants
make it possible to save time by reducing the number of degiéeedom and by simplifying the number of non-
linear terms of the reduced centre manifold system, res@gt Moreover, the use of the Alternate frequency/Time
Domain method saves time by assuming a Fourier series expafts the periodic solution of the final non-linear
reduced and simplified system. In conclusion, the amountRJ-@me when applying the non-linear methods is
significantly less than that of the classical Runge-Kuttaot@dure. Therefore, these methods provide goods results
for our problem by reducing and simplifying the original % without losing all the non-linear behaviour of the
problem. It may be observed that the more complex the otligioa-linear system is, with many degrees-of-freedom,
the more interesting the centre manifold approach is, afigws to save time and to determine rapidly and efficiently
the limit cycle amplitudes.

\ Numerical methods | CPU time (sec)
Original system - Runge-Kutta af"-order 2000
Center manifold approact3{*-order) 200
Center manifold approach{*-order) 500
Center manifold approacts{*-order) 1200
Symmetric-Off-Diagonal Approximants [5/4] 50
Symmetric-Off-Diagonal Approximants [5/5] 135
Symmetric-Off-Diagonal Approximants [6/6] 280
Alternate Frequency/Time Domain methadd & 1) 13
Alternate Frequency/Time Domain methadd & 2) 30
Alternate Frequency/Time Domain methdd & 3) 45

Table 2: CPU time for various numerical non-linear estimate

3.7.2 Extension of the domain of convergence via the fractial approximants

One of the well-known advantages of the rational approxisi@their possible convergence outside the domain of
convergence of the series they approximate. Due téth@rder polynomial approximatioh of the stable variables
Vg as a power series in centre variabiges the reduced system defined in equation (146) has a circlersietgence
R (with R < R., whereR is the circle of convergence for the power series associaittdthe polynomial approx-
imationh whenk — +o00). If the initial conditions are taken outside this circleaainvergenceR, the series defined
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in equation (146) diverge. We now examine the fractionabretl approximants associated with the power series ob-
tained via the centre manifold approach that has a circlewwiergencer. By considering the same initial conditions,

it may be observed that the fractional approximants cormvargl produce the same non-linear solution as the original
non-linear system, as illustrated in Figures 33 and 34. imd¢hase, the sequence of rational approximants converge
outside the circle of convergend& the fractional approximants enhance the convergenceeddlies expansions of
the centre manifold theory. In this section, it is importemtinderstand that the polynomial approximation is assumed
to be sufficient in order to obtain a good approximation ofriba-linear behaviour of the reduced system if the initial
conditions are taken inside the circle of convergefce

To examine the capability and suitability of this last pndpend more generally of the rational approximants, we use
various initial conditions taken inside or outside the leirof convergencer (first case:V, = V3, = 20; second
case: V) = Vi, = 10 + 10i ; third case:V), = V3, = —30i; fourth case:V, = V3, = 2 + 2; fifth case:
ka = ka = 1fork =0,1,---,4). Asindicated in Figures 35 and 36, The Fourier coefficiamtd the associated
non-linear responses are correctly estimated in all cabksn, the extension of the domain of convergence via the
fractional rational approximants becomes interestingneif the value of the new circle of convergence due to the
fractional approximants is an unknown parameter.
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3.7.3 Extension of the center manifold via the fractional aproximants

The interest of these rational approximants is that theyiredfewer terms than the associated Taylor series in order
to obtain an accurate approximation of the behaviour of hraplete non-linear system. In any case, the rational
approximation has a greater range of validity than the pmiyial one and make it possible to obtain an approximation
of the solution even if the associated centre manifold appration diverges or is not sufficient to approximate
the non-linear solution near the equilibrium point. To destoate this advantage of the rational approximants, the
previous system is applied by changing only the value of tmampeterC, = 300N /m/sec. In this case the Hopf
bifurcation point is obtained fop, = 0.28. The displacement andY and velocitiesX andY obtained by
using a classical integration Runge-Kutta 4 near the Hdpfdation pointy = 1.01u are given in Figures 37 and
38, respectively. The associated limit cycles, ({) and (,Y") are given in Figures 39. It may be noted that the
non-linear oscillation of the displacements and velositieow more rapidly.
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By applying the centre manifold theory in this case, we olrséhnat the limit cycles fop = 1.01u obtained with
various approximations of the stable variables as a powerssim the centre variables of order 2, 3, 4 or 5 diverge.
This implies that the polynomial approximation is not suéfit to obtain a good estimate of the stable variable con-
tributions and of the non-linear behaviour of the dynam#&atem. However, we apply the symmetric-off-diagonal
rational approximants in order to extend the non-linearesgion of the centre manifold system of order 5 (we know
that the associated limit cycles diverge) and to estimaetisociated limit cycles: the purpose of using the rational
fractional approximants is to obtain an approximate naedr response of the complete system by considering that
the approximants require fewer terms than the associat@driseries (defined by the centre manifold of order 5 in
this case). In fact, the rational approximants also allovtausimplify the non-linear terms of the centre manifold
of order 5. By using the approximants/7] , and the Alternate/Frequency Time domain method (uth= 3), we
observe that the Fourier coefficients of each variableandv., converge, as illustrated in Figures 41 and 42, respec-
tively. By comparing the limit cycles obtained by considerithese Fourier coefficients with those obtained via the
previous integration of the full original system, we obsetivat the limit cycles are acceptable, as illustrated imfeg
42 and Figure 43. The harmonic balance method is used in d@is anly to accelerate obtaining the final solution
by assuming the form of the response as a truncated Fouriessdhe domain of validity for the centre manifold
approach is extended only due to the application and piiegest the rational fractional approximants.

So, in this case, the rational fractional approximantsvallis to enhance the convergence of the series expansions of
the centre manifold theory. Moreover, the sequence ofmatifractional approximants converge even if the assotiate
series does not; we can than extend our domain of convergemtgood agreements are found between the original
and reduced system. Moreover, this extension of the cerdrefald via the fractional rational approximants requires
less computer resources: the use of the rational approxgr@diows us to consider lower order approximation of the
polynomial approximatiorh (with v¢ = h(v.)). The CPU times associated with all the simulations arergive
Table 3. '
Obtaining the centre manifold coefficienig;; associated which the stable variablggwith vy = Zg:i 2 E:;:o aijvzlviz
andq > 2) may pose particularly serious difficulties. This is why g8@e use of the centre manifold approach is not
very convenient, requiring a great deal of labour, esplciat the computational calculation of the coefficients; ;
defined previously.

There are two important points to make here. First, this @doce used 316 non-linear terms in order to obtain an
estimation of the limit cycle amplitude, as indicated in [€aB; in the case of the centre manifold approach, 512
non-linear terms are not sufficient to obtain the limit cyataplitudes. So, we extend the domain of validity of the
problem and simplify the non-linear terms. Second, we obgaiod agreement with the complete non-linear system.
This procedure makes it possible to reduce the number okdegfrfreedom of the original non-linear system and
to simplify the non-linear terms. The great advantage ofube of rational approximants after the centre manifold
method in comparison with the normal form approach defineSdation 2.3 is clearly demonstrated by considering
this extension of the centre manifold approach. Deterngitive normal form is usually obtained by considering the
power series defined by the centre manifold approach; duketdact that the normal form is another power series
containing only the relevant non-linear terms, it may beuased that if the power series obtained by applying the cen-
tre manifold diverge, the associated simplification viartbemal form also diverges. This property can be understood
by considering the procedure of the normal form transforomatlefined in Section 2.3.

\ Methods | CPU time (s)|| Degree-of-freedon] Non-linear terms|
Original system - Runge-Kutta df"-order 2000 4 96
Center manifold approacft”-order withg < 5 diverge 2 512
Extension via the Padé [8/7] 300 2 316
Padé [8/7] + AFT { = 3) 50 2 316

Table 3: Advantages of the extension of the center manifpf@ach via the fractional approximants
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3.8 Conclusion

In this section, stability analysis, three non-linear noelh and the associated computational techniques have been
developed. First, the centre manifold approach was deeeldp reduce the number of degree-of-freedom of the
original non-linear problem; a lower-dimensional systesntaining only the centre variables near the Hopf bifurca-
tion point was defined. Second, the rational fractional axijpnants were used to simplify the non-linear terms.
This new procedure consisting of applying the fractiongbragimants after the centre manifold was successfully
applied: this new methodology extended the domain of uglidi non-linear systems reduced by using the centre
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manifold approach. Moreover, it was demonstrated that dileecinteresting aspects of these rational approximants
is that they require fewer terms than the associated Taglesto obtain an accurate approximation of the non-linear
behaviour of the complete non-linear system. Even if thereemanifold approximation diverges or is insufficient
to ap-proximate the non-linear solution near an equiliorjpoint, the associated rational approximants may converge
and make it possible to obtain an approximation of the smutiThis last advantage of the rational approximants is
an extremely powerful property.

4 Second example: a complex non-linear mechanical system

In the previous section, the centre manifold, the ratioradtfonal approximants and the Alternate Frequency/Time
Domain method were used to reduce, to simplify and to obtaénfinal solution of a non-linear system with two
degree-of-freedom possessing quadratic and cubic neasiiies as a truncated Fourier series approximation. The
computational scheme of these methods were developed anddifantages of fractional approximants after the
centre manifold approach were discussed; more partiguliue extension of the domain of validity by employing the
fractional approximants and the possibility of obtainingaccurate solution even if the associated series expansion
diverge was demonstrated.

A natural extension of this problem is to show the capabitifythis centre manifold extension via the fractional
approximant for a more complex non-linear mechanical sgystach as an aircraft brake system where the problem
of unstable vibrations in disk brakes has been studied bymebeu of researchers ([114], [9], [195], [68], [10], [63],
[58], [32], [60], [127] and [68]).

As illustrated in Figure 44, an aircraft brake system is cosgul of a stack of rotating brake discs (rotors) which
engage the wheel, and stationary brake discs (statorsghvelmgage the torque tube. The torque tube attaches to the
piston housing that links to the landing gear through a ter@ike-out rod. During operation, the brake is activated
by hydraulic system pressure, which compresses the hezt: ste rotors and the stators are squeezed together
by hydraulic pistons and the brake produces torque by vidfufsiction forces generated at the rubbing interface
between the rotors and the stators. Vibration can then hbduinduced by the friction characteristics of the heat
sink material. Two important specific complex non-lineaepbmena have been identified: squeal and whirl. The
other major vibration modes are gear walk and chatter. Gesdk 18 defined as cyclic fore and aft motion of the
landing gear assembly. The frequency spectrum of gear watkthe 5 -20 Hz range. Chatter is defined as a torsional
motion of the rotating parts of the brake-wheel-tire asdgrabout the axle and against the elastic restraint of tlee tir
The frequency spectrum of chatter is in 50-100 Hz range. &8dgealefined as torsional vibrations of non-rotating
brake parts around the axle. The frequency spectrum of sgué@athe 100 -1000 Hz range. Whirl is defined as
one vibration wherein the cantilevered end of the torqueumaorbits around the axle accompanied by un-phased
pumping of the brake pistons. Brake whirl mode is within fregcy range as brake squeal (200-300 Hz range) and
can couple parametrically. Hydraulic damping providedHwy piston housing fluid circuit provides a major source of
whirl damping. If the hydraulic damping provided by the pisthousing fluid is insufficient, orifices may be used to
increase damping to required levels.

The goal of this section is to show the efficiency of the presinon-linear computational methods (the centre manifold
approach, the fractional approximants and the Alternaggjency/Time Domain method) for the stability analysis
and complex non-linear behaviour of the whirl vibration maircraft brake system. First, a brief overview of friction
induced vibration and some basic concepts of aircraft bsgkems is presented in order to described the non-linear
whirl model. Then, results from stability analyses and tkiemesion of the centre manifold via rational approximants
is investigated.
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Figure 44: Aircraft brake system

4.1 General presentation of the non-linear model
4.1.1 Overview of friction induced vibration mechanisms

In this section, the general mechanisms of friction-indlueibration are briefly developed and more particularly the
sprag-slip phenomenon and the associated geometric nguplkevaluated. Friction-induced vibration occurs in many
industrial applications with rotating and sliding partslda undesirable due to its detrimental effects on the perfor
mance of mechanical systems and its role in the acceleratad @f components, damage and noise. Different types
of vibrations induced by friction have been studied in thetfday several researchers ([124], [31], [79], [80], [38],
[137], [49], [90], [51], [50], [150], [128], [199], [100],16], [102], [105], [122], [123], [52] and [53]).

One of the important phases in studying vibration problemsyistems is the determination of the mechanism of the
unstable friction-induced vibration. There is no uniquelmeanatical model and theory to explain the mechanisms and
dynamic phenomena associated with friction: Ibrahim [[B2]}, Crolla and Lang [38] provide an extensive summary
of many aspects of friction-induced vibration. Moreovée tontact forces between two surfaces play an important
role in self-excited vibrations: Oden and Martins [137]posed a review of frictional contact of metallic surfaces.
The different mechanisms of friction-induced vibratiorl fato four classes: stick-slip, variable dynamic friatio
coefficient, sprag-slip and geometric coupling of degrdefsemdom. In this study, we will consider the latter two
approaches which use modal coupling to develop instabilitgn the friction coefficient is constant. The first two ap-
proaches make use of the changes in the friction coeffictbatstick-slip is a low sliding speed phenomenon caused
by the static friction coefficient being higher than the dymafriction coefficient. The simple system which has been
used to examine the stick-slip phenomenon, is that of a ntid#sgson a moving belt. During the sliding phase, there
is no change in the friction force that tends to make the mtds an the moving belt. The sliding force increases
until it exceeds the static friction force maximum. Consamtjly, the mass starts to slide. Next, the mass continues
to slide until the force causing the sliding drops to theislidfriction value. Then, sliding and sticking occur in
succession. Moreover, the speed dependence of kinemiatiorirwas accepted to define the stick-slip motion and
produce self-excited vibration ([59], [190], [16], [17#]} [148], [166], [106], [11] and [205]).

The 1960s saw new developments of mechanisms for frictidaded vibration and the introduction of the motions
of sprag-slip and geometric coupling. In 1961, Spurr [17®posed this mechanism for friction induced vibrations.
This approach uses kinematic constraints and modal caupdirdevelop instability. Following this work, several
authors ([48], [136] and [121]) made contributions in suped this theory of geometric coupling: these studies have
illustrated that frictional instability can be caused bygeetrically induced instabilities that do not require e#ons

in the coefficient of friction.

This notion of sprag-slip angle and geometric coupling Wwél considered to explain the whirl vibration in aircraft
brake systems. Feld [58] explains the whirl vibration: tliekd in the brake stack are compressed by the hydraulic
pressure applied to the brake, as illustrated in Figure 48hdalrt vibration, the normal pressure is distributed uni-
formly over the rubbed surface between rotating and statipdisks. When vibration is present, disks in the brake
stack are subjected to out-of-plane rotation called adoorthotion. The uniform normal pressure over the disk in-
terface is then altered by this accordion notion: the nompnassure increases over half of the interface and relaxes
over the other half. Moreover, the friction force varies podionally to this normal pressure and produces the whirl
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motion. On some gear systems, the brake rod attaches toake housing in an offset, cantilevered fashion such that
the rod operates out-of-plane with the hydraulic systeme uthis offset, an angle may appear between the brake
rod and the housing. This offset angle can be compared wétlsjthag-slip mechanism [179]. In this case, instability
can occur with a constant brake friction coefficient. Thiglann fact couples the normal and tangential contact force.
This coupling is one of the primary cause of instability i thirl vibration.
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Figure 45: Friction-induced whirl vibration

4.1.2 Non-linear behaviour of the brake system

In this system, the non-linear behaviour is due to the no@ali contact stress of the rotor-stator assembly. Exper-
imental static tests show that the load-deflection relatigm is highly non-linear, as illustrated in Figure 46. We
assume that the non-linear normal stré&$r, ) acting at the interface surface between the stator and tbe can

be expressed as a cubic polynomial in the relative displac¢imetween the rotor and stator in compression

3
N (r,0) =Y K;(z(r,0) (185)

=1

wherez (r, 0) is the relative displacement between the rotor and therstatp, K, and K3 are the linear, quadratic
and cubic coefficients of the non-linear contact betweendtwr and the stator. This assumption is verified by static
tests, as illustrated in Figure 46: the non-linear relaiop between load and deflection is used to determine the
coefficientsK;, Ky and K3. As shown in Figure 46, we have good agreement with the exeatal non-linear
contact stress and the cubic polynomial approximate swluti
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We then assume that the tangential stréss generated by the brake friction coefficient considering the
Coulomb friction lawT (r,6) = uN (r,0). The multi-stage brake is represented by a single rotor|lastrated
in Figure 47, and stator with the effective brake frictioreffwient u;,. = 2Nu where N defines the number of
interfaces between stators and rotors. It is assumed thabtbr and stator friction surfaces are always in contact. |
this whirl system, we consider the rigid body lateral digglment and the two yaws of the stator and rotor. For any
point M (r,#) on the rotor and stator, and by considering small displacésnéhe normal displacement of the rotor
and the stator are
{ Trotor = Ty — T 51¥1 951T1 0, —rcosf sgl Uy (186)
Tstator = Ts — rsinfsin By — r cos 6 sin 1

wherex,, 4, 0., 05, 15, andy,. are the stator and the rotor lateral displacement, and &tersind rotor rotations, as
illustrated in Figure 47. Then, for any poiff (r, #) on the disc surface, the normal displacement is

x(r,0) = Tstator — Trotor = (s — x) —1rsinf(0s — 6,.) — rcos O(ps — 1) (187)

Next, by considering the non-linear normal stress expoessf (185), the non-linear expressions of the normal force
Fx due to the normal contact between the rotor and the statiioii surface, and the non-linear expressions of the
momentsM x, My and My are given by

2 Re
Fy — / P (M) rdrdf

= K1As (l’s —zr) + K (A2 (x5 — 2r)? + % (05 —

0:)° + 4 (s = 1)) (188)
Ky (Aa (0 — )"+ 245 (0, — 0,)2 (20 — ) + 2 (3,

—y)? (s — )

21 rRe
My = / ON i P (M) r2drd0
0 R;

= 2Nppk (K12AJ (s — ) + Ko (2’43 (s — o) + 42 (0, — 0,)° + 42 (¢ — wr)Q) (189)
+ Ky (242 (0 — )" + 25 (g — 1) (0 — 0,7 + 345 (20— 2,) (s — 6)?))
21 rRe
My = / P (r,0) r* sin §drdf
KA (6, - 0) — Ko (6, 0,) (s 2) (190)

K (S0 0, ) (5 — 2?25 (0,— 07 + 4 (0, = 0,) (5, — )7
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21 rRe
My = —/ P (r,0) 12 cos Odrdf
0 R;

= _Kl% (¢s - 1/}1”) - KZ% (1/15 - ¢r) (xs - xr) (191)
— K (32 (0, — ) (25— 20)” + 48 (s — )% + 45 (s — ) (65 — 6,)°)

with A :ﬂ(R’g—Rf) fork =1,2,3,4,...,6.

Friction surface
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Figure 47: Model of the whirl vibration
4.1.3 Equations of the non-linear dynamical system
The equations of motion for the non-linear aircraft brakstegn are [167]
msTs + CpsTs = Fbarre/X + thd/X - Fx (192)

1959“3 + C@sés + thk(és - Ht) + K@sgs + Ktwk(es - Ht) = Fbarre/XRe + Fbarre/Zde + MY (193)

Lysths + Cysths + Cruok (s — W) + Kpsths + Kpun(s — ¥r) = Foarre/yde + Mz (194)

Iss®s + Cpsds = —Fhapresz 8in aRe — Fyyprejy Re cos o+ Mx (195)

myZy + Crpdy + Kppay, = Fx (196)

I,0, + Cop0y + Cron (0, — 05) + Ko (0r — 07) = —My (197)

Lyethy + Cypthy + Cron(¥r — ¥f) + Kpun(tr — bf) = =My (198)

mypyr + Crnyy + Cup(Yy — 4e) + Kpnyp + K120 + Kyip(yp —y1) = 0 (199)

T467 + Ciagliy + Cruk(6 — 6,) + Corp (67 — 0,) + K porys + K o207 + K pu (05 — 6,) + Ko (65 —6;) = 0 (200)
myiy + CrinZs + Cup(Zp — Z) + Kpnzp + Kpiothy + Kop(zp —20) =0 (201)

I+ Cronthp+Cruon (Vg —n) + Cuorp (V5 =)+ K por 25+ K posth + K pro (05 —1hr )+ Ky (b —1)¢) = 0 (202)
mige + Crryie + Cyrp (Y — Yr) + Kenye + Ko + Kyep(ye — yp) = 0 (203)

1;0; + Craoby + Cruto(0r — 05) 4 Corp (0 — 05) + Kionye + Ki220; + Kpooi (0 — 05) + Koip(0; — 05) = 0 (204)
meZy + CriZe + Copp (20 — 2p) + Kz + Koty + Kop (2 — 25) = 0 (205)

It 4 Cranthy + Chraok (V1 — 1s) + Cuptp (U — 1) + Kio1 2t + Kiaathy + Kuon (01 — ) + Ky s (0 —107) = 0 (206)

wherexs, x,, 0s, 0, Vs, Vs, s, Yr, Ytr 215 200 Uy, Y1, 05 @ando; are the stator and the rotor lateral displacement, the
stator and rotor rotations, the piston torsional rotatiod ¢he axle deflections and rotations of the rotor and stator
shaft, respectively. The stator and the shaft of the stateract via notches on the inner perimeter of the disk, aad th
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rotor and the shaft of the rotor interact via drive keys ondhéside of the diskF},,4,x defines the brake force from
hydraulic pressure that is given by

6 (D2

— D?
piston/outer piston/inner

thd/X = Phydraulicnpiston (207)

2 _ D2
disque/outer disque/inner

where nyiston, Dpiston/outer s Dpiston/inner @ré the number of pistons, the outer and inner diameter opisten
surface in contact with the stator, respectivelyy; sque /outer 2N D gjsque /inner define the outer and inner diameter of
the rotor-stator interface, respectively.

Ky, andCy,,. define the stiffness and the damping between the stator arshtft of the stator, called torque tube,
via notches on the inner perimeter of the digk;,,,, andC/,,, define the stiffness and the damping between the rotor
and the shaft of the rotor, via drive keys on the outside ofdis&. K¢, Kotr, Kyif, Koip andCyyr, Corpy Cyey,
C..s are the contact stiffness and the contact damping betweenotitr’s and stator’s shaft, respectively,, defines
the stiffness of the back-plate of the brak€,;; andCy;; (for 1 < i < 2 and1 < j < 2) are the axle bend stiffness
and axle bend damping for the stator’s shaft, respectivaly;; andCy;; (for 1 < i < 2and1 < j < 2) are the
axle bend stiffness and axle bend damping for the rotor'#é stespectively.d. and R, represent the brake rod lateral
offset and the distance axle to brake rod a¥is., M x, My andMz are the normal contact between the rotor and the
stator friction surfaces and the associated moments, CB8Rg. I\, pic/x s Frouple/y @Nd Frgypie/z define the load
due to the brake rod. We have

Fcouple/X = KcoupleRe¢s cos asin 3 + Kcouplexs sin 3 + KcoupleRe sin 3 (95 cos a + s sin a)
Fcouple/Y = KcoupleRe¢s COS &x COS /B - Kcoupledees COS /B (208)
Fcouple/Z = KcoupleRe¢s sin ac cos /B - Kcouplede¢s COs /B

where K., defines the axial stiffness of the brake rod anthe sprag-slip angle due to the brake rod angle offset
with the rotor-stator interface. It may be observed thatftletion-induced vibration is only due to the fact that this
anglea is not equal zero.

Finally, the complex non-Iniear equations may be rewrittetine folllowing form

Mx 4+ Cx+ Kx = thdraulic(x) + Fcouple (X) + Ffriction(x) (209)

with
x={zs 05 Vs bs x 0. . yr Op zp bp oy O z Y} (210)

whereM, C andK are thel5 x 15 mass, damping and stiffness matrices, respectivElyyqraulic IS the vector
force due to net brake hydraulic pressure inthbasis;F couple iS the vector due to the brake rod load, dgliction
contains the linear and non-linear frictional contact éoterms at the stator and rotor interface and instHeasis.
We easily observe thd.ouple IS described as a linear expression versus the vector

Fcouple (X) = ]KcoupleX (211)
The set of equations describing the dynamic of the non4lisgstem may then be written as
Mx + Cx + ]KtX = thdraulic (X) + Ffriction (X) (212)

with
Kt =K - Kcouple (213)

As explained previously, the non-linear analysis can béddiy into two parts. First, the stability analysis is in-
vestigated by estimating the equilibrium point and by cdesng the eigenvalues of the jacobian matrix of the lin-
earized system at this equilibrium point. Second, the dyaarharacteristics of friction induced vibration in the
aircraft brake system near the Hopf bifurcation point issgtgated. The main purpose of this last section is to con-
sider non-linear methods to reduce the non-linear mechhsystem for instability computation. The computational
procedure of the centre manifold extension by using thetitraal approximants and the Alternate Frequency/Time
Domain method, is applied to obtain a reduced and simplifa@dlmear system retaining the essential features of the
non-linear dynamic behaviour near the Hopf bifurcatiompoi
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4.2 Stability analysis

As explained in Section 3.2, to study the stability of thetsys the equilibrium point of the non-linear system is
investigated and then the non-linear equations of motiediaearized around each steady-state equilibrium positio
The equilibrium pointkg is obtained by solving the non-linear static equations fgivan net brake hydraulic pressure

KtXO = thdraulic (XO) + Ffriction (XO) (214)

Next, the stability analysis is investigated around thadyestate operating point by assuming small perturbatons
around the equilibrium pointg (with x = x¢ +X). The frictional contact vectd s iction May be expressed in terms
of both equilibrium positiorkg and perturbation variables, where

Ffriction(x) = Ffriction(XO) + Ffriction (i) (215)
By substituting (215) in (214) and by considering only theelr term&E, .. . (X), on has
MX + CxX + KX = Fliction (%) (216)

with

15 _
| AP
FfI:I"iction (i) = Z %EI(X) T; (217)
i=1 Li Xo
The final expression of the vectBf. ..., iS
T
Fliction={—F¥ M{ Mf M§ FE —ME —ME 0 000 00 0 0f (218)

The analytical linear expressions of the teri&, M, ML and M% in terms of both equilibrium positioxg and
perturbation variableX are given in Annexe B.
Finally, the computational stability analysis can be perfed on the eigenvalues of the matAx

0 I

A =
-M! (Kt - K};'iction) -M~'C

(219)

Results from computational stability analyses are preskimt Figures 48-49. A representation of the evolution of
frequencies and the evolution of the associated real parhsigbrake friction coefficient are given in Figures 48,
and Figures 49, respectively. A representation of the éwlwof the eigenvalues in the complex plane is presented
in Figure 49. As long as the real part of all the eigenvaluesaias negative, the system is stable. When at least one
of the eigenvalues has a positive real part, the dynamicaésyis unstable. Generally the system is stable at low
value of brake friction coefficient and unstable at high values. The frequency of instabiligbigined near 250Hz:

a perfect correlation with experimental tests where thguency of instability near 260Hz is obtained. Moreover,
the mode shape obtained in association with this instaliitfines a wobbling motion between the brake’s rotating
and stationary parts and we observe that in this mode théesared end of the torque plaque orbits around the
axle, as observed experimentally. To illustrate the higieptial and efficiency of the computational stability arsédy
parametric studies are presented: Figures 50-52 show ttetiewn of the real and imaginary parts of eigenvalues with
various brake friction coefficients, brake hydraulic pressurdd and sprag-slip angle.
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Figure 50: Stability analysis versus the friction coeffitig and the pressur®
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Figure 52: Stability analysis versus the pressbrand the sprag-slip angte

4.3 Non-linear dynamics

The time-history responses of the non-linear dynamicalesyg212) is first calculated by using classid4t-order
Runge-Kutta algorithm, as illustrated in Figures 53- 55widweer, this procedure is rather expensive and consumes
considerable resources both in terms of the computatioe &md in terms of the data storage. Understanding the
behaviour of this non-linear system thus requires simgliftn and reduction of the equations. In order to obtain the
non-linear simplified system, the computational extensidhe centre manifold approach using the rational fraction
approximants and the Alternate/Frequency Time domain aaewill be applied.
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Figure 53: Non-linear dynamic of the displacementt) for u = 1.01u¢
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Figure 54: Non-linear dynamic of the velocity(t) for ;. = 1.01p0
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Figure 55: Limit cycle &, ;) for 4 = 1.01ug

4.3.1 Results via the computational centre manifold extelisn via the fractional approximants

By considering (212), the complete non-linear expressadribe non-linear forces are expressed in order to conduct
this complex non-linear analysis. We have:

MX + CX + KX = FY Lo, (X) (220)
where the complete expression of the non-linear frictioCt®eF .iction (X) iS defined by

F'riction ( ) FfI‘lCthn ( ) + ng%:tion (i) (221)
FL

friction andFﬁ,mtmn contain the linear and non-linear expression¥ @fction-
The termsFL; ;... were defined previously in (218). The expression of the veEf3-,; is given by

FRL. = {—F)J(VL MY MYt MBS PRE S MY MY 0 00 000 0 0 0 0 ’
(222)
The analytical expressions of the non-linear tedigs”, M-, MY and M {* in terms of both equilibrium position
xo and perturbation variables are given in Annexe B.

15 15 15 15 15
M5 + C% + (K~ Kbarro ~ Khottement) X = > YL @id; + 3. > thmmme  (229)

i=1j5=1 i=1j5=1k=1

wheref(‘Jz) andf(”l)‘ contain the quadratic and cubic non-linear terms. Nextstfstem is rewritten in state variables

y=A{y y} in order to apply the extension of the centre manifold:

30 30 30 30 30
Y=Ay+) > gy YD D & Yilivk (224)
i=17=1 i=1j5=1k=1
whereA is a30 x 30 matrix. g?z) andgg; are 30-dimensional vectors containing the quadratic abétawn-linear
terms.
As explained in the Section 3.4.2, the system may be redudée icentre manifold variables near the Hopf bifurcation
point as follows
Ve = J¢ (N) ve + Ga (Vm h (Vc) 7#) ++G3 (Vm h (Vc) 7”)
=0
p=p(l+e) (e<1) (225)
m p P ,
vs=h(ve)= D D > aywgupn  (m>2)

p=i+j=2j=01=0
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with o the value of the friction coefficient at the Hopf bifurcatipoint. In this case, the centre manifold makes it
possible to reduce the original non-linear system®tlegree-of-freedom to only variablesve = {v.1  ve2 M}T.
Next, the extension of the centre manifold approach via thetibnal approximants is obtained. As explained in
Section 3.4, the final reduced and simplified non-linearesyss expressed as follows

vCl - [M N fl(v(‘17v('2 Z Z Cl,ijvélng (]' S k S 2)

1<z+]<3m

Veg = [M’ N f2(Uc1 Ve2) Z Z CQvijvélvé (226)
1<Zi]<3m

p=0

p=po(l+e)  (e<1)

Finally, the non-linear solution of the system (226) is egsed as a truncated Fourier series:

H
ve1 (t) = Vip + Z (Vi,2j—1c0s (jwt) + Vi 9;sin (jwt))
=t (227)
vea (1) = Voo + Z (Va,2j—1c0s (jwt) 4+ Va9;sin (jwt))
j=1

By applying the3*"-order centre manifold approach with tf8y2] f Symmetric-Off-Diagonal fractional rational ap-
proximants and th&*"-order harmonic componentgl(= 2) for the Alternate/Frequency Time domain method, we
reduce the number of equations of the original system f8onto 2 and simplify the number of non-linear terms
approximatively from108000 to 28, as indicated in Table 4.

Then, the original complex non-linear system is reducedsamgblified by retaining the essential non-linear dynami-
cal behaviour of the original system as illustrated in Fegub6-63. The second-order polynomial approximation is
not sufficient to provide a good approximation of the stalaleables. This non-linear extension of the centre manifold
approach via the rational approximants appears very istiegein regard to computational time and also requires very
little computer resources, as indicated in Table 4.

\ Methods | CPU time (s)|| Degree-of-freedon] Non-linear terms|
Original system ~ 18000 30 ~108000
Reduced and simplified systen = 20 2 28

Table 4: Comparison between the original and reduced system
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Figure 58: Limit cycles
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5 Conclusion and future research directions

In this paper, non-linear methods to reduce the non-lineechanical systems for instability computation have been
developed. The centre manifold, the rational approximantsan harmonic balance method, called the Alternate Fre-
guency/Time domain method, have been introduced; all thecésted computational techniques have been discussed
in detail. The results from these non-linear approaches haen compared with those obtained by integrating the full
original system. Excellent agreement was found betweerrigenal and the reduced system. The centre manifold
theory and the rational approximants allow us to reduce timber of equations of the original system and to simplify
the non-linear terms in order to obtain a simplified systeithout losing the dynamics of the original system, as well
as the contributions of the non-linear terms. The harmoaiarre method makes it possible to find the non-linear
response of the reduced and simplified system as an asswmedttd Fourier series.

One of the main purposes of this paper is to present a newinearlprocedure consisting of applying the ratio-
nal fractional approximants after the centre manifold rodthThis procedure appears very interesting in regard to
computation time and it requires less computer resourcestalthe number of stable coefficients used to obtained
the limit cycle amplitude. The powerful property used inststudy is indeed that a sequence of rational fractional
approximants may converge even if the associated seriesradpwe can than extended our domain of convergence.
Moreover, the domain of validity of the solution is succefigfenhanced by employing rational fractional approx-
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imants in this study. The rational fractional approximasit®w superior performance over series approximations.
The computational techniques for the three non-linear ousthave been tested for two examples: the first example
was a two degree-of-freedom system with quadratic and autmelinearities. It was developed to demonstrate and
test all the advantages and disadvantages of each meth@dsetbnd example was a complex system with many
degrees-of-freedom and polynomial non-linearities. Tiigability and capacity of the new non-linear technique us-

ing the centre manifold and the rational approximants wearty demonstrated. Moreover, this non-linear procedure
method requires less computer resources and appears tdicalpay interesting in cases of large non-linear system

One of the difficulties when the centre manifold or the ragiloapproximants are applied is the determination of
the order of the polynomial approximation of the stable afalés in a power series in centre variable, and the determi-
nation of the order of the numerator and denominator for grgre manifold approach and the rational approximants,
respectively. Usually, high orders become less signifigemegn they increase, and hence we may find the necessary
and significant order to obtain a good approximation of the-limear dynamical system; in the field of mechanical
engineering, the choice of the orders for the centre mahiigiproach and for the rational approximants are selected
to retain only the significant order by iterative approachtsshould be very interesting to find and to implement
systematic computational procedures to determine thedbeler needed to obtain a good approximation of the
non-linear dynamical system.

Even if this non-linear technique appears very interestimggard to reduction and simplification of mechanical sys-
tems subject to instability phenomena, it has the disadgenof being applicable only to systems with polynomial
non-linearities. Moreover, the centre manifold approactl the associated theorem [116] characterize the local bi-
furcation analysis near a fixed point of the non-linear syst€his assumption reduced the fields of application and it
should be interesting to estimate the non-linear dynamésgdonse of mechanical systems far from the Hopf bifurca-
tion point. Also, new methods combining various approadheliding at the same time the notion of reduction via
the centre manifold approach and a modal analysis appraesgdlon the non-linear modes should be very interesting
[176].

Moreover, the extension of non-linear methods that redbeedtimension of mechanical systems would offer pow-
erful techniques for non-linear systems with various noedrities such as discontinuous phenomena: in the field
of mechanical engineering, various applications are aockwith this type of non-linear problem that may cause
a great deal of instability phenomena. Because non-lingaardical structures depending on control parameters are
encountered in many areas of science and engineering,ens3tt computational implementation in finite elements
software for non-linear methods such as the centre mandpfatoach or the extension proposed in this paper that
reduce the dimension of non-linear systems would be a powtrdl. This computational and systematic treatment
in finite element software is perhaps a difficult and ambgitask but not unrealistic.

Annexe A: Analytical expression for the center manifold co#icients

We noteJ,; et.J,,, the first and second terms of the matliy, respectively;J,;, the k*"-diagonal term of the matrix
Js; and A% theit"-ligne j*-column of the matrixA.

Second order analytical expression
The stable variablesg are approximated as a power series of order two in the ceatebles(v,, /) :

2 P P ,
ve =hW(ve, )= Y DD ayivl,i

p=itj =2 j=0 1=0
2 2 . N 9
= ag00V;] + A110Vc1Ve2 + 20205 + 210101 L + A011Ve2/L + Ago2/L (228)

whereasgo, a110, 2020, 2101, ao11 andages are the unknown center manifold coefficients of order two.
The analytical expressions of the center manifold coefiisidor thek'”-stable variable are given by

Hes
(k200 = 2 — T (229)
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H + Hk n+2
&) 2
= & 230
k110 Jcl + JCQ - Jsk ( )
a — ﬂ (231)
00T 2 — T
kn+1 En(n+1)+1
aor — 0 FHe) (232)
’ Jcl - Jsk
2(n+1) k,n(n+1)+2
b2 + H.
2 2
= 233
ak,011 Tor — T (233)
—H( )(n+1)
ak002 = ——F (234)

Jsk

Third order analytical expression

The stable variablesg are approximated as a power series of order three in theroeariables(ve, /i) :
3 p P o
ve=h(ve,2) = Y > > ajugvsit (235)

So, we have

N 3 2 2 2
Vg = h(® )(Vm i) = h )(Vm ) + agoovy; + A210V5Ve2 + A120Vc1V5 + 2030055
N 2 A -2 -2 3
+3201%1M + a111Vc1Vc2t + 2021 Vot + A102Vc1 4 + A012Vc2/4” + Q003 14 (236)
whereasgg, a210, 2120, 2030, 2201, a111, 2021, 102, ap12 andaggs are the unknown center manifold coefficients

of order three.
The analytical expressions of the center manifold coefiisidor thek*"-stable variable are given by

_QCL]C,QOOGé 2) ~ Qk 110G(2 + H —|- Z Q4,200 (H 2+ + Hg)(nJrl)(iJrl)Jrl)

_ 237
ak,300 3T — Js (237)

aj200 (G@) + G —aro (Gl + G252 + Gé’;“) — 20, 00G) + Hi + Hig

H n+1 + Z 3110 ( Frhit2 4 H( )(n+1)(z+1)+1) + Z 11,200 (Hg)nﬂﬁ + Hg)(nJrl)(iJrl)JrQ)

210 = 2Jc1 + Tz — Jok
(238)
~2ak00 (G + Gisy ™) — aeno (G5 + Gig) + Gy ™)
~2a5 200G 3T + Hg P + Hg)(”“) + H; )("“) +nt2
grit+2 E,(n+1)(i41)+1 k,n+i+3 k,(n+1)(i4+1)+2
—1-2(11020( + H) )—i—ZaZno(H() + H) )
Qf,120 = (239)

Jcl + 2J62 - Jsk
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n—2
n 2 n—+1i , %
—2ak,020G?§+3 _ ak,llOG%éT)H—:S + Hg)( +1)*+n+3 i Z ai.020 (H(ké) +it3 | H(k:Q)(n-I—l)( +1)+2)
= (240)

ak.030 =
3Je2 — Jsk

1,1 2,1 ;n+1 1,n(n+1)+1 ;n+1 2,n(n+1)+1
~ara01Glg) — aronGs) — 2akam (G + Gy ) —anno (G35 + 6 )

kn(nd+1)2+1 kn(n+1)+ kn+1
) +H) e H

Z ai,101 (Hk aEn H )(”H (+1) *1) Z a3 200 ( D) Hg)(n+1)n+i+2)

ak.201 =
' 2Jc1 Js

(241)

1,n+3 2,n+3 2(n+1) J(n+1)n+2 1,2(n+1) 1,(n+1)n+2
—ak01Gigy ! = aron Gl = a0 (G5 + G — ko (G5 + G )

k,(n+1)24+2(n+1) k,2(n+1) —n+1 k,(n+1)3—2(2n+1)

+ Z a; 020 ( 2’ (n+1)(2+0) | prki(nt1) ”“*2) + Z G011 (Hk 2n—14i Hé)(n+1)(i+1)+2)

(2)
aL.021 = 2y — Js
(242)
n 2 n 2 n n
—2%,200Gz§() T ak;,llOG?é() 7 _ ag,101 (ngfﬂ + Gzé() 1) H)
B ;n+1 J(n+1)n+1 ,(n+1)2 k,n(n+1)2+n+1 k,(n+1)3—n
aron (G + Gy )+ H™ v H +Hp,
n—2
k ,(n+1)(2+4) k,(n+1)n+i+2 k,i+2 k,(n+1)(i+1)+1
+ Z ;101 ( + H o ) + ) ai002 (H(2) + H o )
i—1
_ 243
k102 Je1 — Sk (243)
n 2 2 n(n
—ak,noGé() SR QGk,ozoG?é()nH) — ag,101 (ng(nﬂ) + G%é)( +1)+2)
2,2(n+1) 2,n(n+1)+2 k,2(n+1)>2 k,n(n+1)242(n+1) k,(n+1)3—n+1
—aron (G + G )+ H; +H,) +H,
n—2
J(n41)(2+9) k,(n+1)n-+it2 k,2n—1+i Ky (n+1)(i+1)+2
T Z aion (He +Hp) )+ 3 aionz (H, +H) )
i—1
= 244
ak,012 T — T (244)

—Qk,101 (G%QQ) + Gg)z”) — k110 (Gg)wl + Gg)l(n“)*_1 + ng(nﬂ) + ng)z(nﬂ)”)

1,2(n+1) 1,n(n+1)+2 2,n+1 2,n(n+1)+1 2,n42
~2ai200 (G " + G, ) — 2ak00 (G5 + Gy ) — aron (G + G5 )

2 2_n n(n 2 —
2(n+1) +H(]€3)n(n+1)+2 + Hg)(n—l—l) +n+1 +H(]€3,)2(n+1) _|_ch3,)( +1)24+n—2

n—2
En(n+1)24n+2 k,(n+1)(2+4) k,(n+1)n+i+2
+H) + 3 aino (H(; +Hp) )
=1

+H(3)

+ Z @i,011 (Hk S Hg)(”“ JE+1) +1) + Z ai101 ( kan—1+i H(2)(n+1)(i+1)+2)

Jcl + Jc2 Jsk

Q111 =
(245)
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n 2
ak,lozGé() ) + ak,012G(2) 5)

2,(n+1)2 k (n+1 Z ai.002 ( k ,(n+1)(244¢) + H( k,(n+1)n+i+2

)

a,003 =
Jsk

Annexe B: linear and non-linear expressions of'y, My, My and M
The linear expressionB%, M%, M¥ and M~ of Fx, Mx, My andM_ are given by

F)% (f) = (KlAQ +2K9A5B, + 3K3A2B§ + %K3A4Bg + %K3A4Bi) (l‘_s — x_r)

+ (%K2A4Bw + %K3A4B¢Bg) (% — E) + (%K2A4Bg + %K3A4B¢BG) (0_3 - 9_1“)

ME®) = 2Ny ((3K1As + $K> Ay B, + 2Ks Ay B2 + 2Ky As B} + 2K A3 B2) (75 — 77)

+ (252458 + $K3 A5 B, By ) (B 8 ) + (2K0As By + $K3A3B,B,) (0~ 1))

MEG) = (3B + BB (7 - )+ (<10 AoBoBy) (T - T)
(AR~ AL, — KA B2 LA — LI A3 (7 )

VEE) = (A 4 SKABB,) (5 30 + (1Ko, (7 - T)
(-4~ §RoAuB, — Ko ABE — LK AoB] — U Asi) (7~ )

With B, = 240 — 2,0, By = ths0 — ¥y0, By = 050 — 0,0, and Ay = 7 (R’g - R;.f) fork=1,2,3,4,...,

The non-linear expressiorsy ©, M{¥* and MY * of Fx, Mx, My andM are given by

FYE@) = (Kods +3KsAaBy) (75— 77)° + (1o Ay + S AsBy ) (3, - ;)
(1K2A4 + 3K3A4B, ) (% - E)Q + 3K3A44By (9_5 - 9_r) (5 —7r)

6.

_ __  _\3 3 — —\2 _ __
+3K3A4By (%b 1/’r) (Ts — 7)) + K3A (Ts — Tr)” + $ K344 (9s - 07") (5 —77)

1354 (0~ ) (@~ )

MYE (@) = 2Npp ((%KZAB + 2K3A33x) (T — ) + (%KQAE, + %KgAg,Bx) (9_5 — 07)2

+ (%KQAS + %K3A5Ba:) (% — E)2 + gK3A5B9 (9_5 — 9_7,) (T5 — T7)
+8K3 A5 By (6 — Ur) (@ — 77) + 3 K3 Ay (75 - 77)°
+Kas (0 7)' 05 77) + ks (70— ) 5 - 7))
MYt (z) = —%K3A4BG (Ts — $_r)2 - %K:SA(SB@ (9_5 - 9_7«)2 - %K3A6B€ (% - %)2
_ (%K2A4 + %K3A4B$) (9_5 — 9_7,) (T5 — T7) — SK3A6By (% _ E) 7. — —)

+1K3Aq (9_3 - H_r)g + 2K3A4 (9_3 - 0_7’) (T5 — 7)) + S K34 ( 0 (1/15 %)2

MFH @) = —GKsAuBy (T - )’ - K346y (% - E) — LK3A6By, (9_5 - 9_7’)2
it rodg) () - ks (- 7) (5 )

A (5 =)+ 4o (3 = 00) (5 = )"+ s (3 - ) (7~ 1)°

with B, = x50 — 70, By = Yso — Yro, Bg = 050 — o and Ay, =7 (ng — Rf) fork=1,2,3,4,...,
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Nomenclature

T scalaire
X vector of displacement
X vector of velocity
X vector of acceleration
X0 vector of the equilibrium point
X vector of small perturbations
7 friction coefficient
1o friction coefficient at the Hopf bifurcation point
i small perturbation of the firction coefficient near the edpuiim point
M mass matrix
C damping matrix
K stiffness matrix
y state variables vector
Ve center variables vector
Vs stable variables vector
h polynomial approximation of the stable variable in centaiables
h(k) polynomial approximation of th&t"-order
ajj) coefficients vector of the center manifold approach
ag,iji kt"-coefficient of the center manifold approach
[m/n]; fractional approximant of the functiofi
dog denominator coefficients of the fractional approximants
Mo numerator coefficients of the fractional approximants
vk, Fourier coefficients for thé'"-variable
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