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Abstract

The aim of this paper is to present a damage assessmentgeelior the non destructive detection and sizing
of multiple open cracks in beams. The Constitutive Relaimor updating method is used for the identification
of the location and the size of multi-cracks in a simply supgubbeam.

The present identification method is illustrated througmatical examples including double and triples cracks.
Moreover, the efficiency and robustness of the proposed adaghdemonstrated through various numerical
simulations in regard to the non-dimensional crack depththa crack location.

It is demonstrated that the Constitutive Relation Erroraipd) method can detect the number of cracks on
the beam and can estimate both the crack positions and sitesatisfactory precision, even if 10% or 20%
noise levels has been added to the simulations, and only égweds of freedom are used for the identification
procedure.

1 Introduction

It is well known that catastrophic mechanical structurdufe may be caused by fatigue cracks. In order to
avoid failure caused by cracks, many researchers haverpatbextensive investigations and damage assess-
ment techniques based on vibration measurements. The damsagssment may be divided in a two-phases
approach : firstly the damage is located and then then defidsage is quantified. For example, Friswell et
al. [1] used an application of genetic algorithm to locatendge in a beam and in a cantilever plate structure.
After, the location of the crack, the crack depth is estirddite using a eigensensitivity method.

The problem of a structure with multiple cracks has recelesd attention due to the robust damage assess-
ment techniques needed, and only relatively few paperswdédathe problem of multiple cracks assessment for
structures. Effectively, if the structure has multipleaks, the identification procedure is more complex due to
the fact that the proposed damage assessment techniquestioeite not only the crack positions and depths,
but also the number of cracks in the structure. As explainefiitandia and Cremona [2], usual vibration-based
damage identification techniques may show less efficientydrcase of complex and simultaneous damages.

The number of cracks present in a structure will usually benown for practical engineering applications.
So, the development of damage assessment techniques gflenatacks may be very useful and of important
interest. For example, Khiem and Lien [3] used the Dynamiin®ss Matrix approach in order to detect not



only the crack position and depth, but also the quantity agae cracks. But they indicated that the obtained
results show that the procedure developed works effegtionly for measurement errors not exceeding 7%.
Ruotolo and Surace [4] proposed to identify multiple crabkausing the inverse problem as an optimization
task solved by means of a genetic algorithm. They validdtexddamage assessment technique by considering
both simulated and experimental data and demonstratedhisahethod permits assessment of the number of
cracks induced on the beam and can estimate the crack pss#tiad depths with satisfactory precision. Kisa
and Gurel [5] used damage from changes in the natural frege®and in the mode shapes of a beam in order
to detect an arbitrary number of cracks and the associatstk atepths and positions. They concluded that
the modal data may provide useful information for multiptaaks detection with a reasonable computational
time. However, it may be remained that such methods are fiisigicy in the case of damaged structures with
measurement errors.

Chang and Chen [6] presented a damage assessment techagpd dn spatial wavelet analysis. The
positions and depths of the cracks are predicted with aab&pprecision even though there are many cracks
in the beam. However, they indicated that the limitationred proposed technique is that the crack cannot
be detected when the crack location is near the boundariedadthe fact that there are two peaks near the
boundaries in the wavelet plot.

In this paper, we propose to use the Frequency ResponseidfufERF) and the Constitutive Relation
Error updating method (the CRE updating method) that relies parametric model of the structure and the
minimization of a penalty function based on the error betwiée experimental data and the predictions from
the model. This method belongs to the model updating metti@tsminimize the discrepancy between the
test data and the model by modifying the numerical model.afesof-the-art review of such updating methods
can be found in [7]. The “direct methods” [8, 9] perform thareations of the mass and stiffness matrices of
the model but do not unfortunately take into account the johysneaning of the modifications. The “indirect
or parametric methods” update models from changes of palysarameters of the model. Three categories of
cost functions can be used : the input residuals [10, 11jptieut residuals [12, 13] and the residual named the
“Constitutive Relation Error (CRE)” which is used in thisgea. It provides a measure of quality of the updated
model which is essential for model validation [14—-17].

In this study;, it will be demonstrated that the proposedsssent technique (the Constitutive Relation Error
updating method) may detect not only the number of crackalsotthe crack locations and depths, even if large
measurement errors (10% and 20% noise levels have been twthelsimulations) and few sensors may be
for the identification procedure.

The paper is organized as follows. Section 2 summarizesdheept of the Constitutive Relation Error
updating method. Then, the mechanical system with thevesigs open crack under study is discussed in Sec-
tion 3. The numerical studies showing the application ofgiteposed damage assessment technique are also
presented. Firstly, the identification of the multiple d¢mmdéocations ans depths are investigated by considering
the Frequency Response Function throughout the beam, itraxmgverse direction and without noise on mea-
surements. However, as previously explained by Frisw@l],[&nvironmental effects may induced changes in
the measured data that make damage assessment very difflcudover, one very difficult aspect of damage
location is the number of the sensors. Considering theseagpects of damage assessment, noise levels will
be added to the numerical simulations, and only few degréé®edom will be used for the identification
procedure. Finally, conclusions are given in Section 4.
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Figure 1. Domain studied and applied loads

2 The Constitutive Relation error method

The constitutive relation error updating method is one offrods used for validation in structural dynamics

problems. Its concept consists in usingaaposteriori estimator and its efficiency has previously been shown
[14-17]. The method is based on the Drucker error. In thisiaecwe present the method for the case of a
general problem and it will be applied for vibrations of a pignsupported beam in Section 3.

2.1 The construction of the cost function

Consider a structure of domafn (see Figure 1) vibrating during a time internvak [0, 7']. Displacementsiq
and forcedy are prescribed on boundarié®, andof, respectively, besides we ha®€; U 02, = 912. Plus,
forcesfy are body forces in domaifl.

The method consists in finding soluti@iM, t) = (u(M,t),c(M,t),I'(M,t)), M € Q, ¢t € [0,T],
which verifies a set of reliable equations and a set of lesahlel ones. M is the position vectoru the
displacementg the stresses anB(M, t) the forces. The reliable equations are the kinematic caims
and the equilibrium equations. The less reliable equatigiidead to the construction of the error, on which
the minimization will be done. The two constitutive relatsoare given by

o= (H + in) e(u), (1)

T = —pwlu, (2

whereH andB are the Hooke’s and damping operatarshe strain tensor angd the density. It should be
noted that, since we consider in this paper only the caseroédovibrations problems, the equations are then
written in the frequency domainy being the measure angular frequency. Besides, the solistiadmissible
(that verifies the equations considered reliable). In theed of model updating, it is necessary to include data
coming from measurements. Again, these types of data adivatdsd into two sets of equation : one reliable
and one less reliable. If we consider the case of a structgited in one point on which displacements are
measured at different locations, the reliable group comsmw, the positions and directions of the excitations
and sensors whereas the amplitudes of fofgesnd displacemeniy at the excitations and sensors points are
considered less reliable measurements. Then, the totaleériconsists in a term devoted to error on modeling
¢2 and another term related to error on measuremghthe problem to be solved is to find admissible fields
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s or equivalentlys’ = (u,v,w) whereu, v, w are related to static (subscrip} and kinematic (subscripf)
quantities by :

U =u, ®3)
os = (H + in)s(v) , (4)
I = —pw2w , (5)

The solution of the problem is obtained by minimizing the ified constitutive relation erroe?, a cost func-
tion relating static and kinematic quantities [16], whishwiritten, usingu, v, w, such as

2
= g+ Tt ©
with
G, v,w) = / L tr[(H + Tw?B) (e(v) — e(w)*(e(v) — ()]
Q 2

+1_T’pr2(u —w) (u—w)d€2, (7

and ) -
2 _ ||u|819_ﬁd|| ||f|8zﬂ_fd|| 8
“ |[uq]|? a2 (®)

r is a weighting coefficient representing how much we trustekigerimental data. Previous works [19] gave
r = 0.5. Symbol* denotes the complex conjugatfeis the force vector. Denominatd? and norms used have
been chosen to ensure both error terms to have equivaleghtgesuch as
2 2 2 * 11—y o |
D; = B tri(H+Tw”*B) e(u)*e(u)] + —p wtuTu dQ2. 9)
Q

Generally, we will use error quantities integrated ovegérency rang@wv,,i», wmaz|.- They are denoted by a
subscriptl” and are calculated by using a weighting facto), verifying fjﬂmi’” z(w)dw = 1 with z(w) > 0,
e.9.2(w) = 1/(Wmaz — Wmin). The modified erroe is then given by

er = (¢ +np (10)
in which " ) y
2 = /w %Z(w)dw and n% = / n2 2 (w)dw . (11)

min w Wmin

2.2 The updating method

For each frequency, we have to solve the problem described previously. Thisiedhrough the computa-
tions of ¢ ande?. Error in modeling¢Z gives the relative quality (ifit) of the numerical model with respect
to measurements over a frequency range and permits to debieiher the model updating is necessary. The
method consists in two steps. The first one, the localizattep, selects the substructures having a modeling
error higher than a given value :

2 S F 2
Cer > 5%12% Cer > (12)



whereE includes all the substructures afiis a given number.

The second step is the correction process during which efras minimized by updating the parameters
from these substructures alone. Each step of the miniroizakeeds to reassemble mass, stiffness and damping
matrices. For solving the non linear problem with respetihé&parameters, we use a BFGS-based minimization
algorithm and gradients of parameters are calculated rioaligr Once the correction has been made, egfor
is calculated again. If its new value is smaller than a giwxel, then the updating process is finished, if it is
not, then a new iteration consisting of a localization steg @ correction step is performed.

Let U, V andW be the vectors of the nodal values of the displacements figldsandw. Without loss of
generality, we will consider the case of a single excitagorthat the measured displacements are normalized
by the amplitude of the force vector and consequently ordyaimplitudes of the displacements appear in the
expression of error on measuremerﬁ,sThen, the discrete form of the modified error is written as

e2(U,V,W) =

N2

(U - V)™(K + Tw?C)(U — V) + Lz%z(U ~W)T*M(U - W)

+1—T‘

MU -U)™G@U -U). (13)

IT is a projection operator which when applied to a vedogives the value of this vector at the sensors.
The error in measurements is quantified through magixPrevious works [20] showed the efficiency of the
following expression

1—
G = %(k + Twe) + T”oﬂm, (14)
wherem, k andc are the reduced mass, stiffness and damping matrices oy shens at measurement points
respectively. Besides, the solution must be admissibkishiamust satisfy

(K +iwC)V — w? MW =F | (15)

whereF is the excitation force vector. Finally, minimizing erref is done under the admissibility constraints
and is obtained by introducing Lagrange multipliers whid¢lds to the resolution of the following system of
linear equations :

AY =B, (16)

whereA, Y andB are written as

]__
T(K + Tw?C M
2

HK+Tw?C) (K - iwC) 0 ) (17)
-K —iwC w?M K + iwC — w’M

Y=|U-W| |, (18)

B = 0 . (19)



Young modulusE (Pa) 2 x 10!

Shear modulusg; (Pa) 7.1 x 1010
Density (kg/nt) 7800
Poisson ratia/ 0.3
Radius of the cross sectidi (m) 0.05
Length L (m) 1
Damping coefficienty 0.66
Damping coefficien3 1.2 x 1076
Frequency range (rad/s) [100  25000]
Discretization of the frequency range (rad/s) 20
Location, directions of the excitation nodehorizontal and vertical
Amplitude (N) of the excitation 1/v/2

Table 1: Geometrical and physical parameters for the bessguéncy range of the study and nature of the
excitation

3 Application on the identification of multi-cracks for a simply supported beam

3.1 Model of the multi-cracks beam

The layout of the system with multi-cracks under considenais shown in Figure 2. The system is composed
of a circular beam of radiug and lengthZ, simply supported at each end. All values of the physicalipatars
are given in Table 1.

Using a finite element method, the circular beam is disaedtinto 30 beam finite elements, with four degrees
of freedoms at each node [21]. The axial and torsional degoédreedom are not considered here. The
equations of the uncracked system can be written as

MX + CX + KX =0, (20)

whereX is the vector of the degrees-of-freedom and dot represéetsi¢rivative with respect to the time.
Proportional damping matri€C can be expressed &= oM + SK with « and$ real constants.

Due to strain energy concentration in the vicinity of the ¢ipthe crack under load, the presence of a
transverse crack introduces local flexibility. Mayes and/iPs [22, 23] proposed a theoretical model of a
transverse crack, by reducing the second moment of area @l¢éiment at the location of the crack Ay that
is given by

R 2
—(1=v*) F(n)
AT =1y | —L : (21)

1+§(1—1/2)F(u)

wherely, R, [, andv are the second moments of area, beam radius, length of thersand Poisson’s ratio,
respectively,u is the non-dimensional crack depth and is given by

=t (22)

whereh defines the crack depth of the beam, as shown in Figufé(2.) defines the non-linear compliance as
a function of variations in non-dimensional crack depthwhich can be derived from a series of experiments
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Figure 2: Model of the simply supported beam with multi-&s.c

using chordal cracks (see Mayes and Davies [22, 23]). Atdbation of theith transverse crack, the stiffness
matrix [ f:rack] is defined (with respect to the principal axes of the crachtjras

[ 12Ix 0 0 6llx —12Ix 0 0 6llx
12y —6lIy 0 0 —12Iy —6lIy 0
412 Iy 0 0 611y  21%Iy 0
; 4Ty  —6lIx 0 0 202 Ix
crack = 73 121x 0 0 —6lIx |’ (23)
12Iy  6lIy 0
Sym. 412 Iy 0
i 4Ty |

wherelx andIy are the new moments of inertia, about the parallel centt@idas, due to the presence of the
cracked elements. They are given by [24]

R* 9 o
Ix =~ (( _“)(1_4“+2“)7+§>’ 9
TR 42 3 1 2 o1 v 2
Iy ==+ RS (=7 + 7 (1= p) (1= 4p+20%) y +sin”" (3) | = AX?, (25)

whereA and X2 define the uncracked area of the cross-section and the cistaom the axisX to the centroid
of the cross section

A=R(1-mr+5), (26)

_ 2
X = 3—AR373 (27)



where~ is equal to\/2u — p? for convenience. As illustrated in Figure @,defines the crack angle and is
given bya = 2cos ! (1 — ).

For a transverse beam with double-cracks, the global ess§matriXK.,..;] due to the presence of the cracks
is given by

diag(Kerackk = ( 0 --- O Ktl:rack o --- 0 Kgrack 0 --- 0 ),
T T (28)
ith element jth element

whereK! . andK2 ., are the stiffness matrices that are associated with theafictsecond cracks, respec-
tively (as indicated in Equation 23). They are located atith@ndjth beam location0 defines the3 x 8 null
matrix.

Finally, the equation of motion for the simply supported mewaith multiple cracks and excited by an
external force vectoF(t) = Fel“t (whereF defines the force amplitude) can be written as

MX + CX + KX = Fo(t) (29)

with A
K=K- Kcracka (30)
C =aM + K. (31)

As indicated in Equation 31, we assume that the presencacksmaffect the damping matrix via the stiffness
matrix.

The response vector may be assumeXés) = Xgel“t. Considering Equation 29, the system governing the
equation in the frequency domain is given by

—w?M + iwC + K) X = F. (32)
( )

So, the identification of each crack location can be undertdky considering this last relation and the use of
the Constitutive Relation Error (CRE) estimator. Equati®particularised for the case of the beam uses stress
and damping matriceK and C instead ofK and C. Moreover, vectoiX, in Equation 32 will be eitheM
(stress and damping terms) W (mass term) of Equation 15.

Secondly, the calculation of the depth for tlik crack may be obtained by the minimization of the crack
depth errorez (with respect to the non-dimensional crack depjh

8
6/21, - Z Z (Kérackkl - ]E{idem,k:l)2 5 (33)

8
k=11=1

wherer:rack . andKigent 1, define the theoretical and identified flexibility coefficientespectively.

3.2 Numerical results

In this paper, we chose to present the identification of gifie damage locations and crack sizes into the beam
described in Section 3 and whose properties are given ineThbISix cases were considered : cases 1to 5
correspond to double cracks and case 6 to triple cracks.ilDate presented in Table 2. It is known that the

identification depends on the informations available ltke humber, the location and the direction of the sen-
sors, the presence of noise on measurements. Severalssiiliishow the robustness of the method presented
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in this paper.

Firstly, we consider the identification of the cracks fortleaase, the measurement information is given by
sensors throughout the beam and in one transverse direntiomoise is added. If the level of the model error
is above than a certain value then the updating method dserisia first step which is the localization step.

Figures 3(a) to 8(a) present local errors at each locatinatiep before each iteration of the updating process,
for the six cases. Clearly, each localization gives the el@mwhich has the highest local error and which
corresponds to the location of the crack. After the first lizedion, a minimization of the modified error is
made by changing only the parameters of the found elementriésponds to the first iteration shown in the
figures. If the level of the model error is still higher thanudfigient value (leading tor the convergence of the
method), another iteration is performed (localizationspfuinimization steps). Since we have multi-cracks,
another iteration is needed. The second one gives the etéhigetime corresponding to the other crack of the
two existing for cases 1 to 5 (see Figures 3 to 7) and a crackdeet the two others not yet found for case 6.
Third crack is obtained thanks to the third iteration (segufé 8). The computation stops when the value of the
model error is enough small. At each iteration, local eramesnormalized by the maximum local error. Table 3
explains the updating process and gives model and modifiedsdsefore the first iteration and at the end of
the process. It clearly appears that the identificationghefmulti-cracks locations are successively realized
for the six cases. Then, the crack depth identification iaiabt by considering the minimization of the crack
depth errorei as indicated in Equation 33. The identified crack depthsifersix cases are resumed in Table 4.
Perfect estimations of the crack depths are obtained iraaés

Generally speaking, the identification of the cracks depenmdthe value of the normalized crack depth
and on the crack location. Effectively, a crack with a higlueaof the depth will be classically easier to find
(for a given location of the crack). Moreover, the crackd W more difficult to be detected if they are located
very close to nodes for the first eigenmodes (for a given nbzevhcrack depth.).

For example, we can see on Figure 3 (case 1) that the firsttddtetack is the one which is located in
the tenth element (near one node of the third mode) and ttendeane corresponds to the crack located in
the fifteenth element (near one node of the second mode)islicdke, this is globally due to the fact that the
primary identified crack corresponds to the crack with theaggr normalized depth : the crack depths; of
the first crack (that is equal t@8) is greater than the crack depth of the second crack (that is equal).
Similar observations can be made for the cases 2, 4 and 5 wbitaspond to double-cracks identification.
Moreover, the same conclusions can be done for the trigleksrdetection, as indicated in Figure 8(a). The
three successive identifications of the cracks locatioggbeith the greater normalized crack depth and finish
by the smaller normalized crack depth.

Finally, it may be observed that the first localization step indicate the locations of the two cracks if the
effects of each crack are similar, as indicated in Figureo&ésponding to case 3 with two cracks depths equal
to 0.5). For cases 2 and 6 (see Figure 3 and 8), all the cracks losatie visible at the first localization step
even if the local errors are predominant for the beam elema@mésponding to the greater depth crack.

Experiments are frequently perturbed by noise measurenfentepresent correctly this reality, we added
some uniform random noise on the previous deterministicprgational experiments. The noise is uniformly
distributed in space and over the frequency range. Moreavdy few sensors are generally used to measure
the Frequency Response Functions of the multi-cracksregst€onsequently, in order to demonstrate the effi-
ciency and robustness of the proposed method, we compu#ed emses 1 and 6 by considering experimental
data that were carried out through five one-directional ldisgments alone (instead of all the one-directional
displacements along the beam) and on which several noisks ieere added 0%, 10% and20%.

Table 5 presents the results of the multi-cracks locatidmaioed for these cases : model and modified errors
before the updating process and after the last iteratiaqqurEs 9(a), 9(c) and 9(e) present the identifications of



Case Crack location 1 Crack location 2 142 Crack location 3 143

1 10 0.8 15 0.5
2 10 0.1 15 0.3
3 10 0.5 15 0.5
4 4 0.7 23 0.4
5 9 0.5 7 0.6
6 10 0.8 15 0.6 25 0.7

Table 2: Crack damage locations and depths for chse$
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Figure 3: Local errors of the 30 elements, normalized todingdst value, and evolution of the crack depth error
for case 1 without noise on measurements (a) Local error€i@ggk depth error{ — iy, —ps)
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Figure 4: Local errors of the 30 elements, normalized todingdst value, and evolution of the crack depth error
for case 2 without noise on measurements (a) Local error€i@ggk depth error{ 1, — — pus)
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Figure 5: Local errors of the 30 elements, normalized todingdst value, and evolution of the crack depth error
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Figure 6: Local errors of the 30 elements, normalized toaingdst value, and evolution of the crack depth error
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for case 4 without noise on measurements (a) Local error€i@k depth error€u, — — p2)
case noise%) 2! ez’ 2f ez’ iterations number
1 0 2.63 3.71 1.06x107% 1.51 x 107 7
2 0 040 059 1.65x107% 248 x 1076 5
3 0 1.36 1.91 284 x10% 422x10°° 6
4 0 2.16 3.03 097x107% 1.30x 1076 6
5 0 1.60 227 499 x10% 7.08x10° 8
6 0 3.12 446 428 x107% 5.96 x 107 11

Table 3: Errors (in %) before the updating process (subséyignd after the last iteration needed for conver-
gence of the solution (subscripi) of the updating process for caseto 6 and measurements without noise
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Figure 7: Local errors of the 30 elements, normalized todingdst value, and evolution of the crack depth error
for case 5 without noise on measurements (a) Local error€i@ggk depth error{ — pq, —us)
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Figure 8: Local errors of the 30 elements, normalized todingdst value, and evolution of the crack depth error
for case 6 without noise on measurements (a) Local error€1@k depth error€ 1, - - - 1o, — — u3)

case assumed, identifiedy; assumedgi, identifiedu, assumed:s identifiedus
1 0.800 0.800 0.500 0.500
2 0.100 0.101 0.300 0.301
3 0.500 0.500 0.500 0.500
4 0.700 0.700 0.400 0.401
5 0.500 0.501 0.600 0.600
6 0.800 0.800 0.600 0.600 0.700 0.700

Table 4: Comparison of the assumed and identified non-diimeaiscrack depthg: for casesl to 6 without

noise
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case noisek) (3 2! 2! e/ iterations number

1 0 257  3.05 265x107° 3.40x107° 8
1 0 3.41 x107* 3.98 x 1074 5 (intermediate step)
1 10 2.77 3.32 0.51 0.91 5
1 20 3.05 3.78 0.99 1.74 5
6 0 2.78 3.2 251 x107° 3.68x10°° 14
6 0 0.0072 0.0082 7 (intermediate step)
6 0 0.0019 0.0022 9 (intermediate step)
6 10 2.98 3.47 0.49 0.88 9
6 20 3.25 3.90 1.06 1.77 7

Table 5: Errors (in %) before (subscriptthe updating process and after the last iteration needecbfwver-
gence of the solution (subscri), for casesl and6, with sensors located dhdisplacements : nodés 10,
15, 20 and25, and with various noise levels

the cracks locations with the associated local errors ginout the beam and at each iteration of the updating
process for case 1. The same results are shown in Figures 10(a) and 10(e) for case 6. Even if only few
sensors are available and noise measurement exists, riyc@gpears that the final identifications of the multi-
cracks locations are again in perfect agreement with thaaed positions of the two and three cracks for cases
1 and 6, respectively. Then, the determination of the cragkttu of each crack is obtained by minimizing
the crack depth error function of Equation 33. Results ofékemated crack depths are given in Table 6.
Even if the difference between the estimated and identif@ddimensional crack depths tend to increase by
increasing the noise levels, it may be concluded that thédteeare reasonably good. So it is demonstrated that
the damage detection of the multi cracks and the identifinadf the cracks size and position can be obtained
with satisfactory precision, even if 20% noise level hasbagded to the simulations, and less than 5% of the
degrees of freedom are measured.

Finally, the update model is shown through the Frequency&ese Functions (red dotted-dashed lines)
plotted with the angular frequency in Figures 11 to 13, fosecd, and foi0%, 10% and 20% noise levels
respectively. These Frequency Response Functions areatethfp the assumed Frequency Response Func-
tions (solid line). Moreover, the Frequency Response kometof the uncracked system are presented (dashed
lines). It is clearly observed that these FRFs are far froeRRFs of the system with multi-cracks.

Considering the results presented in Figures 11 to 13, tHatepmodel agrees very well with the assumed
FRFs of the system with multi-cracks for all these cases. @& we can notice that the discrepancy between
the estimated and assumed Frequency Response Functimesies with the noise on measurements. Similarly,
results on case 6 are available in Figures 14 to 16. The irduef the noise can also be seen on local
errors (Figures 9-10) which are smoothed with the noisel ieeeeasing and on the value of errors before and
after the updating process (as presented in Table 5) whehigher compared to that from test data without
noise. However, whatever the noise levels presented Hexédéntification is done again successfully, which
demonstrates the robustness of the method.
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Figure 9: Local errors of the 30 elements, normalized todingdst value, and evolution of the crack depth error
for case 1 with noisy measurements (a,c,e) Local errors 0§ith10% and20% of noise (b,d,f) Crack depth
error with 0%, 10% and20% of noise ¢ — p1, —p2)
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case noise (%) assumed identifiedy; assumedi, identifiedus assumedg:is identifiedus

1 0 0.800 0.800 0.500 0.500
1 10 0.800 0.816 0.500 0.514
1 20 0.800 0.830 0.500 0.518
6 0 0.800 0.800 0.600 0.600 0.700 0.700
6 10 0.800 0.820 0.600 0.580 0.700 0.700
6 20 0.800 0.829 0.600 0.597 0.700 0.621

Table 6: Comparison of the assumed and identified non-diimealscrack depthg: for casesl and6, with
sensors located dhdisplacements : nodés 10, 15, 20 and25, and with various noise levels
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Figure 11: Comparison between the Frequency Responseiénum¢tertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updatodel (dotted-dashed lines with circle symbols),

obtained at the beam’s element positigrfor case 1, obtained from a computation without randomenaisd
five sensors
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Figure 12: Comparison between the Frequency Responseidumvertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updatodel (dotted-dashed lines with circle symbols),
obtained at the beam’s element positigrfor case 1, obtained from a computation with{% of random noise
and five sensors
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Figure 13: Comparison between the Frequency Responseiénumtertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updatodel (dotted-dashed lines with circle symbols),

obtained at the beam’s element positigrfor case 1, obtained from a computation w2, of random noise
and five sensors
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Figure 14: Comparison between the Frequency Responseidumtertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updatodel (dotted-dashed lines with circle symbols),
obtained at the beam’s element positigrfor case 6, obtained from a computation without randomenaisd
five sensors
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Figure 15: Comparison between the Frequency Responseiénum¢tertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updatodel (dotted-dashed lines with circle symbols),
obtained at the beam’s element positigrfor case 6, obtained from a computation with{% of random noise
and five sensors
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Figure 16: Comparison between the Frequency Responseidumvertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updatnodel (dotted-dashed lines with circle symbols),
obtained at the beam’s element positigrfor case 6, obtained from a computation w2, of random noise
and five sensors

4 Conclusion

A non destructive detection of double and triple open trarss cracks for a simply supported beam is proposed
in this paper. The damage assessment technique is based Goistitutive Relation Error updating method
and a crack depth error function in order to detect and totifjethe crack location and the nondimensional
crack depth of each crack.

Moreover, it may be observed that the damage assessmenigeehpermits assessment of the number
of cracks induced on the beam. In all cases, the identificatmf the crack parameters are obtained with
satisfactory precisions even if 10% or 20% uniformly distited random noise level is added to the simulations,
and only few degrees of freedom are available (less than S¥%ealegrees of freedom of the system).

Finally, the efficiency and robustness of this non destvactietection method are demonstrated through
various numerical simulations in regard to the non-dimemei crack depth and the crack location. However,
this study demonstrates that the measured data should lcaviaim level of accuracy in order to allow a correct
damage detection.
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