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Abstract

The aim of this paper is to present a damage assessment technique for the non destructive detection and sizing
of multiple open cracks in beams. The Constitutive RelationError updating method is used for the identification
of the location and the size of multi-cracks in a simply supported beam.
The present identification method is illustrated through numerical examples including double and triples cracks.
Moreover, the efficiency and robustness of the proposed method is demonstrated through various numerical
simulations in regard to the non-dimensional crack depth and the crack location.
It is demonstrated that the Constitutive Relation Error updating method can detect the number of cracks on
the beam and can estimate both the crack positions and sizes with satisfactory precision, even if 10% or 20%
noise levels has been added to the simulations, and only few degrees of freedom are used for the identification
procedure.

1 Introduction

It is well known that catastrophic mechanical structural failure may be caused by fatigue cracks. In order to
avoid failure caused by cracks, many researchers have performed extensive investigations and damage assess-
ment techniques based on vibration measurements. The damage assessment may be divided in a two-phases
approach : firstly the damage is located and then then degree of damage is quantified. For example, Friswell et
al. [1] used an application of genetic algorithm to locate damage in a beam and in a cantilever plate structure.
After, the location of the crack, the crack depth is estimated by using a eigensensitivity method.

The problem of a structure with multiple cracks has receivedless attention due to the robust damage assess-
ment techniques needed, and only relatively few papers dealwith the problem of multiple cracks assessment for
structures. Effectively, if the structure has multiple cracks, the identification procedure is more complex due to
the fact that the proposed damage assessment technique mustestimate not only the crack positions and depths,
but also the number of cracks in the structure. As explained by Alvandia and Cremona [2], usual vibration-based
damage identification techniques may show less efficiency inthe case of complex and simultaneous damages.

The number of cracks present in a structure will usually be unknown for practical engineering applications.
So, the development of damage assessment techniques of multiple cracks may be very useful and of important
interest. For example, Khiem and Lien [3] used the Dynamic Stiffness Matrix approach in order to detect not
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only the crack position and depth, but also the quantity of possible cracks. But they indicated that the obtained
results show that the procedure developed works effectively only for measurement errors not exceeding 7%.
Ruotolo and Surace [4] proposed to identify multiple cracksby using the inverse problem as an optimization
task solved by means of a genetic algorithm. They validated this damage assessment technique by considering
both simulated and experimental data and demonstrated thatthis method permits assessment of the number of
cracks induced on the beam and can estimate the crack positions and depths with satisfactory precision. Kisa
and Gurel [5] used damage from changes in the natural frequencies and in the mode shapes of a beam in order
to detect an arbitrary number of cracks and the associated crack depths and positions. They concluded that
the modal data may provide useful information for multiple cracks detection with a reasonable computational
time. However, it may be remained that such methods are less efficiency in the case of damaged structures with
measurement errors.

Chang and Chen [6] presented a damage assessment technique based on spatial wavelet analysis. The
positions and depths of the cracks are predicted with acceptable precision even though there are many cracks
in the beam. However, they indicated that the limitation of the proposed technique is that the crack cannot
be detected when the crack location is near the boundaries due to the fact that there are two peaks near the
boundaries in the wavelet plot.

In this paper, we propose to use the Frequency Response Function (FRF) and the Constitutive Relation
Error updating method (the CRE updating method) that relieson a parametric model of the structure and the
minimization of a penalty function based on the error between the experimental data and the predictions from
the model. This method belongs to the model updating methodsthat minimize the discrepancy between the
test data and the model by modifying the numerical model. A state-of-the-art review of such updating methods
can be found in [7]. The “direct methods” [8, 9] perform the corrections of the mass and stiffness matrices of
the model but do not unfortunately take into account the physical meaning of the modifications. The “indirect
or parametric methods” update models from changes of physical parameters of the model. Three categories of
cost functions can be used : the input residuals [10,11], theoutput residuals [12,13] and the residual named the
“Constitutive Relation Error (CRE)” which is used in this paper. It provides a measure of quality of the updated
model which is essential for model validation [14–17].

In this study, it will be demonstrated that the proposed assessment technique (the Constitutive Relation Error
updating method) may detect not only the number of cracks butalso the crack locations and depths, even if large
measurement errors (10% and 20% noise levels have been addedto the simulations) and few sensors may be
for the identification procedure.

The paper is organized as follows. Section 2 summarizes the concept of the Constitutive Relation Error
updating method. Then, the mechanical system with the transverse open crack under study is discussed in Sec-
tion 3. The numerical studies showing the application of theproposed damage assessment technique are also
presented. Firstly, the identification of the multiple cracks locations ans depths are investigated by considering
the Frequency Response Function throughout the beam, in onetransverse direction and without noise on mea-
surements. However, as previously explained by Friswell [18], environmental effects may induced changes in
the measured data that make damage assessment very difficult. Moreover, one very difficult aspect of damage
location is the number of the sensors. Considering these twoaspects of damage assessment, noise levels will
be added to the numerical simulations, and only few degrees of freedom will be used for the identification
procedure. Finally, conclusions are given in Section 4.
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Figure 1: Domain studied and applied loads

2 The Constitutive Relation error method

The constitutive relation error updating method is one of methods used for validation in structural dynamics
problems. Its concept consists in using ana posteriori estimator and its efficiency has previously been shown
[14–17]. The method is based on the Drucker error. In this section, we present the method for the case of a
general problem and it will be applied for vibrations of a simply supported beam in Section 3.

2.1 The construction of the cost function

Consider a structure of domainΩ (see Figure 1) vibrating during a time intervalt ∈ [0, T ]. Displacementsud

and forcesfd are prescribed on boundaries∂Ω1 and∂Ω2 respectively, besides we have∂Ω1∪∂Ω2 = ∂Ω. Plus,
forcesfv

d
are body forces in domainΩ.

The method consists in finding solutions(M, t) = (u(M, t), σ(M, t),Γ(M, t)), M ∈ Ω, t ∈ [0, T ],
which verifies a set of reliable equations and a set of less reliable ones. M is the position vector,u the
displacement,σ the stresses andΓ(M, t) the forces. The reliable equations are the kinematic constraints
and the equilibrium equations. The less reliable equationswill lead to the construction of the error, on which
the minimization will be done. The two constitutive relations are given by

σ =
(
H+ iωB

)
ε(u) , (1)

Γ = −ρω2
u , (2)

whereH andB are the Hooke’s and damping operators,ε the strain tensor andρ the density. It should be
noted that, since we consider in this paper only the case of forced vibrations problems, the equations are then
written in the frequency domain;ω being the measure angular frequency. Besides, the solutionis admissible
(that verifies the equations considered reliable). In the context of model updating, it is necessary to include data
coming from measurements. Again, these types of data are subdivided into two sets of equation : one reliable
and one less reliable. If we consider the case of a structure excited in one point on which displacements are
measured at different locations, the reliable group consists inω, the positions and directions of the excitations
and sensors whereas the amplitudes of forcesf̃d and displacement̃ud at the excitations and sensors points are
considered less reliable measurements. Then, the total error e2ω consists in a term devoted to error on modeling
ζ2ω and another term related to error on measurementsη2ω. The problem to be solved is to find admissible fields
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s or equivalentlys′ = (u,v,w) whereu,v,w are related to static (subscripts) and kinematic (subscriptc)
quantities by :

uc = u , (3)

σs =
(
H+ iωB

)
ε(v) , (4)

Γs = −ρω2
w , (5)

The solution of the problem is obtained by minimizing the modified constitutive relation errore2ω, a cost func-
tion relating static and kinematic quantities [16], which is written, usingu,v,w, such as

e2ω =
ζ2ω
D2

ω

+
r

1− r
η2ω , (6)

with

ζ2ω(u,v,w) =

∫

Ω

γ

2
tr[(H+Tω2

B) (ε(v) − ε(u)⋆(ε(v) − ε(u))]

+
1− γ

2
ρω2(u−w)⋆(u−w)dΩ , (7)

and

η2ω =
||u|∂1Ω − ũd||2

||ũd||2
+

||f |∂2Ω − f̃d||2

||̃fd||2
. (8)

r is a weighting coefficient representing how much we trust theexperimental data. Previous works [19] gave
r = 0.5. Symbol⋆ denotes the complex conjugate.f is the force vector. DenominatorD2

ω and norms used have
been chosen to ensure both error terms to have equivalent weights such as

D2
ω =

∫

Ω

(γ
2
tr[(H+ Tω2

B) ε(u)⋆ε(u)] +
1− γ

2
ρω2

u
⋆
u

)
dΩ . (9)

Generally, we will use error quantities integrated over frequency range[ωmin, ωmax]. They are denoted by a
subscriptT and are calculated by using a weighting factorz(ω), verifying

∫ ωmax

ωmin

z(ω)dω = 1 with z(ω) ≥ 0,
e.g.z(ω) = 1/(ωmax − ωmin). The modified errore2T is then given by

e2T = ζ2T + η2T , (10)

in which

ζ2T =

∫ ωmax

ωmin

ζ2ω
D2

ω

z(ω)dω and η2T =

∫ ωmax

ωmin

η2ωz(ω)dω . (11)

2.2 The updating method

For each frequencyω, we have to solve the problem described previously. This is done through the computa-
tions ofζ2T ande2T . Error in modelingζ2T gives the relative quality (in%) of the numerical model with respect
to measurements over a frequency range and permits to decidewhether the model updating is necessary. The
method consists in two steps. The first one, the localizationstep, selects the substructures having a modeling
error higher than a given value :

ζ2ET ≥ δ̃max
E∈E

ζ2ET , (12)
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whereE includes all the substructures andδ̃ is a given number.
The second step is the correction process during which errore2T is minimized by updating the parameters

from these substructures alone. Each step of the minimization needs to reassemble mass, stiffness and damping
matrices. For solving the non linear problem with respect tothe parameters, we use a BFGS-based minimization
algorithm and gradients of parameters are calculated numerically. Once the correction has been made, errorζ2T
is calculated again. If its new value is smaller than a given level, then the updating process is finished, if it is
not, then a new iteration consisting of a localization step and a correction step is performed.

LetU, V andW be the vectors of the nodal values of the displacements fieldsu, v andw. Without loss of
generality, we will consider the case of a single excitationso that the measured displacements are normalized
by the amplitude of the force vector and consequently only the amplitudes of the displacements appear in the
expression of error on measurementsη2ω.Then, the discrete form of the modified error is written as

e2ω(U,V,W) =
γ

2
(U−V)T⋆(K+Tω2

C)(U−V) +
1− γ

2
ω2(U−W)T⋆

M(U−W)

+
r

1− r
(ΠU− Ũ)T⋆

G(ΠU− Ũ) . (13)

Π is a projection operator which when applied to a vectorZ gives the value of this vector at the sensors.
The error in measurements is quantified through matrixG. Previous works [20] showed the efficiency of the
following expression

G =
γ

2
(k+ Tω2

c) +
1− γ

2
ω2

m , (14)

wherem, k andc are the reduced mass, stiffness and damping matrices of the system at measurement points
respectively. Besides, the solution must be admissible that is it must satisfy

(K+ iωC)V − ω2
MW = F , (15)

whereF is the excitation force vector. Finally, minimizing errore2ω is done under the admissibility constraints
and is obtained by introducing Lagrange multipliers which yields to the resolution of the following system of
linear equations :

AY = B , (16)

whereA, Y andB are written as

A =




γ

2
(K+ Tω2

C)
1− γ

2
ω2

M
r

1− r
Π

T
GΠ

γ

2
(K+ Tω2

C)
1− γ

2
(K− iωC) 0

−K− iωC ω2
M K+ iωC− ω2

M


 , (17)

Y =



U−V

U−W

U


 , (18)

B =




r

1− r
Π

T
GŨ

0

F


 . (19)
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Young modulusE (Pa) 2× 1011

Shear modulusG (Pa) 7.1× 1010

Density (kg/m3) 7800
Poisson ratioν 0.3

Radius of the cross sectionR (m) 0.05
LengthL (m) 1

Damping coefficientα 0.66
Damping coefficientβ 1.2× 10−6

Frequency range (rad/s) [100 25000]
Discretization of the frequency range (rad/s) 20

Location, directions of the excitation node5, horizontal and vertical
Amplitude (N) of the excitation 1/

√
2

Table 1: Geometrical and physical parameters for the beam, frequency range of the study and nature of the
excitation

3 Application on the identification of multi-cracks for a simply supported beam

3.1 Model of the multi-cracks beam

The layout of the system with multi-cracks under consideration is shown in Figure 2. The system is composed
of a circular beam of radiusR and lengthL simply supported at each end. All values of the physical parameters
are given in Table 1.
Using a finite element method, the circular beam is discretized into 30 beam finite elements, with four degrees
of freedoms at each node [21]. The axial and torsional degrees of freedom are not considered here. The
equations of the uncracked system can be written as

MẌ+CẊ+KX = 0, (20)

whereX is the vector of the degrees-of-freedom and dot represents the derivative with respect to the time.
Proportional damping matrixC can be expressed asC = αM+ βK with α andβ real constants.

Due to strain energy concentration in the vicinity of the tipof the crack under load, the presence of a
transverse crack introduces local flexibility. Mayes and Davies [22, 23] proposed a theoretical model of a
transverse crack, by reducing the second moment of area of the element at the location of the crack by∆I that
is given by

∆I = I0




R

l

(
1− ν2

)
F (µ)

1 +
R

l

(
1− ν2

)
F (µ)


 , (21)

whereI0, R , l, andν are the second moments of area, beam radius, length of the section and Poisson’s ratio,
respectively.µ is the non-dimensional crack depth and is given by

µ =
h

R
, (22)

whereh defines the crack depth of the beam, as shown in Figure 2.F (µ) defines the non-linear compliance as
a function of variations in non-dimensional crack depthµ, which can be derived from a series of experiments
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Figure 2: Model of the simply supported beam with multi-cracks

using chordal cracks (see Mayes and Davies [22, 23]). At the location of theith transverse crack, the stiffness
matrix

[
K

i
crack

]
is defined (with respect to the principal axes of the crack front) as

K
i
crack =

E

l3




12IX 0 0 6lIX −12IX 0 0 6lIX
12IY −6lIY 0 0 −12IY −6lIY 0

4l2IY 0 0 6lIY 2l2IY 0
4l2IX −6lIX 0 0 2l2IX

12IX 0 0 −6lIX
12IY 6lIY 0

Sym. 4l2IY 0
4l2IX




, (23)

whereIX andIY are the new moments of inertia, about the parallel centroidal axes, due to the presence of the
cracked elements. They are given by [24]

IX =
R4

4

(
(1− µ)

(
1− 4µ+ 2µ2

)
γ +

α

2

)
, (24)

IY =
πR4

4
+R4

(
2

3
(1− µ) γ3 +

1

4
(1− µ)

(
1− 4µ + 2µ2

)
γ + sin−1 (γ)

)
−AX̄2, (25)

whereA andX̄2 define the uncracked area of the cross-section and the distance from the axisX to the centroid
of the cross section

A = R2

(
(1− µ) γ +

α

2

)
, (26)

X̄ =
2

3A
R3γ3 (27)
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whereγ is equal to
√

2µ− µ2 for convenience. As illustrated in Figure 2,α defines the crack angle and is
given byα = 2cos−1 (1− µ).
For a transverse beam with double-cracks, the global stiffness matrix[Kcrack] due to the presence of the cracks
is given by

diag(Kcrack) = ( 0 · · · 0 K
1
crack 0 · · · 0 K

2
crack 0 · · · 0 ),

↑ ↑
ith element jth element

(28)

whereK1
crack andK2

crack are the stiffness matrices that are associated with the firstand second cracks, respec-
tively (as indicated in Equation 23). They are located at theith andjth beam location.0 defines the8× 8 null
matrix.

Finally, the equation of motion for the simply supported beam with multiple cracks and excited by an
external force vectorFe(t) = Fe

iωt (whereF defines the force amplitude) can be written as

MẌ+ ĈẊ+ K̂X = Fe(t) (29)

with
K̂ = K−Kcrack, (30)

Ĉ = αM+ βK̂. (31)

As indicated in Equation 31, we assume that the presence of cracks affect the damping matrix via the stiffness
matrix.
The response vector may be assumed asX(t) = X0e

iωt. Considering Equation 29, the system governing the
equation in the frequency domain is given by

(
−ω2

M+ iωĈ+ K̂

)
X0 = F. (32)

So, the identification of each crack location can be undertaken by considering this last relation and the use of
the Constitutive Relation Error (CRE) estimator. Equation15 particularised for the case of the beam uses stress
and damping matriceŝK andĈ instead ofK andC. Moreover, vectorX0 in Equation 32 will be eitherV
(stress and damping terms) orW (mass term) of Equation 15.

Secondly, the calculation of the depth for theith crack may be obtained by the minimization of the crack
depth errore2µ (with respect to the non-dimensional crack depthµ)

e2µ =

8∑

k=1

8∑

l=1

(
K

i
crack,kl −Kident,kl

)2
, (33)

whereKi
crack,kl andKident,kl define the theoretical and identified flexibility coefficients, respectively.

3.2 Numerical results

In this paper, we chose to present the identification of different damage locations and crack sizes into the beam
described in Section 3 and whose properties are given in Table 1. Six cases were considered : cases 1 to 5
correspond to double cracks and case 6 to triple cracks. Details are presented in Table 2. It is known that the
identification depends on the informations available like the number, the location and the direction of the sen-
sors, the presence of noise on measurements. Several studies will show the robustness of the method presented
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in this paper.

Firstly, we consider the identification of the cracks for each case, the measurement information is given by
sensors throughout the beam and in one transverse direction, no noise is added. If the level of the model error
is above than a certain value then the updating method consists in a first step which is the localization step.

Figures 3(a) to 8(a) present local errors at each localization step before each iteration of the updating process,
for the six cases. Clearly, each localization gives the element which has the highest local error and which
corresponds to the location of the crack. After the first localization, a minimization of the modified error is
made by changing only the parameters of the found element. Itcorresponds to the first iteration shown in the
figures. If the level of the model error is still higher than a sufficient value (leading tor the convergence of the
method), another iteration is performed (localization plus minimization steps). Since we have multi-cracks,
another iteration is needed. The second one gives the element this time corresponding to the other crack of the
two existing for cases 1 to 5 (see Figures 3 to 7) and a crack between the two others not yet found for case 6.
Third crack is obtained thanks to the third iteration (see Figure 8). The computation stops when the value of the
model error is enough small. At each iteration, local errorsare normalized by the maximum local error. Table 3
explains the updating process and gives model and modified errors before the first iteration and at the end of
the process. It clearly appears that the identifications of the multi-cracks locations are successively realized
for the six cases. Then, the crack depth identification is obtained by considering the minimization of the crack
depth errore2µ as indicated in Equation 33. The identified crack depths for the six cases are resumed in Table 4.
Perfect estimations of the crack depths are obtained in all cases.

Generally speaking, the identification of the cracks depends on the value of the normalized crack depthµ
and on the crack location. Effectively, a crack with a high value of the depth will be classically easier to find
(for a given location of the crack). Moreover, the cracks will be more difficult to be detected if they are located
very close to nodes for the first eigenmodes (for a given normalized crack depthµ).

For example, we can see on Figure 3 (case 1) that the first detected crack is the one which is located in
the tenth element (near one node of the third mode) and the second one corresponds to the crack located in
the fifteenth element (near one node of the second mode). In this case, this is globally due to the fact that the
primary identified crack corresponds to the crack with the greater normalized depthµ : the crack depthµ1 of
the first crack (that is equal to0.8) is greater than the crack depthµ2 of the second crack (that is equal to0.5).
Similar observations can be made for the cases 2, 4 and 5 whichcorrespond to double-cracks identification.
Moreover, the same conclusions can be done for the triple-cracks detection, as indicated in Figure 8(a). The
three successive identifications of the cracks locations begin with the greater normalized crack depth and finish
by the smaller normalized crack depth.

Finally, it may be observed that the first localization step can indicate the locations of the two cracks if the
effects of each crack are similar, as indicated in Figures 5 (corresponding to case 3 with two cracks depths equal
to 0.5). For cases 2 and 6 (see Figure 3 and 8), all the cracks locations are visible at the first localization step
even if the local errors are predominant for the beam elementcorresponding to the greater depth crack.

Experiments are frequently perturbed by noise measurement. To represent correctly this reality, we added
some uniform random noise on the previous deterministic computational experiments. The noise is uniformly
distributed in space and over the frequency range. Moreover, only few sensors are generally used to measure
the Frequency Response Functions of the multi-cracks systems. Consequently, in order to demonstrate the effi-
ciency and robustness of the proposed method, we computed again cases 1 and 6 by considering experimental
data that were carried out through five one-directional displacements alone (instead of all the one-directional
displacements along the beam) and on which several noise levels were added :0%, 10% and20%.

Table 5 presents the results of the multi-cracks locations obtained for these cases : model and modified errors
before the updating process and after the last iteration. Figures 9(a), 9(c) and 9(e) present the identifications of
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Case Crack location 1 µ1 Crack location 2 µ2 Crack location 3 µ3

1 10 0.8 15 0.5
2 10 0.1 15 0.3
3 10 0.5 15 0.5
4 4 0.7 23 0.4
5 9 0.5 7 0.6
6 10 0.8 15 0.6 25 0.7

Table 2: Crack damage locations and depths for cases1 to 6
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Figure 6: Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error
for case 4 without noise on measurements (a) Local errors (b)Crack depth error (−µ1, −− µ2)

case noise (%) ζ2T
i

e2T
i

ζ2T
f

e2T
f iterations number

1 0 2.63 3.71 1.06 × 10−6 1.51 × 10−6 7
2 0 0.40 0.59 1.65 × 10−6 2.48 × 10−6 5
3 0 1.36 1.91 2.84 × 10−6 4.22 × 10−6 6
4 0 2.16 3.03 0.97 × 10−6 1.30 × 10−6 6
5 0 1.60 2.27 4.99 × 10−6 7.08 × 10−6 8
6 0 3.12 4.46 4.28 × 10−6 5.96 × 10−6 11

Table 3: Errors (in %) before the updating process (subscript i) and after the last iteration needed for conver-
gence of the solution (subscriptf ) of the updating process for cases1 to 6 and measurements without noise
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Figure 7: Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error
for case 5 without noise on measurements (a) Local errors (b)Crack depth error (−− µ1, −µ2)
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Figure 8: Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error
for case 6 without noise on measurements (a) Local errors (b)Crack depth error (−µ1, · · ·µ2, −− µ3)

case assumedµ1 identifiedµ1 assumedµ2 identifiedµ2 assumedµ3 identifiedµ3

1 0.800 0.800 0.500 0.500
2 0.100 0.101 0.300 0.301
3 0.500 0.500 0.500 0.500
4 0.700 0.700 0.400 0.401
5 0.500 0.501 0.600 0.600
6 0.800 0.800 0.600 0.600 0.700 0.700

Table 4: Comparison of the assumed and identified non-dimensional crack depthsµ for cases1 to 6 without
noise
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case noise (%) ζ2T
i

e2T
i

ζ2T
f

e2T
f iterations number

1 0 2.57 3.05 2.65 × 10−6 3.40 × 10−6 8
1 0 3.41 × 10−4 3.98 × 10−4 5 (intermediate step)
1 10 2.77 3.32 0.51 0.91 5
1 20 3.05 3.78 0.99 1.74 5
6 0 2.78 3.2 2.51 × 10−5 3.68 × 10−6 14
6 0 0.0072 0.0082 7 (intermediate step)
6 0 0.0019 0.0022 9 (intermediate step)
6 10 2.98 3.47 0.49 0.88 9
6 20 3.25 3.90 1.06 1.77 7

Table 5: Errors (in %) before (subscripti) the updating process and after the last iteration needed for conver-
gence of the solution (subscriptf ), for cases1 and6, with sensors located on5 displacements : nodes5, 10,
15, 20 and25, and with various noise levels

the cracks locations with the associated local errors throughout the beam and at each iteration of the updating
process for case 1. The same results are shown in Figures 10(a), 10(c) and 10(e) for case 6. Even if only few
sensors are available and noise measurement exists, it clearly appears that the final identifications of the multi-
cracks locations are again in perfect agreement with the assumed positions of the two and three cracks for cases
1 and 6, respectively. Then, the determination of the crack depthµ of each crack is obtained by minimizing
the crack depth error function of Equation 33. Results of theestimated crack depths are given in Table 6.
Even if the difference between the estimated and identified non-dimensional crack depths tend to increase by
increasing the noise levels, it may be concluded that the results are reasonably good. So it is demonstrated that
the damage detection of the multi cracks and the identification of the cracks size and position can be obtained
with satisfactory precision, even if 20% noise level has been added to the simulations, and less than 5% of the
degrees of freedom are measured.

Finally, the update model is shown through the Frequency Response Functions (red dotted-dashed lines)
plotted with the angular frequency in Figures 11 to 13, for case 1, and for0%, 10% and20% noise levels
respectively. These Frequency Response Functions are compared to the assumed Frequency Response Func-
tions (solid line). Moreover, the Frequency Response Functions of the uncracked system are presented (dashed
lines). It is clearly observed that these FRFs are far from the FRFs of the system with multi-cracks.

Considering the results presented in Figures 11 to 13, the update model agrees very well with the assumed
FRFs of the system with multi-cracks for all these cases. However, we can notice that the discrepancy between
the estimated and assumed Frequency Response Functions increases with the noise on measurements. Similarly,
results on case 6 are available in Figures 14 to 16. The influence of the noise can also be seen on local
errors (Figures 9-10) which are smoothed with the noise level increasing and on the value of errors before and
after the updating process (as presented in Table 5) which are higher compared to that from test data without
noise. However, whatever the noise levels presented here, the identification is done again successfully, which
demonstrates the robustness of the method.
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Figure 9: Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error
for case 1 with noisy measurements (a,c,e) Local errors with0%, 10% and20% of noise (b,d,f) Crack depth
error with0%, 10% and20% of noise (−− µ1, −µ2)
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Figure 10: Local errors of the 30 elements, normalized to thelargest value, and evolution of the crack depth
error for case 6 with noisy measurements (a,c,e) Local errors with 0%, 10% and20% of noise (b,d,f) Crack
depth error with0%, 10% and20% of noise (−µ1, · · · µ2, −− µ3)
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case noise (%) assumedµ1 identifiedµ1 assumedµ2 identifiedµ2 assumedµ3 identifiedµ3

1 0 0.800 0.800 0.500 0.500
1 10 0.800 0.816 0.500 0.514
1 20 0.800 0.830 0.500 0.518
6 0 0.800 0.800 0.600 0.600 0.700 0.700
6 10 0.800 0.820 0.600 0.580 0.700 0.700
6 20 0.800 0.829 0.600 0.597 0.700 0.621

Table 6: Comparison of the assumed and identified non-dimensional crack depthsµ for cases1 and6, with
sensors located on5 displacements : nodes5, 10, 15, 20 and25, and with various noise levels
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Figure 11: Comparison between the Frequency Response Functions (vertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updated model (dotted-dashed lines with circle symbols),
obtained at the beam’s element position5, for case 1, obtained from a computation without random noise and
five sensors
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Figure 12: Comparison between the Frequency Response Functions (vertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updated model (dotted-dashed lines with circle symbols),
obtained at the beam’s element position5, for case 1, obtained from a computation with10% of random noise
and five sensors
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Figure 13: Comparison between the Frequency Response Functions (vertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updated model (dotted-dashed lines with circle symbols),
obtained at the beam’s element position5, for case 1, obtained from a computation with20% of random noise
and five sensors
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Figure 14: Comparison between the Frequency Response Functions (vertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updated model (dotted-dashed lines with circle symbols),
obtained at the beam’s element position5, for case 6, obtained from a computation without random noise and
five sensors
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Figure 15: Comparison between the Frequency Response Functions (vertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updated model (dotted-dashed lines with circle symbols),
obtained at the beam’s element position5, for case 6, obtained from a computation with10% of random noise
and five sensors

18



0 0.5 1 1.5 2 2.5

x 10
4

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Angular frequency (rad/s)

F
re

qu
en

cy
 R

es
po

ns
e 

F
un

ct
io

n 
(m

/N
)

Figure 16: Comparison between the Frequency Response Functions (vertical direction) of the cracked model
(solid line), the initial model (dashed lines) and the updated model (dotted-dashed lines with circle symbols),
obtained at the beam’s element position5, for case 6, obtained from a computation with20% of random noise
and five sensors

4 Conclusion

A non destructive detection of double and triple open transverse cracks for a simply supported beam is proposed
in this paper. The damage assessment technique is based on the Constitutive Relation Error updating method
and a crack depth error function in order to detect and to identify the crack location and the nondimensional
crack depth of each crack.

Moreover, it may be observed that the damage assessment technique permits assessment of the number
of cracks induced on the beam. In all cases, the identifications of the crack parameters are obtained with
satisfactory precisions even if 10% or 20% uniformly distributed random noise level is added to the simulations,
and only few degrees of freedom are available (less than 5% ofthe degrees of freedom of the system).

Finally, the efficiency and robustness of this non destructive detection method are demonstrated through
various numerical simulations in regard to the non-dimensional crack depth and the crack location. However,
this study demonstrates that the measured data should have acertain level of accuracy in order to allow a correct
damage detection.
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[17] Chouaki, A., Ladevèze, P., and Proslier, L., 1998. “Updating structural dynamics models with emphasis
on the damping properties”.AIAA Journal, 36 (6), pp. 1094–1099.

[18] Friswell, M., 2007. “Damage identification using inverse methods”.Philosophical Transactions of the
Royal Society A, 365, p. 393–410.
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