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Abstract

The purpose of the present work is to establish a method &atigiing the location and depth of a crack in a circular
cross section beam by only considering the frequencieseofiticked beam. An accurate knowledge of the material
properties is not required. The crack location and sizeastified by finding the point of intersection of pulsation
ratio contour lines of lower vertical and horizontal mod&kis process is presented and numerically validated in the
case of a simply supported beam with various crack locatamtssizes. If the beam has structural symmetry, the
identification of crack location is performed by adding afie@nter placed mass to the simply supported beam. In
order to avoid worse diagnostic, it was demonstrated thabast identification of crack size and location is possible
if two tests are undertaken by adding the mass at at the ldftreen right end of the simply supported beam.

Finally, the pulsation ratio contour lines method is gelieed in order to be extended to the case of rectangular cross
section beams or more complex structures.

Keywords: vibration, crack, identification.

1 Introduction

Cracks are a main cause of structural failure and often scenrstructures. In order to avoid the sudden failure of
structural components, a crack must be detected in the stlg. In recent years, many research studies has been
devoted to develop non-destructive techniques for dandegdification in structures.

One of the most useful techniques is based on the changes imdbal properties mainly natural frequencies and
mode shapes. Even if this approach may be time consumingh#rege in modal properties of cracked structures can
be useful for easily identification of both crack size andakoam.

First of all, some researchers demonstrated that the @otafia crack may be determined by only using the ratios of
the changes in the natural frequencies ( [1-4]). For exanidekis [5] demonstrated that the only variation of the
first two natural frequencies due to the crack is sufficierdriter to identify the crack location of a simply supported
uniform beam if the crack size is very small. Then, the worlNafkis was continued and developed by Morassi [6]
that studied the identification of a single crack based orktimvledge of the damage-induced shifts in a pair of
natural frequencies. Moreover, Morassi et al. ( [7, 8]) msgd very elegant and original approaches to identify
localized damage by using the changes in the nodes of mogesbaby considering not only the measured changes
in natural frequencies but also the antiresonant freqesn@]. One of the most important result of this study was
the uniqueness of the damage location for symmetrical bégneensidering an appropriate use of frequencies and
antiresonances.

Furthermore, Liang et al. [10] developed a method based @sumements of natural frequencies of structures for the
detection of crack size and location in a uniform beam uniseply supported or cantilever boundary conditions. Cerri
and Vestroni [11] proposed to identify structural damaga béam using measured frequencies by using two different
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Figure 1: Finite-element model of the beam with the craclssmgection

procedures: the first approach for damage identificatioragetl on the modal equation procedure and the second
is based on the frequency comparison between analyticaeaperimental frequency values. Owolabi et al. [12]
considered the damage-induced shifts in the first threaqaldtequencies and the corresponding amplitudes in order
to detect the presence of a crack in beams, and determiroe#sdn and size, based on experimental modal analysis
results. A similar analytical and experimental approachiese undertaken by Nahvi and Jabbari [13] by considering
the normalized frequency in terms of the non-dimensionaticdepth and location. Li et al. [14] proposed to identify
the crack location and size by finding the point of intersecf three frequency contour lines of the cracked beam
under the situation that measured natural frequenciesagkdreams are set as input. Hadjileontiadis [15] proposed a
new technique based on fractal dimension analysis. Theo$itte crack is related to the fractal dimension measure,
while the location of the crack is determined by the suddesngbs in the spatial variation of the cracked beam
response. Khiem and Lien [16] formulated a multi-crack diéba for beam based on natural frequencies and non-
linear optimization problem. Kim and Stubbs [17] proposextaeck detection model by relating fractional changes in
modal energy to changes in natural frequencies due to dasuatpeas cracks or other geometrical changes.

The objective of this work is to extend the frequency contiues method of crack detection for a circular section
beam without using the natural frequencies of uncrackednbgz. the change in modal properties between the
cracked and uncracked beam are not taken into account) dhduvneeding an accurate knowledge of the Young'’s
modulus and the density. First of all, the circular crosgieacheam with an open crack is presented. Then, the
variations of the first three frequency ratios of the veftimad horizontal modes as a function of non-dimensional
crack depth ratio, the crack location and some changes ahtierial properties (Young modulus and density) are
undertaken.

In a second part, the identification of crack size and locaisoperformed by considering only the damage-induced
shifts in the first three change ratios of the vertical andomtal natural frequencies of the cracked circular beam.
Moreover, in order to avoid the non-uniqueness of the dantaggtion problem due to the structural symmetry of
beams and worse diagnostic, the process of adding an aicerass to the simply supported beam is investigated.
Finally, the pulsation ratio contour lines method is gehized in order to be extended to the case of rectangular cross
section beams or more complex structures.

2 The model of the simply supported cracked beam

In this paper, a circular cross section beam, 1m in length widiameter of 0.1m, is modellled using 31 Timoshenko
beam finite elements ( [18, 19]) with four degrees of freedamsach node as shown in Figure 1. The beam is
assumed to be simply supported at each end. The presenaan$eerse crack in beams introduces considerable local



flexibility due to strain energy concentration in the vit¢ynof the crack tip under load. This highly localized effect
does not influence the stiffness of the segment of the beam fa@ra the crack cross section. To locally represent the
stiffness properties of the crack cross section in an otiserwncracked beam, it is necessary to incorporate fleiibili
due to the presence of the transverse crack. We refer theestéel reader to [20, 21] for comprehensive literature
survey of various crack modeling techniques.

Mayes and Davies ( [22,23]) proposed to theoretically madehnsverse crack by reducing the second moment of
area of the element at the location of the crackA. In [24], they indicated that the change in thé" natural
frequency of a system containing a crack may be defined by

d?u
2 m
N m= Y < dz? )a:s (l)

whereg is a function of crack and beam geometry angl defines then!* mode shape of the beam, corresponds
to the location of the crack on the beam. Extending theirsamt using dimensional analysis to describe the stress
concentration factor at the crack front, they obtained tileding expression [22]

Aw?, = —4E—]2 (1 - V2) F () <d2um> 2

TR3 dx?

wherel, R, u, F andv are the second moment of area, the shaft radius, the nomdiomal crack depth, the
Young’s modulus and the Poisson’s ratio, respectivély(.:) is the non-linear compliance function varied with the
non-dimensional crack depthand is independent of all the other parameters. Mayes an@®aj22, 23]) proposed
to obtain the evolution of' (1) from a series of experiments with chordal cracks. This caammgke function was then
used by Lees et al [25] to study the dynamic behaviour of & s¥itif a crack accounting opening and closing of crack
due to the shaft self weight for different orientations cf #haft.
Then using the second derivatives of the deflection curtesbénding moment/, for the original system is given
by

2

My (s) = Elo (s) (%) ®3)

X Tr=s
wherey ands define the shaft displacement of the beam and the axial positi
The bending momenY for the perturbed system due to the presence of a crack ia diye

d2
M (s) = My (s) — AM (s) = E (I (s) — AI(s)) (d—xg> . @)
Moreover, assuming that the deflection curve is unchandgedbénding moment/, of the original system and the
bending momend/ of the cracked system are defined by

My (9) = [ (=2 m()y(z)ds (5)

and .
AM (s) = Awg/o (s—2z)m(z)y(z)dz (6)

wherem (z) corresponds to the mass/unit length at the location the beam.
Using Equations 3-6 and Rayleigh’s approach, Mayes andd3d2P] demonstrated the relation

2y AT Aw?
2 _ - g -
Aw _E<d>< _%)Q s ) @

Then, they proposed to compare Equations 2 and 7 and to onkidsr the first order changes ikw? and they

obtained after calculation
AL, I3
1— % T rwlR3
0

(1 - VQ) F(u). (8)



For a circular beam, this relation becomes

NG T P o
Ty 1+?(1—V2)F(,U,)

wherely, R, [, andv are the second moment of area, the shaft radius, the lengjtle sEction and the Poisson’s ratio,
respectively,. is the non-dimensional crack depth and is given by

h

p=t (10)

whereh defines the crack depth of the shaft, as illustrated in Figurét the crack location, the stiffness matrix
K. .ct due to the transversal crack is defined as (to the principed akthe crack front)

[12Ix 0 0 611 —12Ix 0 0 611
121y —6l1y 0 0 —121y —6l1y 0
(4 + B)2Iy 0 0 611y (2 — B2y 0
E 2 _ _ A2
K. —Z (4+B)%Ix —6lIx 0 0 (2 — B)%Ix 1)
3 121y 0 0 —6l1Ix
121y 611y 0
Sym. (4+ B2y 0
I 4+ B)PIx |
whereg is the shear modulus of the beam.
The moments of inertia about the parallel centroidal akgsand Iy, are given by [26]
Ix =1Ix (12)
Iy = Iy — AX? (13)

whereA and X2 define the uncracked area of the cross-section and the clistaom the axisX to the centroid of the
cross section

A=R? ((1—u)7—|—%> (14)
X = 13373 (15)
3A
and the asymmetric area moments of ineftiaand Iy~ about the X and Y-axes are defined as
5 4
IX://Y2dA=R—((1—u)(1—4u+2u2)7+9) (16)
A 4 2
and .
N R 2 1
Iy ://AXQdA: ”T+R4 <§(1—u)v3+ 7 (1=n) (1—4u+2u2)v+sinl(v)> . (17)

R is the shaft radiusy is the non-dimensional crack depth, ane- /21 — p? for conveniencea is the crack angle
(as shown in Figure 1) and is defined as

a=2cos 1 (1—p). (18)
Finally, the equations of the simply supported cracked bewtion can be written as
MX + KX =0 (19)

where overdots indicate differentiation with respect todi M and K are the global mass and stiffness matrices,
respectivelyK contains the stiffness reductidf.....; at the crack location.
The frequencies can be found by solving generalized eidgesaf

det (—w2M + K) = 0. (20)



E (GPCL) L wi:racked é:racked §7’acked Zirack:ed wgrack‘ed wgracked

190 0 1217.8 12178 4871.1 4871.1 10960 10960
0.5 1173.6  1182.2 4868.5 4869.0 10596 10663

1 974.6 1166 4856 4868.1  9385.6 10537
195 0 1233.7 1233.7 4934.8 4934.8 11103 11103
0.5 1189 1197.7  4932.2  4932.7 10734 10803

1 987.4 1181.2  4919.4  4931.7 9508.3 10675
200 0 1249.4 12494  4997.7  4997.7 11245 11245
0.5 1204.1 12129 4995 4995.5 10871 10940

1 1000 1196.3  4982.1 49945 9629.4 10811
205 0 1264.9 12649 5059.7 5059.7 11384 11384
0.5 1219.1 1228 5057.1  5057.6 11006 11076

1 1012.4  1211.2 5044 5056.6 9749.1 10945
210 0 1280.3 1280.3 5121.1 5121.1 11522 11522
0.5 1233.8 12429 51184 51189 11139 11211

1 1024.7  1225.8 5105.2 51179 9867.2 11078

Table 1: Variation ofug™*e*¢? (in rad.s—') with the variation of the Young’s modulu8 and non-dimensional crack
depthy (with p = 7800kg.m ™3 and Le,qc, = 0.4833m)

3 Numerical studies

3.1 Effects of crack

Generally, a crack induces changes in the structureshst#, and also induces frequency reductions of the stauctur
([1-12, 14, 17]). These well-known effects of cracks on tlaural frequencies are illustrated in Figures 2 that
show the change in pulsationg”*¢ (i = 1,...,6) for the simply supported beam with the variations of the-non
dimensional crack depth and the crack locatioi...,..... For the sake of clarity, it may be noted that the odd-order
modes and even-order modes of the cracked beam correspbedding modes in the vertical and horizontal planes.
The largest crack considered in this study correspondsetadise of half the area of the cross-section is missing due
to the transverse crack (i.e. = 1). It clearly appears that both crack location and depth hiaffeences on the
pulsations of the supported cracked beam. Then, the highasiges occur in the vertical modeg'ecked, (§racked
andwgreked) due to the orientation of the crack and the beam self-weiBlsically, the pulsations are unchanged
when the crack is situated at one node of the associated medat(the middle of the beam for second vertical and
horizontal modes, and at one-third and two-third of the béamthird vertical and horizontal modes). Moreover,
the change in pulsations increases when the non-dimehsicazk depth increases. Then, Tables 1 and 2 indicate
the variation ofwsreeked (; = 1,...,6) for the simply supported beam with the variation of the Yg'srmodulusE
and the density. It appears that the material properties (i.e. Young's nagl&’ and the density) clearly affect
the natural frequencies of the cracked beam. These resalis gerfect coherence with the analytical solution of a
simply supported beam given in Appendix A. The third and flomatural pulsations§”***¢¢ andw *** are almost
unaffected. This is due to the fact that the crack is locatéldeascenter of the beam, near the node of those two modes
of vibration.

Therefore, an accurate knowledge and estimation of therirabpeoperties is needed.
This work was investigated by Li et al. [14]. They proposeddentify the crack size and position based on the
calculated first three natural cracked frequencies. Duédéofdct that the changes in the natural frequencies of a
cracked beam are affected by the crack location and the siaeka particular frequency can correspond to different
crack locations and crack sizes. The intersection of treetbontour lines of the first three natural cracked frequesnci
indicates the possible crack position and crack size. & dhbe, the evaluation of the cracked natural frequencies
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Figure 2: Change in pulsationsf""“c’“ed (@ = 1,...,6) for the simply supported beam with the variation of the

non-dimensional crack depghand the crack locatiot .4k



P (kg'm—?)) L wi:racked wgracked wgrdcked wirack‘ed wgrack‘ed wgracked

7600 0 1265.7  1265.7 5063 5063 11392 11392
0.5 1219.8 1228.8 5060.3 5060.8 11013 11083

1 1013 12119 5047.2 5059.8 9755.3 10952

7700 0 12575 1257.5 5030 5030 11318 11318
0.5 12119 1220.8 5027.3 5027.9 10941 11011

1 1006.4 1204.0 50144 5026.9 9691.8 10881

7800 0 1249.4  1249.4  4997.7  4997.7 11245 11245
0.5 1204.1 12129 4995 4995.5 10871 10940

1 1000 1196.3 4982.1 49945 96294 10811
7900 0 1241.5 12415  4965.9 4965.9 11173 11173
0.5 1196.5 1205.2 4963.3 4963.8 10802 10871

1 993.6 1188.7 4950.5 4962.8 9568.3 10742
8000 0 1233.7 1233.7 4934.8 4934.8 11103 11103
0.5 1189 1197.7  4932.2  4932.7 10734 10803

1 987.4 1181.2 4919.4  4931.7 9508.3 10675

Table 2: Variation otu¢me*¢d (in rad.s~!) with the variation of the density and nordimensional crack depth
(with E = 200G Pa and Ly qe, = 0.4833m)

need to be carefully undertaken and require the knowledgjgeainaterial properties (the Young’s modulisand the
densityp). So, Li et al. decided to determine a corrected value of §¥simodulus due to the fact that quoted values
of Young’s modulus are not sufficiently accurate for a careetection of crack size and location. This correction
of the Young’s modulus was overcome by an iterative approatich uses the uncracked natural frequencies of the
beams. It may be noted that a bad estimation of the correaadgls modulus may induced a worse identification of
the crack size and position. This last observation may axptee fact when the three curves do not meet exactly, the
centroid of the three pairs of intersections is taken as thekgposition and crack size ( [14, 27]).

Some investigators ([12, 13, 28]) have given a method sirnuoléghe above, but they consider the normalized natural
frequencies that are defined as the ratio of cracked beamah&tguency to the uncracked beam natural frequency.
This process has the advantage to avoid the determinatiam af-curate Young’s modulus. However, the natural
frequencies of the uncracked beam are needed. Anotheradgpiivapproach may be to compare the pulsations of the
cracked and uncracked systems by defining the percentaggehanatural frequenci€gC; [26]

wuncrack:ed _ wgracked
L [ )
%Ci = 100 x ~— (21)
)

wherewyneracked gnderacked define the?-pulsation of the uncracked and cracked beam. In these,¢hsasaterial
properties (i.e. the Young’s moduldsand the density) do not affect these normalized frequencies or the pergenta
change in natural frequenci€sC;. Tables 3 illustrates the evolution &C; (i = 1,...,6) with the variation of the
crack positionZ....r and the non-dimensional crack depih In order to identify the crack depth and location,
the frequency contour method [28] that has been previoughfaged can be achieved by using the lower order
normalized frequencies. One of the most important advastagthat the material properties have not to be corrected.
However, the uncracked frequencies of the beam need to berkn&o, in order to avoid the knowledge of the
uncracked frequencies of the beam and the determinatiom @iceurate corrected value of Young's modulus, an
alternative approach will be presented. It may be notedttietorrect estimation of the Young modulus and linear
mass density does not represent a very strong difficulty. é¥ew it may be observed that avoiding the determination
of these two physical parameters for the identification ef ¢thack size and location may be interesting in order to
obtain a robust damage identification and to save experahgmte.



4 Lerack (m) %Cy %Cs  %Cs;  %Ci  %Cs  %Cs

0.2 0.15 -0.184 -0.18 -0.58 -0.57 -0.84 -0.83
0.3167 -0.62 -0.61 -0.72 -0.71 -0.03 -0.03
0.483 -0.88 -0.86 -0.01 -0.01 -0.84 -0.83
0.4 0.15 -0.53 -047 -166 -1.49 -236 -2.12
0.3167 -1.78 -160 -2.02 -1.82 -0.08 -0.07
0.483 -250 -2.24 -0.04 -0.03 -233 -2.10
0.6 0.15 -1.13 -0.76 -345 -235 -4.67 -3.27
0.3167 -3.69 -251 -402 -281 -0.16 -0.11
0.483 -5.10 -350 -0.07 -0.05 -457 -321
0.8 0.15 -235 -091 -6.89 -279 -854 -3.85
0.3167 -7.37 -299 -742 -331 -0.31 -0.13
0.483 -9.92 -415 -0.15 -0.06 -825 -3.77
1 0.15 -5.48 -0.93 -14.41 -2.87 -14.87 -3.94
0.3167 -1558 -3.07 -1341 -339 -06 -0.13
0.483 -19.97 -425 -0.31 -0.06 -14.37 -3.86

Table 3: Variation of4C; with the variation of the crack positioh,.,.... and non-dimensional crack depth

3.2 Robust identification technique only based on the pulsain ratios of the cracked beam

The proposed process is based on the fact that the pulsatésosiated with the vertical (first, third and fifth pulsa-
tions) and horizontal (second, fourth, and sixth pulsajonodes are equal in the case of an uncracked beam, but are
different for the cracked beam due to the presence of th&kgexcillustrated in Figures 2). Due to the beam self-
height, the most important changes in the pulsations occtiva vertical mode if the orientation of the crack front is
to the principal axes, as shown in Figure 1. So, the diffezdmetween the pulsations of the vertical and horizontal
modes is only due to the size and location of the crack.

Moreover, the expression of the stiffness malkiy...;. due to the transversal crack (Equation 11) indicates tteat th
material properties (i.e. the Young modulBsand the density) do not influence the changes in the pulsation ratios
of the vertical and horizontal modes.

Therefore, in order to detect the crack size and locatioaratio chang& A e*<d in the pulsations with the vertical
and horizontal modes of the cracked beam is defined as fallows

é:z‘aclked o wgracked
%Algrack:ed — 100 x i— 7 ) (22)
wcrack'ed
21—1

This percentage change is totally independent of the nahferdoperties and needs only the knowledge of the pulsa-
tions of the cracked beam.

Figures 3 illustrate the fourth lower terms of the perceatagfio change§tA¢meeked (for i = 1,...,4). It may be
observed that these changes are significant and indicaiefliirences of both the non-dimensional crack depénd

the crack locatior....... Even if the Young’s modulus is uncertain, each surface gfifés 3 is unchanged due to the
fact that theZo A¢mecked can be represented by a function that is dependent on thelineemsional crack depth, the
crack location and the two corresponding moflés- 1 and2: . These process is very interesting due to the fact that
only the cracked pulsations are considered for the detetioim of % As"e<ked, The pulsations of the simply supported
uncracked beam are not used. Thereby, the identificatioraoksize and location for a circular section beam can be
undertaken by extending the frequency contour lines megiiogosed by Swamidas et al. ([12, 28]). However, the
process proposed in this study does not require the knowletithe natural frequencies of the uncracked beam. This
approach is based on the fact that a contour line which hasattne ratio chang%Afr‘w’“@d resulting in a combina-
tion of different crack location and crack depths can betptbtis a curve with crack location and crack depth as its
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Case L rack %Acracked %Acrack'ed %Acrack'ed
1 crac 1 2 3

case(a) 0.1 0.283 -3e-4 -5e-4 -le-4

case (b) 0.8 0.783 -2.77 -5.69 -3.47
case(c) 0.5 0.517 -0.73 -0.01 -0.64
case(d) 0.4 0.183 -0.01 -le-3 -9e-3
case (e) 0.65 0.817 -0.78 -2.02 -1.91
case (f) 0.4 0.183 -0.08 -0.22 -0.23

Table 4: Values ofs A¢racked for each case with the simply supported beam

axes. Then, the intersection of the contour lifleas e+ for the three lower modes (far= 1,..., 3) indicates the
position and size of the crack. It may be noted that a miniméithree contour line§s A¢eck<d is required in order

to identify the crack location and size. Effectively, if thiack is situated at the node of tfé vertical and horizontal
modeswsresked andwsreked remain almost unchanged (see for example [12], [28] and [Hgreby, the associated
ratio changeA¢eced js equal to zero and the identification is not possible. S@sueng the first six cracked natural
pulsations is sufficient to determine the crack locatiord #re crack depth for a circular cross section beam. For
illustrative purposes, Figures 4 show the intersectiorhefthree contour lines GA¢ *~ed (with i = 1, ..., 3) for

six particular crack cases. Table 4 indicates the valuésafe*<¢ of the pulsation ratio changes contour lines. For
each case, it clearly appears that the three contour livestgio intersections that correspond to one crack size but
two possible crack locations. Effectively, due to the gl symmetry of the beam, the identification of the crack
location is not unique. In order to avoid the non-uniquergsthe damage location problem, the identification of
crack location is performed by adding an off-center places$rito the simply supported beamiat,ss = 0.167m
from the left end, as illustrated in Figure 5. This addedagffiter mass changes the value§wt s e<*¢?, Moreover,

the previous symmetry of %¢7<~<d (for the simply supported beam) with the crack location dustsexist, as shown

in Figures 6. Therefore, the identification of the crack simd location can be undertaken by considering the simply
supported beam with the off-center mass. As previously dareasuring the first six cracked natural pulsations of the
cracked beam with the off-center mass is sufficient to deterthe crack location and the crack depth. Results are
given in Figures 7 for the six previous crack cases. Tableslgates the values 6§ Aseked of the pulsation ratio
changes contour lines for the simply supported beam wittattted mass at,,,,ss = 0.167m. It may be observed
that the intersection of the three contour lifga ¢ e*<d js unique for the six cases. So, adding an off-center mass
enables us to identify the crack size and location. Howéwvappears that the effect of the off-center mass is not suf-
ficient in all cases. Effectively, it is not very clear anddmt that the three contour lines have only one intersection
for each case. There may exist a little zone defined by the ihtersections for two contour lines and the associated
centroid of the three pairs of intersections may be takeh@stack position and crack size (see for examples Figure
7(a) aty = 0.12 and L4 = 0.55m, Figure 7(b) atu = 0.69 and L. = 0.19m, and Figure 7(c) at: = 0.5

and L..... = 0.3m). This may induced misunderstanding in the case of expatmherack identification where the
values of%A¢recked can be altered. In order to avoid this problem, we proposedtize two tests for the crack
size and location identification by adding an off-center sretseach end of the simply supported beam for each case
(Linass = 0.167m for the first case, and,,,,.ss = 0.833m for the second case).

Figures 8 illustrate this process. Table 6 indicates theegbf% A e of the pulsation ratio changes contour lines
for the simply supported beam with the added mads,ats = 0.833m.

As indicated in Figure 7(a), the added mass on the left ofithplg supported beam indicates only one intersection of
the three contour lines (far = 0.1 and L.« = 0.283). However, a centroid located at= 0.12 and L.qcx = 0.55

may induced worse diagnostic. Now, the added mass on theaighe simply supported beam indicates only one
intersection of the three contour lines and a centroid is lomated atu = 0.1 and L., = 0.78 (see Figure 8(a)).
Thereby, no confusion may be done: we have two centroidsafch ease but they are not at the same crack size and
location and an unique intersection of the three contowslis obtained gt = 0.1 and L4 = 0.283.

Moreover, this process appears to be very effective andstobwr example, Figure 7(b) may induced worse diagnos-



Case %A(lzracked %Agrdcked %Agracked

@) -de-4 -de-4 -5e-6
(b) -2.42 -4.80 -4.12
(c) -0.69 -0.07 -0.47
(d) -0.01 -3e-3 -5e-3
(e) -0.67 -1.62 -2.02
() -0.12 -0.36 -0.20

Table 5: Values ofs A¢racked for each case with the simply supported beam and the leftchuidess

Case %A(lzracked %Agrdcked %A§Tacked
(a) -3e-4 -4e-4 -2e-4
(b) -3.72 -6.77 -1.89
(© -0.70 -0.01 -0.59
(d) -0.01 -8e-5 -0.01
(e) -1.17 -3.13 -1.62
) -0.07 -0.18 -0.24

Table 6: Values ofs Asecked for each case with the simply supported beam and the riglechdthss

tic due to the fact that two intersections (in fact one perfetersection and one centroid) are detectedu(at 0.8

and Le,qcr, = 0.783m andp = 0.69 and L...., = 0.19m). Therefore, not only the crack location but also the
crack size can be badly identified. Then, considering Fi@(bd, only one intersection is detectediat= 0.8 and
Lot = 0.783m, corresponding to the crack size and location.

Finally, it may be mentioned that the simply supported beaithfut added off-center mass) indicates a first estima-
tion of the crack size and location (in fact two intersectilue to the structural symmetry). So, the first detection done
by using the simply supported beam can be used to check thstrentification process. For this case, the crack
size is unique.

In conclusion, a robust identification of the crack size awhtion can be done by considering only the cracked pul-
sations with the associated factdrA¢e*ed and the three cases: the simply supported beam, the simpposed
beam with an added mass at the left end, and the simply s@opbbeam with an added mass at the right end. The
location where the three curves intersect for each casddsi@mand gives the crack size and location.

It may be remained that this damage detection is based orathdhat the system has double frequencies in the
undamaged configuration and that the pulsation changeg dithding modes due to the crack are more important in
the vertical planes than in the horizontal planes. Moredids damage index has been chosen due to the fact that the
difference between the pulsation changes in the verticghhamizontal planes only depends on the crack size.

3.3 Adaptated robust identification technique

Many studies have been devoted to detect crack in rectangnalss section beams or structures where the pulsations
are only measured in one direction. In these cases, thetraterstification of crack location and size using the
pulsation ratio contour lines method that has been prelyiqaresented can be extended.

We propose to consider the factor

uncracked cracked
%\Ijlgj"jacked — 100 x (wz Wi ) (23)

uncracked w]qrack‘ed



wherewneracked gndegracked correspond to thé” pulsations of the uncracked and cracked simply supportathbe
respectively.
It may be observed that the facl%f‘llcmc’“e‘i is a generalisation dhA¢mecked, Effectively, we have

wcracked wcrack:ed wcracked
(7Acracked 100 X 21—1 21 — 100 X 1 _ 21 (24)
weracked weracked
2i—1 2i—1
uncracked
wherei defines the** mode for the simply supported beam. In this cast—— — 1 (in comparison with
uhcracked

Equation23) due to the symmetry of the uncracked crossosefur the facto%Acmc’Wd
By considering the classical pulsation for a simply supgerincracked beam (see Appendix A), Equation 23 ca be

rewritten
ked o) ? W%Zacged
Cracke —
Gowsracked, , =100 x (5) e (25)

with ¢ andb are equal to 0 or 1, and € X* and8 € X*. The associated analytical expressioné%ﬂlfgf*ed,
QoWericked, Gperacked gpyeracked gpgeracked and %weracked are given in Appendix A. Considering Equation 25,

it is clear that the factor%\llgglf’;fgﬁfb need only the knowledge of the pulsations of the simply suppocracked
beam and do not change with the variations of the materigleptis like the Young modulus and the density.
Figures 9 show the variations of these expressions with dimedimensional crack depth and the crack location. First
of all, if %\Ifgj“jac’“ed is higher than 0, it may be concluded that the the modé"gpulsation is more affected by the
crack than the mode gf" pulsation. From the results obtained in Figures 9(a), ibssoved, for example, that when
the crack location is betweéf 0.3] or [0.7 1] (for the non-dimensional crack depth= 1), the first pulsation (asso-
ciated with the first vertical mode) is comparatively mucsslaffected than the third pulsation (associated with the
second vertical mode). For a crack situated between [0.3 D& scenario is reversed. From the analysis of Figure
9(d), the fifth pulsation (associated to the third verticald®) is more affected than the the third pulsation (assediat
to the second vertical mode) if the crack location is sitddtetweer|0 0.15] , [0.4 0.6] and[0.85 1] (for u = 1).
Moreover, if%\Ilgj"j“Cked is lower than 0, the more affected mode corresponds tg‘thpulsation. For example, Figure
9(f) illustrates the fact that the fifth pulsation (assosibtvith the third vertical mode) is more affected that theesih
pulsation (associated with the fourth vertical mode) forack located approximately #t.12 0.3], [0.45 0.6], and
[0.72 0.9] (for p = 1).

Secondly, it is noted that the minimum %\Ilffj‘w’w‘i results from the fact that the mode gf' pulsation is almost
unaffected for a crack whereas the mode'bfpulsation is greatly affected. For example, Figures 9(ajstthat the
second vertical mode that is associated with the third fiolsas unaffected for a crack located at the center of the
simply supported beam that corresponds to the nodal poititeofecond mode shape. From the results of Figures
9(c) and (f), it can be seen that the fourth vertical mode tibatesponds to the seventh pulsation is unaffected for a
crack at the center of the beam.

With reference to Figure 9, it can be seen that the fa%d«fj"jac’“d and the local associated minima and maxima
indicate the trends of changes of the bending moment andfétst @n both the mode of” pulsation and the mode

of i*" pulsation. It reflects one of the well-known effects of crmok the modal properties of cracked beams (see for
example [2]).

All the factors%\IfC’;aC’“ed decrease or increase rapidly with increasing of the noredsional crack crack depti
Therefore, the detection of lower crack detph appears tabiyedone.

Considering Figures 9, it can be concluded that both thekdomation and the non-dimensional crack depth have influ-
ence on the more affected pulsation of the cracked beampéizap therefore that the change in the fa%@rcmc’“d is

not only a function of crack depth, and crack location, babalf the pulsation number and the associated mode shape.
Then, the damage detection technique that depends on tiseired@hanges in the three fact%@c’:“ked, ‘V\I/Cf“CkEd

and %\If%ffc’“ed (corresponding to the first, second and third vertical manfethe simply supported beam) is used.
Figures 10 show the contour lines of these factors for theabes that have been previously examined. Table 7 gives
the associated values @5 <+, % weiched and % werieked for each case. Even if the crack location coincides



Case %‘I’ngkEd %\I,gﬁzcked %‘I’?ﬁwke’d

@) 0.44 -1.15 2.24
(b) 19.66 17.30 -50.56
©) -14.83 -2.82 -56.94
(d) -3.11 -1.56 -9.00
() 12.74 29.78 12.08
) 5.35 13.96 7.84

Table 7: Values o%\Iffj“jaC"fed for each case with the simply supported beam

with a vibration node, the contour line of the associatetbfadto not tend to disappear, and an intersection is obtained
However, the non-uniqueness of the intersection may alivedigced worse detection of the crack location due to the
symmetry of the simply supported beam.

To avoid the the non-uniqueness of the crack identificatiomtechnique using the off-center added mass is applied.
The variations of the three factopwg{<*ed, %W iched and % we'<+< (defined in Equation 25) with a mass that is
placed atl.,,,ss = 0.187m from the left end of the beam, are shown on Figures 11(a),n@dXe). It is observed that
the factors are not equal to O if the beam is uncracked. Thislisdue to the fact that the location of the added mass

uncracked

influences the pulsations of the simply supported beam.€fbw, the previous ratie-——— between theé'" and

uncrack:ed
J

5" modes of the uncracked beam is not equai_—ztmny more. Strictly speaking, this last comment is not a bl
J
for the crack identification technique using the fact‘éif@fj}“c’m. For the readers’ understanding, these factors may

be corrected in order to be equal to O for the uncracked beaaohsidering the following correctioft w57 < of
the facto%ngjjacked

wyncracked (Lmass) wqracked) (26)

corrected i 7
(7\11 = 100 x <w;mcrack:ed (Lmass) B w]qracked

wherewyneracked (1, ) defines the'" uncracked pulsation that is a function of the added massidocaFigures
11(b), (c) and (f) show the corrected factér s’y rected SoWET rected and% W rected respectively. Itis clear that the

curves of corrected fact@i‘)\llff’j”ect‘“"d are only a translatory movement of the curve§7<ﬂlffj“jac’“d. It is significant to

uncracked ( mass)

note that the ratio

S rached @ ) is independent of the Young modulus and the density and ceasily obtained
W mass

numerically without experimental tests.

From the curves given in Figures 11, it is seen that the variatof % w5 < and%w¢5 << are similar.

Finally, the identification technique of adding an off-caminass at the Ieft side |n|t|aIIy, and then at the right sigle,
used in order to uniquely detect the crack size and locakayures 12 and 13 show the ratio pulsation contour lines of
the factorsyowgcked, %werpeked and % we'ieked with left and right added masses for the six previous casaisle$

8 and 9 indicate the corresponding value§7(017§j“jac’“ed for the three pulsation ratio contour lines. For each cdse, i
appears that only one intersection of the three contous limebtained and no confusion may be done. Thereby, it is
clear that a robust detection of both the crack size and dmaakion can be done by considering the three tests: the
simply supported beam (see Figures 10), the simply supppbeam with a left added mass (see Figures 12), and the
simply supported beam with a right added mass (see Figudes 10

It is seen, from the results given in Tables 8 and 9 that thmﬁa%\llffj’"’"“t@d are only a translation of the factors
%\Iffj“jac’“ed. Moreover, it appears that the variations%ﬁfffjac’“ed are important and can be utilized to detect crack of
small size.



Case %‘I’gfdwd %\I,gﬁzcked %\I,%’izcked %\IJEO{rected %\IJ?)O{rected %\I,%){rected

@) 39.53 72.80 176.79 0.13 -1.85 -0.02
(b) 53.75 103.51 149.69 14.35 28.86 -27.12
©) 27.94 66.50 142.79 -11.46 -8.15 -34.02
(d) 37.23 71.32 172.34 -2.17 -3.33 -4.47

©) 48.10 105.42 189.67 8.70 30.77 12.86
(f) 47.61 82.23 163.77 8.21 7.58 -13.03

Table 8: Values o%\Iffj“jaC"fed and%@ﬁff’"emd for each case with the simply supported beam and the leftchodess

Case %\Ijgt“izckzed %\Ijgt“izckzed %\If?:iwked %‘Ijgoiﬂrected %‘Ijgoiﬂrected %\Ij%oi“rected
@) 39.77 74.28 174.44 0.37 -0.37 2.37
(b) 59.03 53.99 127.93 19.63 -20.66 -48.88
©) 26.69 71.00 130.89 12,71 -3.65 -45.92
(d) 36.38 74.31 164.90 -3.02 -0.34 -11.90
(e 58.04 88.64 143.67 18.64 13.99 -33.14
® 43.00 88.54 184.18 3.60 13.89 7.37

Table 9: Values o%\Iffj“jaC’fed and%\Iff,Oj’“’““md for each case with the simply supported beam and the rigtgchddhss

4 Conclusion

In this paper we have proposed a new criterion for damagetigteand assessment. This criterion considers the ratio
pulsation changes of the cracked beam. One of the advantéages criterion presented here is that the sensitivity of
each criterion parameté&6 Asm*<¢ and % w§"**<¢ do not require an accurate knowledge of the material priggert
(i.e. the Young modulus and the denS|ty) Moreover, the giidas of the uncracked beam are not used for the
identification technique. The damage detection approach applied to the problem of identifying a crack in a
circular cross section beam. To do that, an cracked beamImadeformulated based on finite element formulation,
and the local stiffness reduction into a crack section.

The predictor of crack size and location is based on thesatdion of pulsation ratios contour lines. If the beam has
structural symmetry, the identification of crack locatiermperformed by adding an off-center mass in order to avoid
worse diagnostic. Based on the results of the analysis amercal simulations performed, it is concluded that the
proposed approach is able to determine the size and locatithre crack for beams. The identification method can
adapt to a variety of beams without requiring a reformulatitt is believed that this identification technique can be
easily applied for experimental detection of crack size aB as crack location.



Appendix A. Analytical solution of a simply supported uncracked beam and expres-
sion of % w¢racked

The classicah! pulsation for a simply supported continuous EtBarnouilli uncracked beam is defined as

ra | ET
wxnc cked _ n27r2 pSL4 (27)

wheren are the modes numbers & 1,2,...). L is the length of the beant’ andp defines the Young modulus and
density, and so correspond to the material properfiesdS are the moment of inertia and area of the beam section.
For a circular cross section beam, we have

2 2R E
uncracked n-m
_ . 2
“n 212\ p (28)

The expressions @l Wgfeked, Gpueracked g peracked o geracked o yeracked gnd % weracked are given by

Gpwsracked — 100 x (4 <5 (29)
0%31 - wcracked
ked cracked

cracke

BwE R — 100 x <9 kd) (30)

Gwerered =100 x <16 CTaCked) (31)
cracked

% \chrack:ed 100 x <9 cracked ) (32)
4 cracked

%Wegehed =100 x (4 kd) (33)
cracked

cracked

1 cracked
Vwcracked 100 x [ — — w7 _ (34)
9 wg
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