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Damage Assessment Based on the Frequencies’ Ratio SurfacesIntersection
Method for the Identification of the Crack Depth, Location and Orientation

Jean-Jacques Sinou1

Abstract: This paper aims to establish a damage iden-
tification methodology, called the Frequencies’ Ratio
Surfaces Intersection method (FRSI-method), for pre-
dicting not only the location and depth of the crack but
also the crack orientation in a circular cross section beam.
Two new criterions %∆cracked

i and %Ψcracked
i, j that con-

sider only the ratio of the natural frequencies of the
cracked beam are introduced and discussed in order to
detect the crack parameters. In order to avoid worse di-
agnostic, it is demonstrated that a robust identification
of crack location is possible by investigating the emer-
gence of extra antiresonance peaks on Frequency Re-
sponse Functions.
The size, location and orientation of the crack are identi-
fied by finding the intersection of the surfaces that cor-
respond to the natural frequencies’ ratios of the lower
vertical and horizontal modes. One of the advantages
of the proposed approach is that, unlike other vibration-
based damage identification procedures, it does not use a
priori accurate knowledge of the angular frequencies of
the uncracked structure and its material properties. Only
the Frequency Responses Functions and natural frequen-
cies of the cracked structure are needed to identify the
crack parameters (i.e. the non-dimensional crack depth,
the crack location and the crack orientation).
It is demonstrated that damage identification methodol-
ogy, called the Frequencies’ Ratio Surfaces Intersection
method (FRSI-method), can be used for the detection of
the crack size, location and orientation with satisfactory
precision, even if noise level has been added to the simu-
lations.

keyword: damage detection, vibration, frequencies
and antiresonances, identification of the crack size, lo-
cation and orientation, uncertainties.
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1 Introduction

For many years, vibration of cracked structures and dam-
age identification methods have been studied by a num-
ber of researchers. Dimarogonas (Dimarogonas 1996),
Doebling et al. (Doebling et al. 1998) and Wauer
(Wauer 1990) gave a review of the research on vibration
of cracked structures and damage detection and location
using vibration data.

A variety of methods has been developed to iden-
tify the crack size and location. These approaches
are mainly based on the change in modal prop-
erties of cracked structures (Adams et al. 1978;
Morassi 1993; Hearn and Testa 1991; Liang 1992;
Cerri and Vestroni 2000; Khiema and Lien 2004), the
damage-induced shifts in the first natural frequencies
and the corresponding amplitudes (Owolabi et al. 2003),
the mode shapes variation due to the presence
of the crack, and force response measurements
(Dharmaraju et al. 2002; Dharmaraju et al. 2004).
For example, some researchers proposed to con-
sider the point of intersection of contour lines
that correspond to the frequency changes in
terms of the non-dimensional crack depth and
location (Nahvi and Jabbari 2005; Li et al. 2005;
Owolabi et al. 2003; Swamidas et al. 2004). In these
studies, the identification of the crack size and location
is possible under the situation that measured natural
frequencies of crack beams are set as input.
Recently, Dilena and Morassi (Dilena and Morassi 2002)
and Gladwell and Morassi (Gladwell and Morassi 1999)
proposed a damage identification based on the changes
in the nodes of mode shapes. Then they demon-
strated that an appropriate use of resonances and
antiresonances may be used in order to avoid the
non-uniqueness of the damage location for symmetrical
beams (Dilena and Morassi 2004). Bamnious et al
(Douka et al. 2004; Bamnios et al. 2002) proposed a
simplified method for detecting crack size and loca-
tion. They used the shift in the antiresonances of the
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cantilever cracked beam. Moreover, they indicated that
the driving-point mechanical impedance changes not
only due to the crack size and location but also the
force location. It may be noted that the importance
and significance of antiresonances in experimental
structural analysis was previously investigated by Wahl
et al.(Wahl et al. 1996). Even if Dharmaraju and Sinha
(Dharmaraju and Sinha 2005) demonstrated that the
identification of the crack location due to the change in
antiresonance could be difficult, they concluded that a
more robust identification based on the previous method-
ology has to be developed for practical applications.
The purpose of the present work is to establish a new
methodology for predicting not only the location and
depth of a crack in a circular cross section beam, but
also the crack orientation. Moreover, the objective of
this research is to demonstrate that the knowledge of
the natural frequencies of the cracked beam is sufficient
in order to identify all the crack parameters (i.e. the
non-dimensional crack depth, the crack location and the
crack orientation). So, two new criterions (%∆cracked

i and
%Ψcracked

i, j ) will be introduced and discussed in order to
undertake the damage identification without needing an
accurate knowledge of the material propoerties (i.e. the
Young’s modulus and the density), and the values of the
natural frequencies of the uncracked structure. Then, an
extension of the frequency contour lines method, called
Frequencies’ Ratio Surfaces method (FRS-method) will
be developed in order to obtain a robust detection of
crack size, location and orientation in beams. Finally, in
order to avoid the non-uniqueness of the damage location
problem due to the structural symmetry of structures, the
emergence of antiresonances on the Frequency Response
Functions is used.
The paper is set up as follows: first the model of the crack
beam is given and the effects of the crack parameters
(the non-dimensional crack depth, the crack orientation
and the crack location) are briefly investigated in order
to explain the possible coupling of the two lateral
bending vibrations due to the presence of a transverse
crack. Secondly, the damage identification technique
based on the Frequencies’ Ratio Surfaces Intersection
method (FRSI-method) and the criterion %∆cracked

i that
allows the identification of the crack size, orientation
and location is presented. Finally, an extension of the
previous criterion (the generalized criterion %Ψcracked

i, j )
is introduced in order to allow the detection of the
crack parameters for complex structures. The efficiency

and robustness of the proposed identification technique
is demonstrated through numerical simulations corre-
sponding to different non-dimensional crack depths,
crack orientations and crack locations without noise and
when uniform random noise is added to the numerical
simulations.

2 The model of the simply supported cracked beam
and the effects of cracks

In this section, details of the crack model and the com-
plete modeling of the system are firstly presented. Sec-
ondly, the effects of a transverse crack on the two lat-
eral bending vibrations and shift in the resonances of the
cracked beam are briefly discussed.

2.1 Crack model

A circular cross section beam that is simply supported at
each end is studied. The physical parameters of the beam
are given in Table 1.
The beam element has been discretized into 30 Euler-
Bernouilli beam finite elements with four degrees
of freedoms at each node (Nelson and Nataraj 1986;
Lalanne and Ferraris 1990), as illustrated in Figure 1.
The presence of a transverse surface crack on
the circular beam introduces a local flexibility due
to strain energy concentration in the vicinity of
the crack tip under load. Mayes and Davies
(Davies and Mayes 1984; Mayes and Davies 1984) pro-
posed to theoretically model a transverse crack by reduc-
ing the second moment of area of the element at the lo-
cation of the crack by∆I

∆I = I0

(

1+

(

R
l

(

1−ν2)F (µ)

)−1
)

(1)

where I0, R , l , andν are the second moment of area,
the shaft radius, the length of the section and the Pois-
son’s ratio, respectively.µ is the non-dimensional crack
depth and is given byµ = h

R whereh defines the crack
depth of the shaft, as illustrated in Figure 1.F (µ)
is the non-linear compliance functions that can be ob-
tained from a series of experiments with chordal cracks
(Davies and Mayes 1984; Mayes and Davies 1984). For
convenience, let the principalη-axis be aligned with
the crack front. The moments of inertia about the
parallel centroidal axes,Iη and Iξ, are given by
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(Sinou and Lees 2005)

Iη =
R4

4

(

(1−µ)
(

1−4µ+2µ2)γ+
α
2

)

(2)

Iξ = R4
(

π
4
+(1−µ)γ

(

2γ2

3
+

1−4µ+2µ2

4

)

+sin−1(γ)−
4
9

(

(1−µ)γ+
α
2

)−1
γ6
)

(3)

where R is the shaft radius,µ is the crack depth, and
γ =

√

2µ−µ2 for convenience. α is the crack an-
gle (as shown in Figure 1). It may be observed that
the change ofI0 on the axisξ is relatively small in
comparison to the change on the axisη (Gasch 1993;
Sinou and Lees 2005).
Then, the stiffness matrix due to the transversal crack
Kη,ξ

crack can be obtained at the crack location inη and
ξ coordinate axis, by using standard finite elements
(Nelson and Nataraj 1986; Lalanne and Ferraris 1990).
The matriceKη,ξ

crack for a two node Timoshenko beam el-
ement of lengthl and Young’s modulusE corresponding
to the dof vector[u1 v1 θ1 ψ1 u2 v2 θ2 ψ2] ,
as shown in Figure 1, can be written as below

Kη,ξ
crack=

E
l3











12Iη 0 0 6lIη −12Iη 0 0 6lIη
12Iξ −6lIξ 0 0 −12Iξ −6lIξ 0

4l2Iξ 0 0 6lIξ 2l2Iξ 0
4l2Iη −6lIη 0 0 2l2Iη

12Iη 0 0 −6lIη
12Iξ 6lIξ 0

Sym. 4l2Iξ 0
4l2Iη











(4)

Consequently, the stiffness matrix inX andY coordinate
axis is given by

K crack=

diag
(

PT PT PT PT)
×Kη,ξ

crack×diag(P P P P) (5)

whereP is given by

P=

[

cosχ sinχ
−sinχ cosχ

]

(6)

χ defines the angle between the orientation of the crack
front and the verticalX-axis, as shown in Figure 1.

2.2 System equation of motion

The equation of motion for the simply supported cracked
beam can be written as

MẌ+CẊ+ K̃X = F(t) (7)

whereX is the vector of nodal degrees of freedom of the
system.t defines the time instant.M is the mass matrix,
K̃ is the global stiffness matrix,F(t) is the external force
vector, and dot represents the derivative with respect to
the time.C defines the proportional damping matrix and
can be expressed asC = αM + βK (with α andβ real
constants).K̃ contains the stiffness reductionK crack at
the crack location .
Let the force vector be defined asF(t) = F0eiωt where
ω is the forcing frequency, andF0 defines the force am-
plitude vector. Therefore, the response vector may be
assumed asX(t) = X0eiωt and Equation 7 is given by

(

−ω2M + iωC+ K̃
)

X0 = F0 (8)

Due to the fact that̃K contains the contribution of the
crackK crack at the cracked element degrees-of-freedom
and the assembled stiffness matrix of the uncracked
beam, the previous equation may be rewritten as

(

−ω2M + iωC+K
)

[

X0
c

X0
uc

]

= F0−Fc

=

[

F0
c

F0
uc

]

−

[

Fc
c

0

]

(9)

where K defines the stiffness matrix of the uncracked
system. The subscriptsc and uc represent the cracked
and uncracked elements, respectively.F0 contains the
external force vector, andFc represents the force vector
only due to the contribution of the crack. It may be ob-
served that the vectorFc contains non-zero terms only at
the crack nodal degrees of freedom andFc

c is given by

Fc
c = K crackX0

c (10)

2.3 Effects of crack on the lateral bending vibrations

The objective of this section is to explain the possible
coupling of the two lateral vibrations due to the presence
of cracks. The role of cracks on the two lateral vibrations
of the cracked beam will be used in the following parts
of the paper in order to avoid the non-uniqueness of the
crack location.
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(a) Geometry of the cracked-beam section

(b) Description of the Dof in theξ-η axis
Figure 1 : Finite-element model

Table 1 : Physical parameters of the beam
Notation Description Value

R radius of the rotor shaft 0.05m
L length of the rotor shaft 1m
E Young’s modulus of elasticity 2.1 1011N.m−2

ρ density 7800kg.m−3

ν Poisson ratio 0.3
β coefficient of damping 2 10−6

α coefficient of damping 0.32
f1, f2 first and second frequencies of the uncracked rotor 198.85Hz
f3, f4 third and fourth frequencies of the uncracked rotor 795.4Hz
f5, f6 fifth and sixth frequencies of the uncracked rotor 1789.66Hz

Assuming modal viscous damping and using the normal

mode substitutionX = Φ̃ΦΦq =
n
∑

r=1
qrΦ̃ΦΦr , the equation set 7

is diagonalized as follows:

∀r
(

ω̃2
r −ω2+2iζrω̃rω

)

qr = fr (11)
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where fr is the generalized modal force (i.e.fr =
Φ̃ΦΦT

r F
mr

with mr = Φ̃ΦΦT
r MΦ̃ΦΦr ). ω̃r is therth mode undamped natu-

ral frequency of the cracked beam (ω̃r =
√

k̃r
mr

with k̃r =

Φ̃ΦΦT
r K̃Φ̃ΦΦr). ζr is the rth mode damping ratio (ζr =

cr
2mr ωr

with cr = αmr +βkr due to the orthogonality property of

M and K̃ ; hereωr =
√

kr
mr

is the rth undamped natural

frequency of the uncracked beam;kr =ΦΦΦT
r KΦΦΦr whereK

defines the stiffness matrix of the uncracked system; and
ΦΦΦr is the eigenvectors of the uncracked beam).
Finally, the relationship between the ouput vectorX (ω)
and the input vectorF(ω) is given by

X (ω) = H (ω)F(ω)

=
n

∑
r=1

Φ̃ΦΦrΦ̃ΦΦ
T
r

mr

(

ω̃2
r −ω2+2iζrω̃rω

)F(ω) (12)

whereH (ω) defines the Frequency Response Function
matrix. H (ω) is the linear combination of each mode.
Thereby, the Frequency Response FunctionHkl (ω) (i.e.
the excitation force is only applied at thel th degree of
freedom and the response is located at thekth degree of
freedom) is given by

Hkl (ω) =
n

∑
r=1

Φ̃lr Φ̃kr

mr

(

ω̃2
r −ω2+2iζrω̃rω

) (13)

Considering Equation 11, it clearly appears that the crack
induces shifts in the natural frequencies of the beam due
to the stiffness change. Moreover, the amplitude of the
resonance peaks are affected by the crack size and crack
location due to the fact that̃ωr andΦ̃ΦΦr are functions of
the crack properties.

Equation 13 may be expressed by rearranging the equa-
tion of motion and extracting the force vector due to the
contribution of the crack (see Equations 9 and 10). We
obtain

X (ω) =
n

∑
r=1

Φ̃ΦΦrΦ̃ΦΦ
T
r

mr (ω2
r −ω2+2iζrωrω)

F0(ω)

−

n

∑
r=1

Φ̃ΦΦrΦ̃ΦΦ
T
r

mr (ω2
r −ω2+2iζrωrω)

Fc(X,ω) (14)

whereωr =
√

kr
mr

is therth undamped natural frequency

of the uncracked beam.

Considering Equation 14, the possible coupling of the
two lateral vibrations due to the crack can be clearly ex-
plained. The first term of Equation 14 corresponds to
the effect of the external forceF(t) = F0eiωt whereω is
the forcing frequency. The second term of Equation 14
indicates the role of the crack in order to induced vibra-
tions. First of all, if the external force is on the direc-
tion of the crack front (i.e. on the principalη-axis), no
coupling between the two lateral vibrations is observed.
Effectively, the first term of Equation 14 induces only
vibrations in the direction of the external force. Then,
the termFc(X,ω) introduces only excitation force in the
same direction (see Equations 4-6, 9 and 10). Thereby,
the crack does not induce excitation on the principalξ-
axis. So no vibration on theξ-axis exists, and there is no
coupling between the two lateral vibrations (on the prin-
cipal ξ-axis andη-axis).
Now, the case of an external force situated on the ver-
tical direction will be considered in order to explain the
coupling between the two lateral vibrations. If the crack
is fully or partially open and the crack front is different
from the verticalX-axis (i.e. the external force is not on
the same direction than the crack front),Fc(X,ω) intro-
duces an excitation force due to the crack on the horizon-
tal Y-axis. Consequently, the second term of Equation
14 indicates that new peaks appear on the horizontalY-
axis and verticalX-axis corresponding to the natural fre-
quencies of the horizontal modes. Moreover, resonances
peaks on theY-axis corresponding to the natural frequen-
cies of the vertical modes appear. This indicates the cou-
pling of two lateral vibrations that may be observed on
the horizontal and vertical axis.

2.4 Illustrations of the crack effects

In this section, numerical studies will be investigated
in order to illustrate the previous explanations and the
effects of the crack size, the crack location and the
crack orientation. We consider a sinusoidal excitation
at 0.167m from the left end of the simply supported
beam in the vertical direction. First of all, Figures 2
illustrate the vertical and horizontal displacements of
the uncracked and cracked beams as a function of the
crack front orientation. As explained in the previous
section, no coupling between the two lateral vibrations is
observed if the crack front orientation and the direction
of the external force are the same. Then if the crack is
fully or partially opened (and the orientation of the crack
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front is not equal to 0rad.), there are new resonances
on the two lateral axis (for the vertical and horizontal
displacements). They correspond to the natural frequen-
cies of the original vertical and horizontal modes. This
indicates the coupling of the two lateral horizontal and
vertical vibrations due to the presence of the crack.
Secondly, Figures 3 and 4 illustrate the vertical and
horizontal displacements of the cracked beams as a
function of the crack depth and the crack location,
respectively (with the orientation of the crack front
χ = 1

3π). If the crack location is close to the mode shape
nodes, the associated modes are not greatly affected and
the coupling for these modes is not clearly observed
on the vertical and horizontal directions. Considering
Figures 2, 3 and 4, the crack size, the crack location
and the crack orientation influence the shift of the
resonances and antiresonances. Moreover, this could be
easily observed that the decrease in the resonances is
greatest for a crack located where the bending moment
is greatest. Therefore, the changes in frequencies and
coupling of the two lateral vibrations appear to be not
only a function of crack depth, crack location, and crack
front orientation but also of the mode number.

3 The Frequencies’ Ratio Surfaces Intersection
method (FRSI-method)

3.1 Crack identification based on an extension of the
frequency contour lines method: the Frequencies’
Ratio Surfaces Intersection method

Many researchers proposed to detect the position and size
of cracks by considering the first three changes in the nat-
ural frequencies of a cracked beam. Some used the inter-
section of the three contour lines of the first three natural
cracked frequencies that indicates the possible crack po-
sition and crack size (Li et al. 2005). This methodology
is only based on a careful evaluation of the cracked natu-
ral frequencies and so requires the knowledge of the ma-
terial properties (the Young’s modulusE and the density
ρ). Others proposed to take into account the intersec-
tion of the three contour lines of the lower order normal-
ized frequencies that are given by the ratios of cracked
beam natural frequencies to the uncracked beam natural
frequencies (Swamidas et al. 2004; Owolabi et al. 2003;
Nahvi and Jabbari 2005). In this last case, the knowledge
of the material properties (the Young’s modulusE and

the densityρ) are not required, but the natural frequen-
cies of the uncracked beam are needed.
In this paper, an alternative criterion will be presented
in order to avoid a careful determination of the material
properties or the knowledge of the uncracked frequencies
of the beam. Even if the estimation of material proper-
ties may be easily investigated, the criterion that will be
developed in the next section has the advantage to save
experimental time and to obtain a robust damage identi-
fication.
Moreover, these methodology will be extended by con-
sidering not only the identification of the crack size and
location but also the orientation of the crackχ, as indi-
cated in Figure 1.
The proposed criterion is based on the two following
facts :

• the changes in the ratios of two natural frequencies
is not affected by the material properties (i.e. the
Young modulusE and the densityρ),

• the natural frequencies associated with the vertical
(first, third and fifth frequencies) and horizontal
(second, fourth, and sixth frequencies) modes are
equal in the case of an uncracked beam, but are
different for the cracked beam due to the size,
position and orientation of the crack (as illustrated
in Figures 2, 3 and 4).

Therefore, the proposed criterion is based on the ratio
changes of the natural frequency of the vertical and hori-
zontal modes of the cracked beam

%∆cracked
i (µ,χ,Lcrack) =

100×
ωcracked

2i−1 (µ,χ,Lcrack)−ωcracked
2i (µ,χ,Lcrack)

ωcracked
2i−1 (µ,χ,Lcrack)

(15)

whereωcracked
2i−1 andωcracked

2i correspond to the natural fre-
quency of theith vertical and horizontal modes, respec-
tively. The evolutions of %∆cracked

i (for i = 1, . . . ,3) are
shown in Figures 5: it may be observed that this cri-
terion %∆cracked

i is dependent on the non-dimensional
crack depthµ, the crack locationLcrack and the crack
orientationχ, and is obtained by only considering the
cracked natural frequencies of the beam. Here, it is as-
sumed that the open crack area remains constant which
allows the determination of∆cracked

i .
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Figure 2 : Evolution of the absolute vertical and horizontal responses as a function of the crack front orientation for
µ= 1 and Lcrack= 0.716m (uncracked−; cracked with· · · χ = π

3 rad., −− χ = π
2 rad., −.− χ = 0rad.)

In order to illustrate the Frequencies’ Ratio Surfaces In-
tersection method , a crack is added on the beam: the
value of the non-dimensional crack depth isµ= 0.8, the
crack orientation isχ = π

3 rad. and the crack is located
at Lcrack = 0.15m (see case 1 in Table 2). Then, Ta-
ble 3 gives the values of %∆cracked

i (with i = 1, . . . ,3)
for this assumed crack. Figures 6 illustrate the com-
binations of different crack locations, crack depths and
crack orientations which have the same ratio changes
%∆cracked

i (µ,χ,Lcrack) (for i = 1, . . . ,3). Each combi-
nation may be plotted as a surface with crack location
Lcrack, crack depthµ, and crack orientationχ as its axes.
Then, the intersections of the three surfaces of the first
three percentage ratio changes %∆cracked

i (µ,χ,Lcrack) de-
fine the different possible combinations of crack loca-
tions, crack depths and crack orientations for the cracked
beam under study. It clearly appears that the intersec-
tions of the three surfaces defines two similar contour
lines indicating two values for the crack locationLcrack

and couples of values(µ,χ) for the crack sizeµ and the
crack orientationχ. These two intersections of the three
surfaces are indicated by the red lines in Figures 6. It is
well known that the non-uniqueness of the damage loca-
tion Lcrack is only due to structural symmetry of the beam
(Dilena and Morassi 2004; Swamidas et al. 2004).

Then, due to the fact that it is assumed that the portion
of the crack lying below the neutral axis is opened un-
der the effect of self weight bending, the area of the
open crack may correspond to various orientations of the
crack frontχ and non-dimensional crack depthsµ. The
two lines that correspond to the intersection of the three
surfaces, define all the possible couples of values(µ,χ)
for the cracked beam under study. As required for the
frequency contour lines method (Swamidas et al. 2004;
Owolabi et al. 2003; Nahvi and Jabbari 2005), a mini-
mum of three ratio frequency surfaces %∆cracked

i is re-
quired. Effectively, if the crack is situated at the node of
theith vertical and horizontal modes,ωcracked

2i−1 andωcracked
2i

remain almost unchanged. Thereby, the associated ratio
change∆cracked

i is equal to zero and the identification is
not possible.
In conclusion, the Frequencies’ Ratio Surfaces Intersec-
tion method is based on a new criterion %∆cracked

i that
only considers the natural frequencies of the cracked
beam. The natural frequencies of the uncracked beam
are not used, and an accurate knowledge of the material
properties (i.e. the Young’s modulusE and the density
ρ) is not needed.
The process considers the surfaces which have the same
ratio changes %∆cracked

i resulting in a combination of dif-
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Figure 3 : Evolution of the absolute vertical and horizontal responses as a function of the non-dimensional crack
depthµ for χ = π

3 rad. and Lcrack= 0.716m(− µ= 0.25,−− µ= 0.5, · · · µ= 1,−.− µ= 1.5)
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Figure 4 : Evolution of the absolute vertical and horizontal responses as a function of the crack positionLcrack

χ = π
3 rad. andµ= 1 (− Lcrack= 0.483m, −− Lcrack= 0.916m, · · · Lcrack= 0.65m, −.− Lcrack= 0.716m)
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ferent crack locations, crack depths and crack orienta-
tions can be plotted as a curve with crack location and
crack depth as its axes. Then, the intersections of the
surfaces %∆cracked

i (µ,χ,Lcrack) for the three lower modes
(for i = 1, . . . ,3) indicates all the possible combinations
of the crack position, the crack size and the crack orien-
tation.

3.2 Non-uniqueness of the damage location based on
antiresonances

As indicated in Figures 6, the identification procedure
presented in the previous section is not sufficient to elim-
inate symmetrical solutions in the damage location prob-
lem. Effectively, it is well known that a crack at any end
of the simply supported beam produces identical shifts in
natural frequencies, and identical changes in the criterion
∆cracked

i .
In order to avoid the non-uniqueness of the damage loca-
tion problem, some researchers (Swamidas et al. 2004;
Sinou 2007) proposed to add an off-center placed mass
to the simply supported beam from the left or right end.
Due to this added off-center mass, the previous symme-
try of the uncracked supported beam does not exist and
the crack location may be identified. However, it was
demonstrated that this methodology may be difficult to
be used (see for example (Sinou 2007)).
Recently, Dilena and Morassi (Dilena and Morassi 2004)
proposed an appropriate use of resonances and antireso-
nances in order to avoid the non-uniqueness of the dam-
age location problem due to structural symmetry. One
of the advantages of using antiresonances is that no addi-
tional tests is necessary, contrary to the previous method-
ology. Moreover, it should be noted that antiresonances
like resonances are easily measurable.
As previously explained in Section 2.3, the presence of
cracks may induced coupling of the two lateral vibrations
if the crack is fully or partially open and if the crack front
is different from the direction of the external force that is
assumed to be directed on the verticalX-axis. It may be
noted that no displacement will be observed in the hori-
zontal direction if the system is uncracked due to the fact
that the excitation is only in the vertical direction.

Then, as explained by Wahl et al. (Wahl et al. 1996),
the resonances and antiresonances alternate continuously
only for the Frequency Response Function of the driving
point where the response co-ordinate and the excitation
co-ordinate are identical. Moreover, by increasing the

distance between the excitation co-ordinate and the re-
sponse co-ordinate, the number of antiresonance ranges
decreases. Considering Equations 9 and 14, the presence
of a transverse crack introduces an excitation force at the
crack location in the horizontal and vertical directions.
So, if the external force is only directed on the vertical
axis (and the crack front is different from the direction of
the external force), the Frequency Response Functions
of the horizontal degrees-of-freedom appear only due to
the crack force’s excitation. Thereby, the response co-
ordinate where the resonances and antiresonances alter-
nate continuously defines the vicinity of the crack loca-
tion. Figures 7 illustrate the Frequency Response Func-
tions for all the horizontal degrees-of-freedom of the
cracked beam (at several locations along the shaft named
by ”shaft”-axis in the figures) when the sinusoidal exter-
nal excitation is situated at the left end (see Figure 7 (a))
or the right end (see Figure 7 (b)) of the simply supported
beam. It is clearly shown that the non-uniqueness loca-
tion of the crack may be avoid by using antiresonances. If
the external force and the crack location are close, it may
be observed that resonances and antiresonances can alter-
nate for all the degrees-of-freedom of the beam (see Fig-
ure 7 (a)). However, considering Figure 7 (b), it clearly
appears that the resonances and antiresonances alternate
continuously only at one end of the beam. So the non-
uniqueness of the damage location may be avoid by only
considering the Frequency Response Functions and the
use of the driving point FRF that is characterized by a
successive change in the resonances and antiresonances.

3.3 Identification of the crack depth and crack orien-
tation

As previously explained, the two contour lines that corre-
sponds to the intersection of the three surfaces having the
same ratio changes %∆cracked

i (for i = 1, . . . ,3), result in
a combination of different crack locations, crack depths
and crack orientations. The damage location being ob-
tained by using the antiresonances, only the size and ori-
entation of the crack need to be determined. So, the con-
tour line of Figures 6 illustrates all the combinations of
the non-dimensional crack sizeµ and the crack orienta-
tionsχ that correspond to the equivalent open crack (i.e.
the portion of the crack lying below the neutral axis un-
der the effect of self weight bending).
By rotating the beam by chosen angles, the portion of
the crack lying below the neutral axis changes. So the
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Table 2 : Values of the crack depth, crack location and crack orientation for the five cases under study

Case Non-dimensional crack depthµ Crack locationLcrack (m) Crack orientationχ (rad.)
1 0.8 0.15 π

3
2 0.3 0.62 π

5
3 0.5 0.28 2π

3
4 0.7 0.48 π

2
5 0.9 0.42 π

10

Table 3 : Values of %∆cracked
i

µ Lcrack(m) χ(rad.) Angle (rad.) open crack area (mm2) %∆cracked
1 %∆cracked

2 %∆cracked
3

0.8 0.15 π
3 χ 2092 99.551 98.645 98.279

χ+π/2 2689 98.934 96.864 96.258
χ+π 841 99.977 99.928 99.899

χ−π/2 244 99.999 99.998 99.998
0.3 0.62 π

5 χ 739 99.936 99.968 99.985
χ+π/2 710 99.944 99.972 99.987
χ+π 0 100 100 100

χ−π/2 29 100 100 100
0.5 0.28 2π

3 χ 294 99.997 99.996 99.999
χ+π/2 1535 99.544 99.352 99.866
χ+π 1242 99.77 99.666 99.93

χ−π/2 0 100 100 100
0.7 0.48 π

2 χ 1225 99.646 99.995 99.684
χ+π/2 2450 96.686 99.952 97.311
χ+π 1225 99.646 99.995 99.684

χ−π/2 0 100 100 100
0.9 0.42 π

10 χ 3246 91.937 98.104 96.475
χ+π/2 2103 98.104 99.529 99.094
χ+π 182 99.999 100 99.999

χ−π/2 1325 99.573 99.891 99.786

combinations of the crack sizeµ and the crack orienta-
tion χ that corresponds to the new equivalent open crack
also change. Figure 8 illustrates the different contour
lines that may be obtained for various chosen rotations
of cracked beam. In our cases, three successive angle
rotations (−π

2, π
2 and π) have been chosen. It may be

noted that all these lines define the combination of the
crack orientations and crack sizes for a given orientation
of the crack beam. So, knowing the angle variation be-
tween two contour lines (i.e. the angle rotation that has
been chosen), the uniqueness of the crack orientation and
crack size may be determined graphically, as indicated
in Figure 8: effectively, all the combinations of differ-
ent crack orientations and crack depths can be plotted

as a curve with crack orientation and crack depth as its
axes. The intersection of the contour lines indicates the
non-dimensional crack depthµ and the crack orientation
χ (in regard to the first initial orientation of the cracked
beam). It may be noted that the identification of the non-
dimensional crack depth and crack orientation can be de-
fined by the intersection of two, three or four contour
lines due to the fact that the transverse crack may be to-
tally closed for some orientations of the cracked beam
and partially opened for the others, as indicated in table
3.
Finally, it may be observed that the point that corre-
sponds to the intersections of the different contour lines
may be defined as the intersection of all the surfaces
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%∆cracked
1 , %∆cracked

2 and %∆cracked
3 for the various cho-

sen rotations of cracked beam.

In conclusion, the crack size, crack orientation and
crack location have been identified. The proposed
method, called the Frequencies’ Ratio Surfaces Intersec-
tion method (FRSI-method), only considers the natural
frequencies of the cracked beams and does not require an
accurate knowledge of the material properties (i.e. the
Young’s modulusE and the densityρ).

3.4 Numerical validation

In order to numerically demonstrate the efficiency of the
proposed methodology in the case of a simply supported
beam with various crack locations, depths and orienta-
tions, four additional cases will be undertaken, as indi-
cated in Table 2. The intersections of the three surfaces
of %∆cracked

i (µ,χ,Lcrack) (for i = 1, . . . ,3) are given in
Figures 9 for the four last cases. Table 3 indicates the
values of the associated factors %∆cracked

i . It may be ob-
served that theses intersections are double for each case.
So, using the Frequency Response Functions and antires-
onances enable us to identify the crack location, as illus-
trated in Figures 10. It may be observed that the use of
antiresonances is possible even if the equivalent area of
the open crack is small (due to the combination of the
crack orientation and crack depth, as indicated in Table
3).
Finally, the identification of the non-dimensional crack
depth and the crack orientation is obtained by rotating the
beam by three angles (−

π
2, π

2 andπ). The intersections of
the contour lines that indicate the crack depth and crack
orientation are shown for the four cases in Figures 11.
In conclusion, the crack depth, crack location and crack
orientation are identified in all cases.

4 Extension of the FRSI-method and robust identi-
fication

4.1 Extension of the Frequencies’ Ratio Surfaces In-
tersection method

The previous RFSI-method may be extended by consid-
ering the ratio of theith and jth natural frequencies. In
this case, the previous criterion %∆cracked

i may be gener-

alized by considering the new factor

%Ψcracked
i, j (µ,χ,Lcrack) =

100×

(

ωuncracked
i

ωuncracked
j

−
ωcracked

i (µ,χ,Lcrack)

ωcracked
j (µ,χ,Lcrack)

)

(16)

whereωuncracked
i andωcracked

i correspond to theith natu-
ral frequencies of the uncracked and cracked simply sup-
ported beams, respectively.
It may be observed that the factor %∆cracked

i corresponds

to the expression 16 where
ωuncracked

i

ωuncracked
j

is equal to one that

defines an uncracked symmetrical beam. Effectively, we
have

%∆cracked
i = 100×

ωcracked
2i−1 −ωcracked

2i

ωcracked
2i−1

= 100×

(

1−
ωcracked

2i

ωcracked
2i−1

)

= %Ψcracked
2i,2i−1 (17)

Considering the case of a simply supported uncracked
beam with a circular cross section, the classical ex-
pression of thenth natural frequency is given by
(Harris and Piersol 2002)

ωuncracked
n = n2π2

√

EI
ρSL4 =

n2π2R
2L2

√

E
ρ

(18)

wheren are the modes numbers (n = 1,2, . . .). L andR
are the length and the radius of the uncracked beam.E
and ρ define the Young’s modulus and density, and so
correspond to the material properties.I and S are the
moment of inertia and area of the beam section.
Due to the symmetrical properties of the un-
cracked beam, it may be observed that the factor
%Ψcracked

i, j (µ,χ,Lcrack) for the ith and jth pulsations can
be rewritten by

%Ψcracked
2α−a,2β−b (µ,χ,Lcrack) =

100×

(

(

α
β

)2

−
ωcracked

2α−a (µ,χ,Lcrack)

ωcracked
2β−b (µ,χ,Lcrack)

)

(19)

with a andb are equal to 0 or 1, andα ∈ ℵ ∗ andβ ∈ ℵ ∗.
If the numbersi and j are odd numbers (respectively
even numbers), the factor %Ψcracked

i, j defines the ratio
of the ith and jth natural frequencies that are only
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Figure 10 : Identification of the the crack location based on the vertical amplitudes and antiresonances
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measured in one direction. If the numberi is odd number
(respectively even number) and the numberj is even
number (respectively odd number), the factor %Ψcracked

i, j

defines the ratio of theith and jth natural frequencies that
are measured in horizontal (respectively vertical) and
horizontal (respectively vertical) directions. Considering
Equation 19, it is clear that the factors %Ψcracked

i, j are not
only a function of crack depth, location and orientation,
but also of the frequency number and the associated
mode shape. Moreover, the factors %Ψcracked

2α−a,2β−b need
only the knowledge of the natural frequencies of the
simply supported cracked beam and do not change with
the variations of the material properties.

In order to illustrate the role of the factor %Ψcracked
i, j ,

Figures 12 show the variations of %Ψcracked
3,1 , %Ψcracked

5,1

and %Ψcracked
5,3 with the non-dimensional crack depth, the

crack size and the crack orientation. From the results ob-
tained in these figures, it may be concluded that the mode
of ith natural frequency is more affected by the crack than
the mode ofjth natural frequency if %Ψcracked

i, j is higher
than 0. And so, if %Ψcracked

i, j is lower than 0, the more

affected mode corresponds to thejth natural frequency.
Effectively, Figures 12(a) and (b) indicate that when the
crack location is between[0 0.3] or [0.7 1] (for the non-
dimensional crack depthµ= 1 and the orientation of the
crackχ = 0rad.), the first natural frequency that corre-
sponds to the first vertical mode is comparatively much
less affected than the third natural frequency that corre-
sponds to the second vertical mode. For a crack situ-
ated between [0.3 0.7], the scenario is reversed. The
same observations may be done for the comparison of
the third and fifth natural frequencies that are associated
with the second and third vertical modes of the cracked
beam: when the crack is located between[0.15 0.4] and
[0.6 0.85] (for µ= 1 andχ = 0rad.), the third natural fre-
quency is more affected than the fifth natural frequency
of the cracked beam.
Considering Figure 12, it can be seen that the factor
%Ψcracked

i, j and the local associated minima and maxima
indicate the trends of changes of the bending moment and
its effect on both the mode ofjth natural frequency and
the mode ofith natural frequency.
Then, the minimum of the factor %Ψcracked

i, j reflects the
fact that the jth natural frequency is almost unaffected
for a crack whereas the mode ofith natural frequency is
greatly affected. See for example Figure 12 when the

crack is situated at one node of mode shapes (i.e. the
middle of the beam for the second vertical and horizontal
modes, and one-third of one end of the beam for the third
vertical and horizontal modes).

4.2 Numerical validation

So the damage detection technique that has been ex-
plained in Section 3 can be extended by considering the
evolutions of the factors %Ψcracked

i, j (µ,χ,Lcrack). As re-
quired for the factors %∆cracked

i (µ,χ,Lcrack), a minimum
of three ratio frequency surfaces %Ψcracked

i, j (µ,χ,Lcrack)
is needed. For example Figures 13 show the three sur-
faces of the factors %Ψcracked

3,1 , %Ψcracked
5,1 and %Ψcracked

5,3 .
These surfaces define all the combinations of the dif-
ferent crack locationLcrack, crack depthµ and crack
orientation χ which have the same ratio changes of
the factors %Ψcracked

3,1 , %Ψcracked
5,1 and %Ψcracked

5,3 for the
cracked beam under study. The values of the factors
%Ψcracked

3,1 , %Ψcracked
5,1 and %Ψcracked

5,3 are given in Table

4. It clearly appears that the factors %Ψcracked
i, j increase

rapidly with increasing of the non-dimensional crack
depthµ. Therefore, the detection of lower crack detph
appears to be easily done.
As previously indicated in Section 3, the intersections
of the three surfaces define two similar contour lines
indicating two values for the crack locationLcrack and
the combinations(µ,χ) of the crack sizeµ and the crack
orientationχ.
These intersections of the three surfaces are given in
Figures 13 by the red contour lines. It may be observed
that only the first, second and third vertical modes (and
the associated natural frequencies) of the cracked beam
are used.
Then, the non-uniqueness of the crack location is avoid
by considering the driving point Frequency Response
Function that is characterized by a successive change
in the resonances and antiresonances (see Section
3.2 and Figures 7). As indicated in Section 3.3, the
non-dimensional crack depthµ and the crack orientation
χ are determined graphically by rotating the beam
by specified chosen angles, as illustrated in Figures
8. It may be observed that the combinations of the
non-dimensional crack sizeµ and the crack orientationχ
are the same for both the factors %∆cracked

i (µ,χ,Lcrack)
and %Ψcracked

i, j (µ,χ,Lcrack). Effectively, the area of the
crack that is open is the same, so the calculated possible
combinations(µ,χ) are equivalent.
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Table 4 : Values of %Ψcracked
i j

µ Lcrack(m) χ(rad.) Angle (rad.) %Ψcracked
31 %Ψcracked

51 %Ψcracked
53

0.9 0.42 π
10 χ -39.819 -63.4 5.955

χ+π/2 -16.334 -24.565 2.927
χ+π -1.082 -1.554 0.22

χ−π/2 -8.623 -12.677 1.646
0.7 0.48 π

2 χ -11.225 -1.815 5.7
χ+π/2 -30.088 -9.041 13.638
χ+π -11.225 -1.815 5.7

χ−π/2 0 0 0
0.8 0.15 π

3 χ 10.192 34.67 3.011
χ+π/2 15.638 49.753 3.790
χ+π 3.323 12.262 1.206

χ−π/2 0.950 3.600 0.367
0.5 0.28 2π

3 χ 0.868 -2.283 -1.061
χ+π/2 4.445 -14.125 -6.099
χ+π 3.561 -10.737 -4.729

χ−π/2 0 0 0
0.3 0.62 π

5 χ -2.811 -9.747 -0.85
χ+π/2 -2.692 -9.342 -0.815
χ+π 0 0 0

χ−π/2 -0.110 -0.390 -0.035

Finally, Figures 14 illustrate the surfaces’ intersections
of the factors %Ψcracked

3,1 , %Ψcracked
5,1 and %Ψcracked

5,3 for
the four last cases that are given in Table 2. All the
associated values of the factors %Ψcracked

i, j (µ,χ,Lcrack)
are given in Table 4. In all cases, the crack location
agrees with the previous identification done in Section
3.1.

In conclusion, it is shown that the identification of the
crack parameters (location, depth and orientation) can be
performed by considering the Frequencies’ Ratio Sur-
faces Intersection method and the generalized factors
%Ψcracked

i, j (µ,χ,Lcrack). The use of this generalized fac-
tor %Ψcracked

i, j allows to undertake an additionnal damage
identification by verifying the previous identification for
the crack location that has been obtained by using the fac-
tor %∆cracked

i . Moreover, these last factors may be usesul
for the damage identification in structures where the nat-
ural frequencies are only measured in one direction (for
example in rectangular cross section beams).

4.3 Sensibility of the FRSI-method and robust identi-
fication of the crack parameters

It is well known that experiments are frequently per-
turbed by noise measurement and that the proposed dam-
age identification technique (Frequencies’ Ratio Surfaces
Intersection method) may be particularly sensitive to ex-
perimental and/or modeling errors. In this case, the iden-
tification of the crack location, size and orientation can
be less or more difficultly obtained depending on the ef-
fect of uncertainties due to measurement errors and envi-
ronmental conditions. So the robustness and sensibility
of the Frequencies’ Ratio Surfaces Intersection method
through these hypotheses will be undertaken in this sec-
tion with various noise levels for cases 1, 2 and 3.

In order to simulate correctly the presence of noise on
measurements, several uniform random noises are added
on the previous deterministic computational experiments
(i.e. each frequency of the cracked system is modified
by an uniformly distributed random noise level). Table 5
gives the values of the first sixth frequencies for cases 1,
2 and 3 without noise. Then, Tables 6, 7 and 8 show the
evolutions of the frequencies for cases 1, 2 and 3 with
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Figure 18 : Identification of the crack sizeµ and the crack orientationχ with various noise levels for the case 2
(µ = 0.3, χ = π

5rad. andLcrack = 0.62m) and the case 3 (µ = 0.5, χ = 2π
3 rad. and Lcrack = 0.28m) and with the
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Table 5 : Evolution of the frequencies in Hz for the cases 1,2 and 3 without noise

Case µ Lcrack (m) χ(rad.) Angle (rad.) f1 f2 f3 f4 f5 f6
1 0.8 0.15 π

3 χ 196.4 197.29 765.6 776.12 1699.54 1729.3
χ+π/2 194.99 197.09 749.47 773.73 1657.9 1722.35
χ+π 198.08 198.12 785.73 786.29 1758.4 1760.19

χ−π/2 198.63 198.63 792.64 792.65 1780.53 1780.58
2 0.3 0.62 π

5 χ 196.06 196.19 789.75 790 1783.66 1783.92
χ+π/2 196.17 196.29 789.98 790.2 1783.9 1784.13
χ+π 198.85 198.85 795.4 795.4 1789.66 1789.66

χ−π/2 198.74 198.74 795.17 795.17 1789.41 1789.41
3 0.5 0.28 2π

5 χ 198.09 198.09 790.62 790.66 1787.29 1787.31
χ+π/2 194.37 195.26 768.83 773.85 1776.77 1779.16
χ+π 195.39 195.84 774.62 777.21 1779.52 1780.76

χ−π/2 198.85 198.85 795.4 795.4 1789.66 1789.66

Table 6 : Evolution of the frequencies in Hz for the case 1 (µ= 0.8, χ = π
3rad. andLcrack = 0.15m) and various

noise levels

Noise (%) Angle (rad.) f1 f2 f3 f4 f5 f6
1 χ 196.3 196.64 769.19 775 1691.88 1733.71

χ+π/2 194.17 197.78 749.93 772.33 1655.82 1728.69
χ+π 198.72 197.22 786.49 789.83 1754.69 1767.03

χ−π/2 198.16 198.06 794.75 793.97 1773.96 1773.37
2 χ 196.8 197.7 768.04 771.2 1704.18 1717.9

χ+π/2 195.69 195.41 743.03 766.18 1648.85 1722.91
χ+π 198.62 197.22 785.77 793.34 1769.94 1774.89

χ−π/2 198.31 197.49 785.28 786.01 1769.19 1774.89
4 χ 196.42 196.68 770.51 781.51 1730.63 1707.98

χ+π/2 198.37 194.23 750.12 785.96 1687.23 1710.99
χ+π 198.37 196.07 778.69 790.71 1739.4 1772.96

χ−π/2 197.59 194.76 782.87 788.84 1763.03 1785.53
6 χ 194.35 195.87 742.63 758.95 1699.02 1681.4

χ+π/2 194.83 197.04 766.72 771.75 1687.66 1684.54
χ+π 194.52 193.22 774.38 791.47 1765.34 1772.01

χ−π/2 195.11 193.26 773.42 794.86 1737.36 1783.51
8 χ 196.2 194.23 778.75 793.62 1663.86 1687.2

χ+π/2 197.5 194.85 775.74 772.97 1603.65 1746.31
χ+π 194.51 190.9 760.2 780.63 1696.43 1711.87

χ−π/2 197.3 192.18 789.47 790.89 1765.1 1745.36
10 χ 197.3 193.03 755.71 742.33 1707.15 1787.47

χ+π/2 192.65 195.37 742.08 767.62 1637.5 1773.2
χ+π 195.76 193.23 773.38 794.4 1754.85 1737.01

χ−π/2 196.07 196.6 790.86 763.25 1777.66 1727.83
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Table 7 : Evolution of the frequencies in Hz for the case 2 (µ= 0.3, χ = π
5rad. andLcrack = 0.62m) and various

noise levels

Noise (%) Angle (rad.) f1 f2 f3 f4 f5 f6
1 χ 195.45 196.4 787.46 793.94 1775.04 1782.85

χ+π/2 195.28 196.51 788.68 790.86 1776.87 1784.16
χ+π 198.5 197.95 791.52 793.32 1782.92 1781.92

χ−π/2 198.73 197.84 794.86 795.18 1789.27 1785.69
2 χ 196.94 198.04 792.98 794.77 1773.18 1781.91

χ+π/2 196.17 196.29 789.98 790.2 1783.9 1784.13
χ+π 197.23 197.81 788.86 792.12 1788.43 1773.39

χ−π/2 198.28 198.84 793.48 787.7 1780.91 1785.08
4 χ 196.46 193.95 794.98 783.96 1781.5 1784.34

χ+π/2 197.66 194.92 784.85 780.64 1776.84 1762.45
χ+π 196.34 196.54 794.99 792.14 1787.31 1789.15

χ−π/2 197.05 198.71 783.35 781.01 1767.32 1778.31

Table 8 : Evolution of the frequencies in Hz for the case 3 (µ= 0.5, χ = 2π
3 rad. andLcrack = 0.28m) and various

noise levels

Noise (%) Angle (rad.) f1 f2 f3 f4 f5 f6
1 χ 198.23 197.37 793.53 789.31 1787.08 1786.08

χ+π/2 194.02 194.33 767.72 775.74 1773.19 1773.48
χ+π 195.74 196.48 776.6 774.59 1780.45 1781.21

χ−π/2 198.63 198.76 792.83 795.18 1782.29 1787.24
2 χ 196.16 198.25 783.78 787.65 1781.57 1776.98

χ+π/2 193.61 193.36 761.22 781.4 1787.85 1788.78
χ+π 193.99 196.3 774.18 777.37 1774.01 1765.98

χ−π/2 198.23 198.68 791.35 788.12 1782.62 1772.95
4 χ 195.3 197.38 777.76 781.07 1786.23 1763.23

χ+π/2 194.6 195.29 768.32 770.06 1778.17 1768.16
χ+π 198.63 193.18 771.14 791.74 1748.68 1767.71

χ−π/2 194.89 195.77 786.36 780.12 1764.22 1768.72

various uniform random noise levels, respectively. The
corresponding evolutions of the parameters %Ψcracked

i j
are indicated in Tables 9, 10 and 11. Firstly, Figures 15
show the surfaces %Ψcracked

31 , %Ψcracked
51 and %Ψcracked

53
with various noise levels for case 1 (µ= 0.8, χ = π

3 and
Lcrack= 0.15m). Table 12 gives the estimated crack loca-
tion that corresponds to the centroid of the three surfaces.
Due to the presence of noise measurement, the three sur-
faces do not intersect in an unique line. However, the
centroid of the crack location that is given in Table 12 in-
dicates that the crack location is correctly identified even
if noise level have been added in the numerical simula-
tions. Then, it may be noted that the non-uniqueness of

the crack location may always be avoid by considering
the driving point Frequency Response Function that is
characterized by a successive change in the resonances
and antiresonances even if noise level has been added on
the numerical simulations (see Section 3.2).

Secondly, Figures 16 illustrate the contour lines of
%Ψcracked

15 and the corresponding identification of the
crack sizeµand the crack orientationχ with various noise
levels. Due to the presence of measurements errors, the
intersection of the three curves does not exist. However,
the centroid of the different pairs of intersections may
be taken as the crack position and crack size when the
three curves do not meet exactly. Considering the re-



Damage Assessment Based on the Frequencies’ Ratio SurfacesIntersection Method 27

Table 9 : Values of %Ψcracked
i j for the case 1 (µ= 0.8, χ = π

3rad. andLcrack= 0.15m) and various noise levels

Noise (%) Angle (rad.) %Ψcracked
31 %Ψcracked

51 %Ψcracked
53

1 χ 8.167 38.138 5.044
χ+π/2 13.782 47.244 4.204
χ+π 4.214 16.992 1.897

χ−π/2 -1.063 4.788 1.791
2 χ 9.745 34.075 3.113

χ+π/2 20.296 57.404 3.092
χ+π 4.393 8.901 -0.249

χ−π/2 4.018 7.876 -0.294
4 χ 7.721 18.909 0.392

χ+π/2 21.868 49.468 0.07
χ+π 7.45 23.136 1.624

χ−π/2 3.784 7.717 -0.201
6 χ 17.886 25.788 -3.783

χ+π/2 6.467 33.782 4.887
χ+π 1.901 -7.537 -2.967

χ−π/2 3.588 9.532 0.368
8 χ 3.078 51.95 11.343

χ+π/2 7.221 88.027 18.275
χ+π 9.179 27.856 1.843

χ−π/2 -0.13 5.386 1.419
10 χ 16.976 34.742 -0.902

χ+π/2 14.812 50.028 4.336
χ+π 4.928 3.558 -1.906

χ−π/2 -3.361 -6.652 0.226

Table 10: Values of %Ψcracked
i j for the case 2 (µ= 0.3, χ = π

5rad. andLcrack= 0.62m) and various noise levels

Noise (%) Angle (rad.) %Ψcracked
31 %Ψcracked

51 %Ψcracked
53

1 χ -2.897 -8.185 -0.413
χ+π/2 -3.865 -9.897 -0.297
χ+π 1.24 1.781 -0.253

χ−π/2 0.031 -0.35 -0.105
2 χ -2.65 -0.358 1.392

χ+π/2 1.969 -4.246 -2.18
χ+π 0.027 -6.782 -1.711

χ−π/2 -0.175 1.832 0.556
4 χ -4.644 -6.779 0.907

χ+π/2 2.921 1.043 -1.393
χ+π -4.909 -10.322 0.179

χ−π/2 2.469 3.129 -0.61
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Table 11 : Values of %Ψcracked
i j for the case 3 (µ= 0.5, χ = 2π

3 rad. andLcrack= 0.28m) and various noise levels

Noise (%) Angle (rad.) %Ψcracked
31 %Ψcracked

51 %Ψcracked
53

1 χ -0.299 -1.496 -0.206
χ+π/2 4.313 -13.909 -5.968
χ+π 3.246 -9.606 -4.262

χ−π/2 0.847 2.702 0.2
2 χ 0.437 -8.227 -2.305

χ+π/2 6.833 -23.421 -9.868
χ+π 0.917 -14.491 -4.148

χ−π/2 0.797 0.74 -0.264
4 χ 1.757 -14.615 -4.662

χ+π/2 5.171 -13.774 -6.435
χ+π 11.763 19.615 -1.765

χ−π/2 -3.488 -5.24 0.646

Table 12: Estimation of the crack location for cases 1, 2 and 3 with various noise levels

Case Noise (%) Lcrack(m)

1 1 0.13
2 0.16
4 0.2
6 0.22
8 0.18
10 0.2

2 1 0.63
2 0.6
4 0.6

3 1 0.38
2 0.24
4 0.24

sults presented in Figures 16, it may be concluded that
measurement errors and uncertainties on the frequencies
inevitably degrade the accuracy in practical cases. Effec-
tively, the area defines by the intersections of the differ-
ent curves %Ψcracked

15 for the various shaft rotoations in-
crease when the noise measurement increase. However,
the identifications of all the crack parameters (location,
size and orientation) are obtained with satisfactory preci-
sions even if 1%, 2%, and 4% uniformly distributed ran-
dom noise level is added to the simulations. If the noise
level is greater that 6%, the identification of the crack
size and orientation may be more difficult. Moreover, it
may be observed that the crack depth and orientation has
been detected with less accuracy than the crack position.
Finally, it may be noted that the use of %Ψcracked

13 and/or

%Ψcracked
35 could allow to undertake an additionnal dam-

age identification of the crack size and orientation in orde
to confirm the previous identification with %Ψcracked

15 . In
conclusion, the quality of the experimental data that is
an important key in achieving reliable identification with
the RFSI-method.

Now, the sensibility of the RFSI-method and robust iden-
tification of the crack parameters is undertaken for cases
2 and 3 that correspond to the presence of ”‘small”’
cracks. The identification of the crack location and
the corresponding results of the surfaces %Ψcracked

31 ,
%Ψcracked

51 and %Ψcracked
53 with 1%, 2% and 4% noise lev-

els are presented in Figures 17. The associated results
for the identification of the crack size and orientation are
given in Figures 18. Moreover, it clearly appears that
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the crack location, orientation and size may be evaluated
by considering the centroid of the surfaces %Ψcracked

i j and

the different curves %Ψcracked
15 for the four shaft rotations.

However, it appears that the identification of the crack pa-
rameters is not possible if the noise level is more than 2%
(see Figures 17(e) and (f)). So it may be concluded that
the quality of the measurements for the identification of
a small crack is an important factor to take into account
for a robust identification of the crack location, size and
orientation by using the RFSI-method.

In conclusion, the identification of the crack parame-
ters can be less or more difficultly obtained depending
on the effect of uncertainties due to measurement er-
rors and environmental conditions and the characteris-
tics of the crack. However, if 1% or 2% uniformly dis-
tributed random noise level is added to the numerical
simulations, the Frequencies’ Ratio Surfaces Intersection
method (FRSI-method) can be used for the detection of
the crack size, location and orientation with satisfactory
precision.

Conclusion

Two new criterions %∆cracked
i and %Ψcracked

i, j and the Fre-
quencies’ Ratio Surfaces Intersection method are given
in order to identify the non-dimensional crack depth,
the crack location and the crack orientation. The FRSI-
method considers the intersection of the surfaces that
correspond to the natural frequencies’ ratio of the lower
modes. It is demonstrated that a robust identification
of the crack parameters is possible by only using the
natural frequencies of the cracked beam. Moreover, an
accurate knowledge of the material properties (i.e. the
Young modulus and the density) is not required. The
non-uniqueness of the crack size location that is classi-
cally observed for structural symmetric beams when the
Frequencies’ Ratio Surfaces Intersection method method
is used, may be avoid by only considering the emerging
of extra antiresonances on the Frequency Response Func-
tion of the crack beam.
The proposed methodology was numerically validated in
the case of a simply supported beam with various crack
locations, depths and orientations. The obtained results
demonstrate that a certain level of accuracy for the mea-
sured data is needed in order to allow a correct dam-
age detection. Moreover, the procedure developed here
works effectively only for measurement errors not ex-
ceeding 2% for small levels of crack depth. So it may

be concluded that the quality of the experimental data is
an important key in order to achieve reliable results due
to the fact that the presence of experimental errors and
uncertainties may produce a modification in the identifi-
cation of the crack size and orientation.
Finally, the proposed methodology and the generalized
criterion %Ψcracked

i, j has the potential as a damage de-
tection technique for rectangular cross section beams or
more complex structures.
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