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Abstract— Photodynamic therapy (PDT) is an alternative In this paper, a model-based method, based on system
treatment for cancer that involves the administration of a jdentification techniques [14], is proposed as an altevaati
photosensitizing agent, which is activated by light at a spsfic and complementary approach for the estimation of PDT pho-

wavelength. This illumination causes a sequence of photae- tophvsical ch teristi Such h Id id
tions, which - in the presence of molecular oxygen - is supped ophysical characteristics. such an approach could peov

to be responsible for the death of the tumor cells. The PDT two main benefits: (1) the estimation of the photophysical
efficiency stems from the optimal interaction between these coefficients directly fromin vivo experiments and (2) a

three factors (light, drug and oxygen). In this paper, a new sijgnificant cut of the experimental cost by decreasing the
approach is proposed to estimate photophysical parameters ,,mper of trials. So far, the estimation of the photophysica

which characterize the ability of a photosensitizing drug o . . e L .
produce singlet oxygen. This approach is based on system coefficients by system identification techniques has never

identification techniques. This model-based method wouldllow ~ been assessed in practice.
biologists to estimate all the photophysical parameters tim Five main difficulties can be addressed for the application

spectro-fluorescence data generated by only one experiment of sych a solution tan vivo spectro-fluorescence data:
Secondly, contrary to usual techniques which are restricté to

in vitro studies, this approach can be directly applied tdn vivo « the nonlinearity structure of the photopohysical model;
data. « the large range of possible values (up to four decades)
| INTRODUCTION for the unknown parameters;

» some initial state variables are unknown;

« the lack of information (only one measured variable
over six state variables);

the limited degrees-of-freedom for the choice of the

Photodynamic therapy (PDT) [1], [2], [12] is a treatment
of displastic tissues such as cancers. Mainly, it involves
the selective uptake and retention of the photosensitizing
drug (photosensitizer, PS) in the tumor, followed by its laser light stimulus (input variable), see paragraph II-
illumination with light of appropriate wavelength. The PS C for more information about the experimental setup.
activation is thought to produce, after multiple internstdi _ .
reactions, singlet oxygen at high doses (in the presenéé dyn_am|c model of the photor_eactlon phas_e,_ the rela-
of molecular oxygen) and thereby to initiate apoptotic ani{onships between the photophys_lcal charactenstlc_s bed t
necrotic death of tumor. model parameters, and the experimental setup are intrdduce

Currently, the efficiency of the photodynamic phase (pro” seqtlon II. Section I is devc_Jted to the e>§per|metal
duction of singlet oxygen), as well as the comparison gnodeling methodology while section 1V deals with the se-

different PS, are based on three photophysical charaitsris lection of practically identifiable parameters. The estiora
. the absorption coefficientss, of the PS in the spectral of the model parameters, the model falsification tests and

region of the excitation lightos characterizes the PS- the determination of the parameter uncertainty are predent
light interaction: in sections V, VI and VII respectively. A discussion of the

. the quantum yield of the PS triplet sta®; and the 'eSults is provided before to conclude.
triplet state lifetime,rr;
« the quantum vyield of singlet oxygen productioh,
which characterizes the PS-oxygen interaction. As previously mentioned in the introduction, the interac-
These photophysical coefficients were till now separatelijon between the light (at a specific wavelength) and the PS
determined fromin vitro dedicated experiments ([10], [9]), already incorporated in the tumor, determines a sequence
but they cannot always predict tle vivo cytotoxic action. of photoreactions which are presumed to have as result the

Il. PROBLEM STATEMENT



TABLE |

death of the tumor cells (through the production of singlet
MODEL VARIABLES

excited oxygen - a very reactive specie).

A. Model Description [ Symbol | Definition | Units |
. . . . S Photosensitizer ground state mM
Ba_sed on tr_u_a kinetics equations descnbmg the type-Ii ) Photosensitizer singlet excited state v
reactions specific to PDT [1], [2], [7], @ honlinear stataop T Photosensitizer triplet excited state mM
model of the intracellular photoreaction process may be| [0, Triplet ground - state oxygen mMm
introduced. This model is composed of six state variablés an 132 Singlet Cexlf'tle" - Statte oxygen mm
eleven unknown photophysical parameters, and is described [UP] Urae aie Ofp‘;]stro:;g:it?smg T
as follows, u. Irradiance signal W-cm 2
d[So] . 1 Uo Uptake rate of oxygen molecules mM.st
at = Up+ki [Sl] - ka[SO] 02] + y Fluorescence Intensity au
+Kp [Ta] + k [T1] [2O2] — Kaur [So]
d
% = kau [So] — (ki +kisc) [S1] — TABLE Il
. —ksm [Sl] [M] NOMINAL PARAMETER VALUES AND INITIAL CONDITIONS FOR THE
[—tl] = kisc[S1] —kp[T1] — kt [T1] [302] — PDT-PHOTOREACTION MODEL
—krm [Ta] [M]
dfo;] _ 3 1 1
d[ld(tj] = Uo—kr[T][F0] +k ['O,] @ [ Symbol | Definition [ Values
dt2 = kr [Ty [302] —k [102} — Ka PS absorption rate af = 76mW/cn? 19
—kox[M] [102] _ ka[S)] [102} Keb Photobleaching rate 143 1108 L
dMm 1 mM~s™
[_t] = —kox[M] [ 02] — ksm[Si] [M] - kr Biomolecular rate constant for 10°
—krm[Te] [M] the reaction ofO, with Ty mM-1s1
yti) = y[Sti)+vt) ke Rate constant for the reactid® — S 2.10's 1
v(ti) ~ /V(O,Sz) Kp Rate constant for the reactioh — 125061
kisc Rate constant for the reactid®h — Ty 8-10’s T
wherex(t, p) = [[S],[Si], [Ta), [°02] , [10y] [M]] T € RO are |k | Rate constant for he reaciid, 70, [ 10 ©
the state variables; the light inpuwi_(t) corresponds the kox th';“?ez((:;is;s%j vcviﬂsw?n or n%,vi,ls,l
irradiance signal. The incorp_oration of PS moIecers in.t kew | Bimolecular rate constant for 102
cancer cells is a slow dynamic process, comparatively with the reaction ofS; with M mM-1s1
the photoreactions. Accordingly, the PS uptake rate,is krm tﬁﬂmolectt{laf faftre Cc?t?lstﬁm for 1mM st
. . . . e reaction ofl; wi
assu_med to be n_uII dur_mg the expenmene,._ during a v easurement coafficient 50
_relat|vely sr_\ort period of times 1h. The oxygen mpu_uo(t) Slo | Initial condition for [S 85.10 3 mM
is not manipulated and measured. In this applicaties(t) Si], | Initial condition for [S; 0mM
is regarded as a disturbance variable. The output ndtse TiJo | Initial condition for [Ty 0 mM
. . . 150] Initial condition for [0, 83-10 3 mM
is assumed to be a realization sequence of independent ang-=0 — — .
identically distributed gaussian variables at the measarg Oz [ Inital condition for | 'Oz 0 m
M]o Initial condition for [M] 830-10 ° mM

times{t }. p= [kisc,keb. ki, Kt kp. ka, ko krwi, ks, kr. y] " €
R1! are the unknown parameters of the model, wkth=
ke +kic, ko = kp +krs and k = k" + k. Tab. | contains
the model variables description whereas Tab. Il presehts
the parameters with their initial guess (see step 2 of t

experimental modeling procedure) and the ones of the state prgblem statement

variables.

B. Photophysical Parameters

photophysical coefficients are:

ka = pox = Os=h-Ua ka

photophysical coefficients can be deduced frorthe vector
Hf the model parameters.

As previously pointed out, thie vivo determination ofos,

@7, 71 and P, can be expressed as a problem of identifia-

The relationships between the model parameters and tﬁ'(le'gnz';d estimation ofp from thein vivo measurement of
L .

D. Experimental Setup

7 = 1 Fig. 1 shows thein vivo experimental setup. Female
kISCk“[(sfo | (2)  athymic Foxn1 nude mice were used for this study (Harlan,

= ké'csfkf -kT[goz]ik Gannat, France). The mice were used for tumor implan-
P tation when they were #9 weeks old (26- 25g). The

where h = 6.026- 1034) - s is Planck’s constantya is model of human malignant glioma was obtained using U87

the frequency of the incident lightg is the efficiency cells, as described in [22]. Tumors were treated when they

of the energy transfer to molecular oxygen. Note that foreached 5 1mm (15+5 days after tumor grafting). The

a given concentration of molecular oxygétO,], all the photosensitizing molecule is TPC-Ahx-ATWLPPR [23] and

ISC_ o g _
Kscrki T =

®p = D7 - @t
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Fig. 1. in vitro experimental set up

the administrated dosep = 1.75umol- kg1, was injected

to the micevia the tail vein. The mice were kept in the
dark for 4h, and anesthetized. Irradiation of tumors was 4)
carried out atA = 652nm, using a dye laser, pumped with
an argon laser. Light was delivered through an optical fiber
and illuminated the tumor surface over @iidiameter beam
spot. The incident fluence rate on the tumors was previously
evaluated using an optical power meter. The fluence rate
(irradiance)u, (t) is a square wave signal. Its magnitude
reaches 9BW.- cmi 2 and its period is equal {6 = 1mnwith

a 50% duty cycle. The fluorescence intengift) is collected

by a spectrofluorimeter only during the dark phases (laser
off) and with a sampling period of time equalTg=7s, i.e.
three points for each dark half cycle (technical limit of the
data acquisition system). The total duration of the expenim

is limited to about 42nin.

[1l. EXPERIMENTAL MODELING METHODOLOGY %)
The experimental modeling procedure used in this appli-
cation study has been presented in [8]. The latter approach6)

is composed of six steps,

1) Defining the model structure and assessing its theoret-
ical (or structural) identifiability [14] deals with the
possibility to give an unique value to each parameter
of a mathematical model structure. The uniqueness
of this solution is assessed in an idealized or theo-
retical framework where the process and the model
have identical structures, the data is noise-free, and
where the input signals and the measurement times
can be chosen at will. In this application, the global
structural identifiability of model (1) was checked by
the similarity transformation method.

2) A prior analysis, often based on a literature analysis,
is carried out to provide the initial guess @ In
order to improve the numerical properties of the Fisher
Information Matrix (see section V), a rescaling of the
parameters is dongy = p°- ©;, with p° initial guess ~ 7)
for the parameter®) the normalized parameters to be
estimated and=1,---,11.

3) The third step is devoted to the implementation of the

simulation model is represented by a block-diagram
implemented into Simulirf® .

Structural identifiability is a qualitative concept. Whe
the model is proved structurally identifiable, an ad-
missible experiment has to be selected to collect the
estimation data. The design of optimal experiments
may be regarded as maximizing a measure of iden-
tifiability, thereby transforming the intitial qualitatv
problem into a quantitative one, also called practical
identifiability [15], [19]. In a fourth step, a practical
identifiability analysis is locally carried out through
the evaluation of the output sensitivity functions and
the corresponding Fisher Information Matrix [20], [8].
The output sensitivity functions are computed by the
software Diffedg& which enables the sensitivity anal-
ysis of block diagrams by computer algebra [18].

In the next step, the practically identifiable parameters
O are selected according to numerical properties of an
empirical Fisher information Matrix.

The sixth step deals with the parameter estimation. The
estimation criterion is defined as follows:

J(©) =3 et;,0)" -e(t;,0) (3)

where© is a subvector o containing the selected
parameters to be estimated aed,®) is the output
error defined by:

e(tve) = ys(t) - y(tv e) ~ JV(Ov 0-2)’ (4)

with  ys(t) the output system measurement.
{e(tj,®©)|j =1,--- ,N} is assumed to be a realization
sequence of independent and identically distributed
gaussian variables(tj|j = 1,---,N} is the sequence
of the measurement time instants.

The last step consists in estimating the empirical
probability density functions of the identifiable model
parameters in order to characterize their uncertainty.

model into a simulation environment. In this case, the 1Simulink builds upon Matla®, The MathWorks, Inc
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Fig. 2. Measured vs Estimated Responses Fig. 3. Q-Q plot of output residuals
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IV. SELECTION OF IDENTIFIABLE PARAMETERS
The selection of the practically identifiable parameter

relies on an empirical Fisher Information Matrix defined by  *f J00,
N /oy(t;,©)\ " /dy(t;,© 12f s / Nem 1
FIMDZ( (b, >> (ym, >> ® g 2 it
= 00 00 £ 1f ‘ i
= Vi
The number of practically identifiable parameters is givgn b 3 | ! L‘ _ i
the numerical rank of FIM. Given, and the measurement 8 /| .
time instants defined in section 1I-D, the numerical rank 0 s /! ' ]
FIM was equal to 11, meaning that all the parameters al ! .
. . . 4k ’ i
practically identifiable. ’ \\
V. PARAMETER ESTIMATION I L’ H H ﬂ |
The parameter estimation step was based on a least squeé 94 mmp 002 0 0.02 @ §mo‘oe

method applied to the output error. The minimization of the
estimation criterion (3) with model (1) as a constraint was
solved using an Active-Set algorithm implemented in Matlab

Parameter estimates are given in Tab. (lll). Figure 2 shows
the measured values vs the estimated responses.

Fig. 4. Histogram of output residuals

is used for assessing whether or not the output residuals are
VI. M ODEL FALSIFICATION approximately normal distributed.
I . . The data are plotted against a theoretical normal distribu-
The model falsification test used herein consists in chec

ina th deli i tated i tion 1-A. abbet t |ﬁ'on in such a way that the points should form an approximate
ng ejmod.etlnk;q ?ssun;ptfl]on,staet In %ec IlonT- ,aﬁ ﬁit straight line. Departures from this straight line indicate
gaussian distribution of the output residuais. Two sta epartures from normality. The results are represented in

tests were implemented. _The first one is a quantllle-qL_mntl ig. 3. The normal probability plot shows a reasonably linear
plot and the second test is based on the Pearsons chi-squale. . it the center of the data, therefore the null hysithe

test. . .
Ho is sustained.
Let us firstly formulate the null hypothesisif) and the 0
alternative hypothesidj) such that: B. Pearsons chi-square test
. 2 As shown in Fig. 4, the sequence of output residuals is
Hi: et #(0,02) discretized into 60 bins. The number of degrees of freedom

is r = 18. The test statistic computed from the observed
where e denotes a random variable of which an observeglequencies (histogram in Fig.4f = 30.94 is lower than the
sequence ife(ti)[i =1,---,N}. critical valuex3 , = 32.34. Accordingly, the null hypothesis
cannot be rejected fom = 0.02. In other words, the model

A QQ tes_t _ _ _ ~ based on the estimated parameters is not falsified.
A Quantile-Quantile plot is a graphical method for diag-
nosing differences between the probability distributidrao VII. CRITICAL ANALYSIS OF THE RESULTS

statistical population from which a random sample has been A possible problem with the proposed approach is that the
taken and a comparison distribution. Herein, The Q-Q testumerical search may terminate far from the true minimum



TABLE Il
PDT(PHASE2) ESTIMATION RESULTS

Parametep; = p; - O; kisc ke ki ks kp ka Kox krm | ksm kr 14
Estim. valuep’=pY- ©; | 7.55-10" | 1.1-10° | 9.68-10° | 2.21-10° | 1.2.10° | 137 | 253-10° | 057 | 0.05 | 4.65-10* | 46.82
TABLE IV
IX. CONCLUSION
UNCERTAINTY ANALYSIS RESULTS . . . .
In this study, the estimation of the photophysical pa-
Parameter] 95% confidence interval Parameter rameters included in photoreactions induced by PDT is
e} [d0.025(©1), Go.075(Gi)] | pi examined. This objective has never been reached in @ino
Ou 10541 1.1156 Pi=)"-Ou framework. An original model-based approach, expressed
g 0.5578 0.7217 Pe = Kpy-Os as a system identification problem, is proposed. The latter
O 0.6046 0.8776 ps = k3 - O : o e
o 07661 12634 o =K 6, approach involves to study the practical identifiabilitytio
Os 0.8517, 1.3626 pszkés.ces photoreaction model and the estimation of its parameters.
o7 0.8227, 1.3471] pr =K - ©; The main difficulties of this inverse problem are (i) the
©4 0.7653 1.3687 pa=K}-O4 non linearity of the model structure and (ii) the lack of
©2 0.7762 1.406Q P2 =K3, O, information in the experimental data (small data sets, kmal
O3 0.7806 1.4539 ps=K’-Os sampling rate, no measurement during the treatment phase
10 07858 14718 Pio = k7 Oto (Laser ON), few degrees of freedom concerning the choice
O 4.6648 54799 po — KL, Oo ' 9 9

of the input signal and only one output variable for six
state variables). The local practical identifiability test
based on the conditioning of the Fisher Information Matrix.

for several reasons, such as inadequate choice of the ofihe parameter estimation relies on a least-squares method
mization algorithm coefficients or initial parameter gyess applied to the output error. Despite the previously meribn
trapping in a local minima.

U NCERTAINTY ANALYSIS

difficulties, the results obtained in practice from vivo
experiments have shown promising results.

X. PERSPECTIVES

Because of the low signal-to-noise ratio, determining the TWO main developments could enhance the accuracy of

optimal values of the paramete®@swith respect to the chosen the estimates:

criterion [14], [6], [21] is not enough. Herein, a Monte-
Carlo approach was carried out to determine the empirical
probability density functions of the parameter estimatés
implemented procedure is the following:

« Based on the experimental data, compute a parameter
estimate®;

« Check the validity of the hypothesis on the noisgsee
section VI);

« Generate vectors of fictitious data by running the model
with parameteré) for Nsim = 1000 realizations of i.i.d.
A (0,62) variablesv(t;) with

o 1 X
g = mi;e(ti) (7)

« EstimateNsjn, series of estimated parameteésbased [1]
on each of these vectors of fictitious datarid using 2]
the same method as for the experimental data;

« Given the Nsim estimates of®;, compute the 25th [3]
and 975th empirical 1000-quantiles (permillages),
noted doo2s5(®i) and doo7s(®i). Then, the empir- [4
ical 95% confidence interval fol®; is given by
[00.025(@4); Go.975(6))]-

The empirical 95% confidence interval for all the param-[5]

eters estimates are given in Tab. IV. Fig. 5 illustratesta! t
histograms obtained with the Monte-Carlo method.

« designing new experiment protocolise. seeking the

optimal input signal_ and increasing significantly the
sampling ratefg during the dark phases (laser OFF) of
the test. A new research platform equipped with a laser
diode is currently developed in order to both increase
the signal-to-nose ratio and the degrees of freedom
concerning the choice of the input signal;

« using global sensitivity approaches instead of the local

approach used herein.
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