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Abstract— Photodynamic therapy (PDT) is an alternative
treatment for cancer that involves the administration of a
photosensitizing agent, which is activated by light at a specific
wavelength. This illumination causes a sequence of photoreac-
tions, which - in the presence of molecular oxygen - is supposed
to be responsible for the death of the tumor cells. The PDT
efficiency stems from the optimal interaction between these
three factors (light, drug and oxygen). In this paper, a new
approach is proposed to estimate photophysical parameters
which characterize the ability of a photosensitizing drug to
produce singlet oxygen. This approach is based on system
identification techniques. This model-based method would allow
biologists to estimate all the photophysical parameters from
spectro-fluorescence data generated by only one experiment.
Secondly, contrary to usual techniques which are restricted to
in vitro studies, this approach can be directly applied toin vivo
data.

I. INTRODUCTION

Photodynamic therapy (PDT) [1], [2], [12] is a treatment
of displastic tissues such as cancers. Mainly, it involves
the selective uptake and retention of the photosensitizing
drug (photosensitizer, PS) in the tumor, followed by its
illumination with light of appropriate wavelength. The PS
activation is thought to produce, after multiple intermediate
reactions, singlet oxygen at high doses (in the presence
of molecular oxygen) and thereby to initiate apoptotic and
necrotic death of tumor.

Currently, the efficiency of the photodynamic phase (pro-
duction of singlet oxygen), as well as the comparison of
different PS, are based on three photophysical characteristics:

• the absorption coefficient,σS, of the PS in the spectral
region of the excitation light.σS characterizes the PS-
light interaction;

• the quantum yield of the PS triplet state,ΦT and the
triplet state lifetime,τT ;

• the quantum yield of singlet oxygen production,Φ∆
which characterizes the PS-oxygen interaction.

These photophysical coefficients were till now separately
determined fromin vitro dedicated experiments ([10], [9]),
but they cannot always predict thein vivo cytotoxic action.

In this paper, a model-based method, based on system
identification techniques [14], is proposed as an alternative
and complementary approach for the estimation of PDT pho-
tophysical characteristics. Such an approach could provide
two main benefits: (1) the estimation of the photophysical
coefficients directly fromin vivo experiments and (2) a
significant cut of the experimental cost by decreasing the
number of trials. So far, the estimation of the photophysical
coefficients by system identification techniques has never
been assessed in practice.

Five main difficulties can be addressed for the application
of such a solution toin vivo spectro-fluorescence data:

• the nonlinearity structure of the photopohysical model;
• the large range of possible values (up to four decades)

for the unknown parameters;
• some initial state variables are unknown;
• the lack of information (only one measured variable

over six state variables);
• the limited degrees-of-freedom for the choice of the

laser light stimulus (input variable), see paragraph II-
C for more information about the experimental setup.

A dynamic model of the photoreaction phase, the rela-
tionships between the photophysical characteristics and the
model parameters, and the experimental setup are introduced
in section II. Section III is devoted to the experimetal
modeling methodology while section IV deals with the se-
lection of practically identifiable parameters. The estimation
of the model parameters, the model falsification tests and
the determination of the parameter uncertainty are presented
in sections V, VI and VII respectively. A discussion of the
results is provided before to conclude.

II. PROBLEM STATEMENT

As previously mentioned in the introduction, the interac-
tion between the light (at a specific wavelength) and the PS
already incorporated in the tumor, determines a sequence
of photoreactions which are presumed to have as result the



death of the tumor cells (through the production of singlet
excited oxygen - a very reactive specie).

A. Model Description

Based on the kinetics equations describing the type-II
reactions specific to PDT [1], [2], [7], a nonlinear state-space
model of the intracellular photoreaction process may be
introduced. This model is composed of six state variables and
eleven unknown photophysical parameters, and is described
as follows,
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(1)

wherex(t, p) =
[

[S0] , [S1] , [T1] ,
[

3O2
]

,
[

1O2
]

, [M]
]T

∈R
6 are

the state variables; the light inputuL(t) corresponds the
irradiance signal. The incorporation of PS molecules into
cancer cells is a slow dynamic process, comparatively with
the photoreactions. Accordingly, the PS uptake rate,uP, is
assumed to be null during the experiment,i.e. during a
relatively short period of time,< 1h. The oxygen inputuO(t)
is not manipulated and measured. In this application,uO(t)
is regarded as a disturbance variable. The output noisev(ti)
is assumed to be a realization sequence of independent and
identically distributed gaussian variables at the measurement
times{ti}. p=

[

kISC,kPb,kl ,kf ,kp,kA,kox,kTM,kSM,kT ,γ
]T

∈
R

11 are the unknown parameters of the model, withkf =
kF + kIC, kp = kP + kTS and kl = knr

l + kr
l . Tab. I contains

the model variables description whereas Tab. II presents all
the parameters with their initial guess (see step 2 of the
experimental modeling procedure) and the ones of the state
variables.

B. Photophysical Parameters

The relationships between the model parameters and the
photophysical coefficients are:

kA = σS
hνA

⇒ σS = h ·υA ·kA

ΦT = kISC
kISC+kf

;τT = 1
kISC+kf

Φ∆ = ΦT ·φet =
kISC

kISC+kf
·

kT [3O2]
kT [3O2]+kp

(2)

where h = 6.026· 10−34J · s is Planck’s constant,νA is
the frequency of the incident light,φet is the efficiency
of the energy transfer to molecular oxygen. Note that for
a given concentration of molecular oxygen[3O2], all the

TABLE I

MODEL VARIABLES

Symbol Definition Units

[S0] Photosensitizer ground state mM
[S1] Photosensitizer singlet excited state mM
[T1] Photosensitizer triplet excited state mM

[

3O2
]

Triplet ground - state oxygen mM
[

1O2
]

Singlet excited - state oxygen mM
[M] Cellular targets mM
uP Uptake rate of photosensitising moleculesmM·s−1

uL Irradiance signal W ·cm−2

uO Uptake rate of oxygen molecules mM·s−1

y Fluorescence Intensity a.u

TABLE II

NOMINAL PARAMETER VALUES AND INITIAL CONDITIONS FOR THE

PDT-PHOTOREACTION MODEL

Symbol Definition Values

kA PS absorption rate atuL = 76mW/cm2 19
kPb Photobleaching rate 1.2·108

mM−1s−1

kT Biomolecular rate constant for 105

the reaction of3O2 with T1 mM−1s−1

kf Rate constant for the reactionS1 → S0 2·107s−1

kp Rate constant for the reactionT1 → S0 1250s−1

kISC Rate constant for the reactionS1 → T1 8·107s−1

kl Rate constant for the reaction1O2 →
3 O2 106s−1

kox Bimolecular rate constant for 2.6·109

the reactions1O2 with M mM−1s−1

kSM Bimolecular rate constant for 10−2

the reaction ofS1 with M mM−1s−1

kTM Bimolecular rate constant for 1 mM−1s−1

the reaction ofT1 with M
γ measurement coefficient 43.15 a.u.

[S0]0 Initial condition for [S0] 8.5·10−3 mM
[S1]0 Initial condition for [S1] 0 mM
[T1]0 Initial condition for [T1] 0 mM

[

302
]

0 Initial condition for
[

3O2
]

83·10−3 mM
[

1O2
]

0 Initial condition for
[

1O2
]

0 mM
[M]0 Initial condition for [M] 830·10−3 mM

photophysical coefficients can be deduced fromp, the vector
of the model parameters.

C. Problem statement

As previously pointed out, thein vivo determination ofσS,
ΦT , τT andΦ∆ can be expressed as a problem of identifia-
bility and estimation ofp from the in vivo measurement of
uL andy.

D. Experimental Setup

Fig. 1 shows thein vivo experimental setup. Female
athymic Foxn1 nude mice were used for this study (Harlan,
Gannat, France). The mice were used for tumor implan-
tation when they were 7− 9 weeks old (20− 25g). The
model of human malignant glioma was obtained using U87
cells, as described in [22]. Tumors were treated when they
reached 5± 1mm (15± 5 days after tumor grafting). The
photosensitizing molecule is TPC-Ahx-ATWLPPR [23] and
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Fig. 1. in vitro experimental set up

the administrated dose,uP = 1.75µmol· kg−1, was injected
to the micevia the tail vein. The mice were kept in the
dark for 4h, and anesthetized. Irradiation of tumors was
carried out atλ = 652nm, using a dye laser, pumped with
an argon laser. Light was delivered through an optical fiber
and illuminated the tumor surface over a 1cmdiameter beam
spot. The incident fluence rate on the tumors was previously
evaluated using an optical power meter. The fluence rate
(irradiance)uL(t) is a square wave signal. Its magnitude
reaches 95mW·cm−2 and its period is equal toT = 1mnwith
a 50% duty cycle. The fluorescence intensityy(t) is collected
by a spectrofluorimeter only during the dark phases (laser
off) and with a sampling period of time equal toTs = 7s, i.e.
three points for each dark half cycle (technical limit of the
data acquisition system). The total duration of the experiment
is limited to about 42min.

III. E XPERIMENTAL MODELING METHODOLOGY

The experimental modeling procedure used in this appli-
cation study has been presented in [8]. The latter approach
is composed of six steps,

1) Defining the model structure and assessing its theoret-
ical (or structural) identifiability [14] deals with the
possibility to give an unique value to each parameter
of a mathematical model structure. The uniqueness
of this solution is assessed in an idealized or theo-
retical framework where the process and the model
have identical structures, the data is noise-free, and
where the input signals and the measurement times
can be chosen at will. In this application, the global
structural identifiability of model (1) was checked by
the similarity transformation method.

2) A prior analysis, often based on a literature analysis,
is carried out to provide the initial guess ofp. In
order to improve the numerical properties of the Fisher
Information Matrix (see section IV), a rescaling of the
parameters is done:pi = p0

i ·Θi , with p0 initial guess
for the parameters,Θ the normalized parameters to be
estimated andi = 1, · · · ,11.

3) The third step is devoted to the implementation of the
model into a simulation environment. In this case, the

simulation model is represented by a block-diagram
implemented into Simulinkc© 1.

4) Structural identifiability is a qualitative concept. When
the model is proved structurally identifiable, an ad-
missible experiment has to be selected to collect the
estimation data. The design of optimal experiments
may be regarded as maximizing a measure of iden-
tifiability, thereby transforming the intitial qualitative
problem into a quantitative one, also called practical
identifiability [15], [19]. In a fourth step, a practical
identifiability analysis is locally carried out through
the evaluation of the output sensitivity functions and
the corresponding Fisher Information Matrix [20], [8].
The output sensitivity functions are computed by the
software Diffedgec© which enables the sensitivity anal-
ysis of block diagrams by computer algebra [18].

5) In the next step, the practically identifiable parameters
Θ are selected according to numerical properties of an
empirical Fisher information Matrix.

6) The sixth step deals with the parameter estimation. The
estimation criterion is defined as follows:

J(Θ) =
N

∑
j=1

e(t j ,Θ)T ·e(t j ,Θ) (3)

whereΘ is a subvector ofΘ containing the selected
parameters to be estimated ande(t,Θ) is the output
error defined by:

e(t,Θ) = yS(t)−y(t,Θ)∼ N (0,σ2), (4)

with yS(t) the output system measurement.
{e(t j ,Θ)| j = 1, · · · ,N} is assumed to be a realization
sequence of independent and identically distributed
gaussian variables.{t j | j = 1, · · · ,N} is the sequence
of the measurement time instants.

7) The last step consists in estimating the empirical
probability density functions of the identifiable model
parameters in order to characterize their uncertainty.

1Simulink builds upon Matlabc© , The MathWorks, Inc
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IV. SELECTION OF IDENTIFIABLE PARAMETERS

The selection of the practically identifiable parameters
relies on an empirical Fisher Information Matrix defined by

FIM ∝
N

∑
j=1

(

∂y(t j ,Θ)

∂Θ

)T (

∂y(t j ,Θ)

∂Θ

)

(5)

The number of practically identifiable parameters is given by
the numerical rank of FIM. GivenuL and the measurement
time instants defined in section II-D, the numerical rank of
FIM was equal to 11, meaning that all the parameters are
practically identifiable.

V. PARAMETER ESTIMATION

The parameter estimation step was based on a least squares
method applied to the output error. The minimization of the
estimation criterion (3) with model (1) as a constraint was
solved using an Active-Set algorithm implemented in Matlab.
Parameter estimates are given in Tab. (III). Figure 2 shows
the measured values vs the estimated responses.

VI. M ODEL FALSIFICATION

The model falsification test used herein consists in check-
ing the modeling assumption, stated in section II-A, about the
gaussian distribution of the output residuals. Two statistical
tests were implemented. The first one is a quantilie-quantile
plot and the second test is based on the Pearsons chi-square
test.

Let us firstly formulate the null hypothesis (H0) and the
alternative hypothesis (H1) such that:

{

H0 : e∼ N (0,σ2)
H1 : e 6∼ N (0,σ2)

(6)

where e denotes a random variable of which an observed
sequence is{e(ti)|i = 1, · · · ,N}.

A. Q-Q test

A Quantile-Quantile plot is a graphical method for diag-
nosing differences between the probability distribution of a
statistical population from which a random sample has been
taken and a comparison distribution. Herein, The Q-Q test
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Fig. 3. Q-Q plot of output residuals
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is used for assessing whether or not the output residuals are
approximately normal distributed.

The data are plotted against a theoretical normal distribu-
tion in such a way that the points should form an approximate
straight line. Departures from this straight line indicate
departures from normality. The results are represented in
fig. 3. The normal probability plot shows a reasonably linear
pattern in the center of the data, therefore the null hypothesis
H0 is sustained.

B. Pearsons chi-square test

As shown in Fig. 4, the sequence of output residuals is
discretized into 60 bins. The number of degrees of freedom
is r = 18. The test statistic computed from the observed
frequencies (histogram in Fig.4)χ2 = 30.94 is lower than the
critical valueχ2

α ,r = 32.34. Accordingly, the null hypothesis
cannot be rejected forα = 0.02. In other words, the model
based on the estimated parameters is not falsified.

VII. C RITICAL ANALYSIS OF THE RESULTS

A possible problem with the proposed approach is that the
numerical search may terminate far from the true minimum



TABLE III

PDT(PHASE2) ESTIMATION RESULTS

Parameterpi = p0
i ·Θi kISC kPb kl kf kp kA kox kT M kSM kT γ

Estim. value ˆpi = p0
i · Θ̂i 7.55·107 1.1·108 9.68·105 2.21·107 1.2·103 13.7 2.53·109 0.57 0.05 4.65·104 46.82

TABLE IV

UNCERTAINTY ANALYSIS RESULTS

Parameter 95% confidence interval Parameter
Θi [q0.025(Θi), q0.975(Θi)] pi

Θ11 [1.0541, 1.1156] p11 = γ0 ·Θ11

Θ8 [0.5578, 0.7212] p8 = k0
T M ·Θ8

Θ6 [0.6046, 0.8776] p6 = k0
A ·Θ6

Θ1 [0.7661, 1.2636] p1 = k0
ISC·Θ1

Θ5 [0.8517, 1.3626] p5 = k0
p ·Θ5

Θ7 [0.8227, 1.3471] p7 = k0
ox ·Θ7

Θ4 [0.7653, 1.3682] p4 = k0
f ·Θ4

Θ2 [0.7762, 1.4060] p2 = k0
Pb ·Θ2

Θ3 [0.7806, 1.4539] p3 = k0
l ·Θ3

Θ10 [0.7856, 1.4716] p10 = k0
T ·Θ10

Θ9 [4.6648, 5.4799] p9 = k0
SM ·Θ9

for several reasons, such as inadequate choice of the opti-
mization algorithm coefficients or initial parameter guess, or
trapping in a local minima.

VIII. U NCERTAINTY ANALYSIS

Because of the low signal-to-noise ratio, determining the
optimal values of the parametersΘ with respect to the chosen
criterion [14], [6], [21] is not enough. Herein, a Monte-
Carlo approach was carried out to determine the empirical
probability density functions of the parameter estimates.The
implemented procedure is the following:

• Based on the experimental data, compute a parameter
estimateΘ̂;

• Check the validity of the hypothesis on the noisee (see
section VI);

• Generate vectors of fictitious data by running the model
with parameterŝΘ for Nsim = 1000 realizations of i.i.d.
N (0, σ̂2) variables ˆv(ti) with

σ̂2 =
1

N−1

N

∑
i=1

e(ti)
2 (7)

• EstimateNsim series of estimated parametersΘ̃ based
on each of these vectors of fictitious data ˜y and using
the same method as for the experimental data;

• Given the Nsim estimates ofΘi, compute the 25th
and 975th empirical 1000-quantiles (permillages),
noted q0.025(Θi) and q0.975(Θi). Then, the empir-
ical 95% confidence interval forΘi is given by
[q0.025(Θi); q0.975(Θi)].

The empirical 95% confidence interval for all the param-
eters estimates are given in Tab. IV. Fig. 5 illustrates all the
histograms obtained with the Monte-Carlo method.

IX. CONCLUSION

In this study, the estimation of the photophysical pa-
rameters included in photoreactions induced by PDT is
examined. This objective has never been reached in anin vivo
framework. An original model-based approach, expressed
as a system identification problem, is proposed. The latter
approach involves to study the practical identifiability ofthe
photoreaction model and the estimation of its parameters.
The main difficulties of this inverse problem are (i) the
non linearity of the model structure and (ii) the lack of
information in the experimental data (small data sets, small
sampling rate, no measurement during the treatment phase
(Laser ON), few degrees of freedom concerning the choice
of the input signal and only one output variable for six
state variables). The local practical identifiability testis
based on the conditioning of the Fisher Information Matrix.
The parameter estimation relies on a least-squares method
applied to the output error. Despite the previously mentioned
difficulties, the results obtained in practice fromin vivo
experiments have shown promising results.

X. PERSPECTIVES

Two main developments could enhance the accuracy of
the estimates:

• designing new experiment protocols,i.e. seeking the
optimal input signaluL and increasing significantly the
sampling ratefS during the dark phases (laser OFF) of
the test. A new research platform equipped with a laser
diode is currently developed in order to both increase
the signal-to-nose ratio and the degrees of freedom
concerning the choice of the input signal;

• using global sensitivity approaches instead of the local
approach used herein.
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