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Abstract

The multi-frequency dynamical behavior is a feature of mtathnical systems. Multiple shaft
rotating machinery, subject to simultaneous unbalancess at different speeds is a particular
case of such systems. Common methods of steady state schméanot valid when the addressed
systems have non-linear properties. This study presengmarglized version of harmonic balance
coupled with arc-length continuation, developed in ordestuidy non-linear responses of modified
Jeffcott rotor system subject to multiple unbalances. Nurady, the non-linear terms are taken into
account via an AFT (alternating frequency-time domain)cpedure, involving multi-dimensional
FFT. An improvement to the AFT approach is proposed. The @kamddressed in this paper is a
modified Jeffcott rotor with piece-wise radial stiffness.

INTRODUCTION

Numerous technical systems are subject to multi-frequenxcjtation: gears, multi-spool aircraft en-
gines, electrical circuits. The excitation in these systésncomposed of several harmonic terms with
frequencies which have not necessarily integer or evearratiratio between them. In case of presence
of non-linearities, conventional frequency domain methaik unable to provide the dynamical response
for such cases. One of the approaches to treat multi-frexyugyrstems is a generalization of the harmonic
balance in rotor systems [SLO7, PM97] for multi-dimensidirae and frequency domains.

Chua and Ushida [CU81] have presented in 1981 a generalizafithe harmonic balance method
in application to multi-frequency electrical circuits. Ndinear terms have been processed by trigono-
metrical collocation-type procedure. In 1983 Lau et Chellu@g83] have adjusted his method to incre-
mental harmonic balance formulation. In 1996 and 1997, rieshod was further developed by Kim
and Noah through coupling it with an AFT (alternative tinmeguency domain) approach and using
FFT [KN96,KC97]. Pusenjak and Oblak [PO04] have preseme200D4 a multi-dimensional harmonic
balance method with arc-length continuation.

Multiple-rotor systems with intershaft bearings, such &sraft engines, derived equipment or test
rigs, are subject to multi-frequency excitation due to salvenbalances present simultaneously [Hib75,
LF97, Ehr98, GSTNO6]. One of sources of non-linearitiesunrssystems is the utilization of rolling
bearings that implies radial clearance and non-linearazrstiffness [Har66, VST08, GSTNO7].

In this study we will address the non-linear rotordynami€s onodified Jeffcott rotor model under
quasi-periodic excitation symbolizing the presence of al dmmbalance. The dynamic response of this



system is computed by the numerical algorithm based on a-gigiensional generalization of harmonic
balance and continuation. A conventional harmonic balamethod is first presented in view of intro-
ducing the framework, providing a basis for further geneedlon and proposing an improvement to
the AFT technique. After the presentation of the numericathnd, we consider the influence of the
presence of two components of the excitation on the unbaleegponse of the studied system.

1 NUMERICAL METHOD: GENERALIZED HARMONIC BALANCE

Equation of motion. The method developed in this study addresses structuranigs systems, de-
scribed by the following matricial equation of size

Mx + Dx + Kx + fNL(X) = g(t), (l)

whereM, D, andK stand for mass, generalized damping and stiffness matéspgctivelyx, fy , g,
mean generalized displacements, non-linear terms anth8&oi vectors respectively, is the number of
degrees of freedom.

Conventional harmonic balance. A great deal of technical systems feature periodic osoifabe-
havior that can be expressed by simple Fourier series:

x(t) = Z ay, cos kwt + by sin kwt, 2
k=0

Here the tilde sign7 is used to denote the frequency domain variables. The meesef a particular
frequency makes it interesting to introduce a normalizegetvariable

T = wt. 3)

A number of applied methods exists for extracting motionthefform (2), the harmonic balance is one
of the most spread.

By the following, the inverse discrete Fourier transform {@ll be denoted by means of the matrix
T(7) composed of sines and cosines up to ol¥emwhich producesVy = 2N + 1 harmonic compo-
nents:

x(1) = T(7)%, (4)

where the vectok (size Ny n) is composed of the componentszoéndb in accordance withl
The substitution of the approximation (4) in the equationnadtion (1), followed by a Galerkin
projection,

2w
0*T oT -~
0

results in a system of non-linear algebraic equations wi#ts unknowns:

Lx +fa (X)) —g = (= 0). (6)



Here L. stands for the linear part of the equation (dynamic stiffnesrresponding to each harmonic
component):

2 L% o ... 0
i ’ o L .. 0
L= /TT(uﬂMa@_T + wDaaT +KT)dr = : : ) : ’ 7)
i 0 0 LV}
. 2 .
0 _ k. 10_ | K-(w)™M jwD .
L K; L [ _iwD K~ (jw)?M |’ ji=1,.,N, (8)

g andf correspond to excitation end non-linear terms:
/ T'gdr, fy (% / Ty (TX) dr. (9)

The non-linear algebraic equation (6) can be solved by a dbielike method. The non-linear ternfig,

as well as their derivative%% can be computed in the time domain by an AFT procedure. FFTheay
used for the passage from the time domain to the frequencyaitiom

% 5 x(t) — (%) % fu (). (10)

As for the derivatives matrix, it can be constructed columrcblumn:

: fuL (X + ejAz) — iy (X)
ofy NL J NL . o
[82—] = [ AL ]Z, i,7=1,...,Ngn. (12)

(%]

with i, j indicating row and column in the matrix; unit vector inith direction andAz small increment.
When the number of non-linear DORg, is smaller tham, the computation of (11) may be restricted
to the respective columns and lines. The number of FFT catioms implied in such a procedure is
proportional to( Nznne )?.

This approach, limited to the periodic motions, can be ederto a broader class of problems.

Multi-dimensional time and frequency domain.  Many types of technical systems are known to
have such dynamical behavior that can be represented bypteufourier series with\/ > 1 basic
frequencies:

o
x(t) = Z ay cos(k, w)t + bysin(k, w)t, w = [wy,...,wp]’ € RM. (12)
kezM

Here the vectow is the frequency basi% stands for the vectorial harmonic indexes dnd) denotes
the scalar product. One of the approaches to such functaiesconside(¢) as an equivalent function
x(7) of M time variables in a/-dimensional time domaim = [y, ...7as] = wt, 27-periodic in each
component of the hyper-time:

x(t) = x(7) = x(wt) (13)



Figure 1: HYPERTIME CONCEPTS RELATED TO A BI-PERIODIC MOTNO

The time derivatives involved by such hyper-time varialdesreformulated as follows:

. of ofor of
For M = 2, the bi-periodic motion (12) covers the invariant torushe phase space (Fig. 1). For the
sake of clarity of the presentation, the bar sign referrimghie multi-dimensional time domain will be
omitted by the following. This generalization may as wellgeformed with the series representation
(12). The truncation to the harmoni€¢ implies the presence @¥; harmonics:

(2N +1)M +1

NH: 2 )

(15)

Generalized harmonic balance. By applying the harmonic representation (12) to the equatfomo-
tion (1) and by projecting it on the same harmonic functiopsliSalerkin procedure analogous to (5),
we obtain the harmonic balance equation similar to (6):

Lk + fyL (%) — g =T (= 0); (16)
whereL is modified for the new harmonic contents considered:
L% o ... 0
0 Lik} | 0
0 0 .. Liog-)

K- (kj7w)2M (kjvw)D

0y _ ) _
L K, L™ ~(kj,w)D K — (kj,w)?M |’

j=1,..,Ng—1. (18)
The AFT approach can be generalized by the usé/eflimensional FFT so as to apply to thid-
dimensional hyper-time period.

As compared to the approach, described by (11) a way to aatekie computation of the derivatives
matrix can be developed by taking advantage of the cortlzddure of the coefficients of Fourier series
for fy. andx. To do so in terms of FFT, consider the following complex esgntation:

Pl omilj 3
x<j>=%Ze v (alt - apM), (19)
=0
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(20)

The derivatives of the terms @&th harmonic term ofy, with respect to the antth harmonic term ok

read as follows

aflfllli} _ — _Qﬂ—;kj afNL ai(j) (21)
oxilr < ox | .. oxiy’
j=0 X=X()
or, in a more detailed way, considagh DOF of fiL and;jth DOF ofxpy :
8C{k} p 1 of
i =i (5 5, = (5 @
94y 0l dx=x(,) P
8C{k} p 1 Of
[Z]l = _ZCOS <27qu> [ NL[Z} sm( 2_q> (23)
8b[{]} ax[] X=X (g) p
aaky -l of,
ffg} = —Zsm<27ﬂ€q> [8NL[Z} (—2 a ) (24)
8am X5 Jx= () p
aatky p-l of,
= 13 i (—2”]“1) [ 8””’]} sm( 2md! q) (25)
withi,j =1,...,nandk,l =0,..., N. By introducing the notation
15~ —2mkl [Ofy 1
INDIERS w [_M] , (26)
[i4] plz(; Ox(j1 x=%,
after trigonometric transformations, the relations (425} can be rewritten as follows
ekt
[ _ {k+1} {k—1},
g = Rely +Relp; (27)
4y
_{k}
0% _ [ A g Al 28)
ab[{J{]} (1] (1]
q{k}
od; C I A Al (29)
85[”]} [i4] [i]
J
odr
— 0 — ReaAl"H _Realt-t (30)
8b{l} [47] (7]

(5]

Thus, the number of FFT computations can be reduced thanksititization of the same transform
(26). This technique is particularly interesting when tamigstiffness in time domain is known analyti-
cally.



Figure 2: MODIFIED JEFFCOTT ROTOR MODEL

In order to ensure the proper path following on the responsesg arc-length continuation is used. It
consists in controlling the length of curvilinear st&s along the response curvgr). To this end, the
solution of the non-linear equation (16) is coupled with estlangth continuation condition:

. )
% J+1 B 1’
17 v
Herev is the control parameter and the superscrjpist 1 denote the numbers of considered consecutive
points on the response curve. The step gizas adjusted according to the convergence of previous steps.
The expression (31) augments the system (16) so one camileteihe value of. In our study, the

control parameter is equal to the spin speed of one of twasptbe ratio between the two spin speeds
is constant.

—As?=0. (31)




2 NUMERICAL EXAMPLE

Consider the following elementary 2 DOF example consisteal modified Jeffcott rotor, mounted in a
piecewise-linear pedestal and subject to two unitary wartas (Fig. 2), rotating at speeds w» with

2o Ve (32)

w2

The equation of motion (1) takes the following form for thystem:

[ (2] S om e ] o oo

with the radial piecewise linear stiffness

=0k (1-2)2 ],
and the external excitation vector composed by two unbalémrces
9| coswit 9 | coswat |
g(t) =wi [ sinwqt } T [ sin wot ] ’ (35)

r = /22 + y?; h(.) Heaviside’s step functionp = 1, ky = 1, ko = 5, ¢ = 0.1, § = 2 scalar mass,
linear and non-linear stiffness, damping and radial cleeggparameters.

The system (33) has been solved by multidimensional harroaliance up taV = 7 in order to
obtain a solution converged witN. The comparison between the speed of computations witerdiit
AFT procedures ((11) vs. (26-30)) in terms of MATLAB CPU tiryields a reduction factor 1.5 to 2
thanks to the proposed approach.

Fig. 2 shows the response curve of this system in terms of gicbd&an norm of the vector of
harmonic amplitudes (DOF 1) versus the excitation frequengy or s (curvilinear co-ordinate, see
(31), this presentation “unfolds” the response curve). kég points of the response are denoted by
letters A, B, C, D, E in order to associate them between twatshaOne can see on the chart two
principal peaks (B and D) corresponding to the harmonic aomepts{1, 0} and{0, 1}, as well as two
additional peaks (A and E) due to internal resonances: thgoaents{2,-1} and{-2,1} are the most
excited on these peaks.

A numerical integration has been undertaken in the vicioftgoints A,B,C and D in order to test the
observability of the obtained solutions (see Fig. 4, HBMuson by harmonic balance, TM: solution
by time marching). As one may remark on all the plots of Fig.th& response is not periodic as in
case of a conventional harmonic balance solution. The sitiomis in points A and C exhibit significant
mismatching between HBM and TM. The point C corresponds tBlBM solution that is “classically”
unstable so the TM tends to a stable solution that has anathglitude. The computations for the points
B and D (near the top of the peak&s|| > 25 ) show a very good resemblance between the HBM and
TM results.

Finally, Fig. 5—7 show the coefficients of the harmonic tephthe response. Fig. 5 and 6 show the
fundamental terms with respect to each excitation compiphena andb, in following cases:

e guasi-periodic excitation according to (35),

e periodic excitation corresponding to the first term of (36)yp
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Figure 3: RESPONSE CURVES

Alw =1.2951, s =9.3653 B:w, =2.3709, s = 68.992

D:w, =3.3547, s = 169.0439

Figure 4: TIME HISTORY DETAIL (— HBM, - - TM)
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Figure 5: TERM{1, 0} COEFFICIENTS FOR QUASI-PERIODIC AND PERIODIC EXCITATION

e periodic excitation corresponding to the second term of (Bty.

On Fig. 5, one can remark a discrepancy over the range [1.5, 3.5] that highlights the interaction of
the principal harmonic components of response: the eiamitatt.w, modifies the magnitude of response
atw;. Fig. 6 puts forward analogous dissimilarity due to the iefice of the excitation at; on the
response atvo, especially forw; € [1, 2.5]. As shown on Fig. 7, the composite components are
responsible for the secondary resonances;at 1.3 andw; = 4 (which correspond to points A and E
on Fig. 2).

CONCLUSION

A generalized harmonic balance method using AFT approadhaararc-length continuation is devel-
oped. This method is applied to a rotordynamic problem ctediof a modified Jeffcot rotor with

a piecewise linear radial stiffness under quasi-periodittation by two unbalance-type forces. The
response is quasi-periodic and strongly non-linear. I gatward mutual influence of different com-
ponents of resonance due to non-linear coupling. Comloinagsonances are also observed on mixed
components of the response. The verification by time magchés shown that with help of continuation
procedure, the stable segments of the response curve hamecbmputed as well as the unstable ones.
The improvement of the FFT-based AFT procedure has allowéalf the computation time.
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