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Abstract

The multi-frequency dynamical behavior is a feature of manytechnical systems. Multiple shaft
rotating machinery, subject to simultaneous unbalances spinning at different speeds is a particular
case of such systems. Common methods of steady state solution are not valid when the addressed
systems have non-linear properties. This study presents a generalized version of harmonic balance
coupled with arc-length continuation, developed in order to study non-linear responses of modified
Jeffcott rotor system subject to multiple unbalances. Numerically, the non-linear terms are taken into
account via an AFT (alternating frequency-time domain) procedure, involving multi-dimensional
FFT. An improvement to the AFT approach is proposed. The example addressed in this paper is a
modified Jeffcott rotor with piece-wise radial stiffness.

INTRODUCTION

Numerous technical systems are subject to multi-frequencyexcitation: gears, multi-spool aircraft en-
gines, electrical circuits. The excitation in these systems is composed of several harmonic terms with
frequencies which have not necessarily integer or even rational ratio between them. In case of presence
of non-linearities, conventional frequency domain methods are unable to provide the dynamical response
for such cases. One of the approaches to treat multi-frequency systems is a generalization of the harmonic
balance in rotor systems [SL07,PM97] for multi-dimensional time and frequency domains.

Chua and Ushida [CU81] have presented in 1981 a generalization of the harmonic balance method
in application to multi-frequency electrical circuits. Non-linear terms have been processed by trigono-
metrical collocation-type procedure. In 1983 Lau et Cheung[LC83] have adjusted his method to incre-
mental harmonic balance formulation. In 1996 and 1997, thismethod was further developed by Kim
and Noah through coupling it with an AFT (alternative time-frequency domain) approach and using
FFT [KN96, KC97]. Pusenjak and Oblak [PO04] have presented in 2004 a multi-dimensional harmonic
balance method with arc-length continuation.

Multiple-rotor systems with intershaft bearings, such as aircraft engines, derived equipment or test
rigs, are subject to multi-frequency excitation due to several unbalances present simultaneously [Hib75,
LF97, Ehr98, GSTN06]. One of sources of non-linearities in such systems is the utilization of rolling
bearings that implies radial clearance and non-linear contact stiffness [Har66,VST08,GSTN07].

In this study we will address the non-linear rotordynamics of a modified Jeffcott rotor model under
quasi-periodic excitation symbolizing the presence of a dual unbalance. The dynamic response of this



system is computed by the numerical algorithm based on a multi-dimensional generalization of harmonic
balance and continuation. A conventional harmonic balancemethod is first presented in view of intro-
ducing the framework, providing a basis for further generalization and proposing an improvement to
the AFT technique. After the presentation of the numerical method, we consider the influence of the
presence of two components of the excitation on the unbalance response of the studied system.

1 NUMERICAL METHOD: GENERALIZED HARMONIC BALANCE

Equation of motion. The method developed in this study addresses structural dynamics systems, de-
scribed by the following matricial equation of sizen:

Mẍ+Dẋ+Kx+ fNL(x) = g(t), (1)

whereM, D, andK stand for mass, generalized damping and stiffness matricesrespectively,x, fNL , g,
mean generalized displacements, non-linear terms and excitation vectors respectively,n is the number of
degrees of freedom.

Conventional harmonic balance. A great deal of technical systems feature periodic oscillatory be-
havior that can be expressed by simple Fourier series:

x(t) =
∞
∑

k=0

ãk cos kωt+ b̃k sin kωt, (2)

Here the tilde sign (̃) is used to denote the frequency domain variables. The presence of a particular
frequency makes it interesting to introduce a normalized time variable

τ = ωt. (3)

A number of applied methods exists for extracting motions ofthe form (2), the harmonic balance is one
of the most spread.

By the following, the inverse discrete Fourier transform (2) will be denoted by means of the matrix
T(τ) composed of sines and cosines up to orderN , which producesNH = 2N + 1 harmonic compo-
nents:

x(τ) = T(τ)x̃, (4)

where the vector̃x (sizeNHn) is composed of the components ofã andb̃ in accordance withT
The substitution of the approximation (4) in the equation ofmotion (1), followed by a Galerkin

projection,
2π
∫

0

TT
(

ω2M
∂2T

∂τ2
x̃+ ωD

∂T

∂τ
x̃+KTx̃+ f̃NL(Tx̃)−Tg̃

)

dτ = 0; (5)

results in a system of non-linear algebraic equations withx̃ as unknowns:

Lx̃+ f̃NL(x̃)− g̃ = r̃ (= 0). (6)



HereL stands for the linear part of the equation (dynamic stiffness corresponding to each harmonic
component):

L =

2π
∫

0

TT(ω2M
∂2T

∂τ2
+ ωD

∂T

∂τ
+KT)dτ =











L{0} 0 . . . 0

0 L{1} . . . 0
...

...
. . .

...
0 0 . . . L{N}











, (7)

L{0} = K; L{j} =

[

K− (jω)2M jωD

−jωD K− (jω)2M

]

, j = 1, ..., N , (8)

g̃ andf̃ correspond to excitation end non-linear terms:

g̃ =

2π
∫

0

TTg dτ, f̃NL(x̃) =

2π
∫

0

TTfNL(Tx̃) dτ. (9)

The non-linear algebraic equation (6) can be solved by a Newton-like method. The non-linear termsf̃NL

as well as their derivatives∂ f̃NL
∂x̃

can be computed in the time domain by an AFT procedure. FFT maybe
used for the passage from the time domain to the frequency domain:

x̃
Tx̃−→ x(t) → fNL(x)

FFT−→ f̃NL(x̃). (10)

As for the derivatives matrix, it can be constructed column by column:

[

∂ f̃NL

∂x̃

]

ij

=

[

f̃NL(x̃+ ej∆x)− f̃NL(x̃)
]

i

∆x
, i, j = 1, ..., NHn. (11)

with i, j indicating row and column in the matrix,ei unit vector inith direction and∆x small increment.
When the number of non-linear DOFsnNL is smaller thann, the computation of (11) may be restricted
to the respective columns and lines. The number of FFT calculations implied in such a procedure is
proportional to(NHnNL)

2.
This approach, limited to the periodic motions, can be extended to a broader class of problems.

Multi-dimensional time and frequency domain. Many types of technical systems are known to
have such dynamical behavior that can be represented by multiple Fourier series withM > 1 basic
frequencies:

x(t) =

∞
∑

k∈ZM

ãk cos(k,ω)t+ b̃k sin(k,ω)t, ω = [ω1, ..., ωM ]T ∈ R
M . (12)

Here the vectorω is the frequency basis,k stands for the vectorial harmonic indexes and( , ) denotes
the scalar product. One of the approaches to such functions is to considerx(t) as an equivalent function
x̄(τ) of M time variables in aM -dimensional time domainτ = [τ1, ...τM ] = ωt, 2π-periodic in each
component of the hyper-timeτ :

x(t) = x̄(τ) = x̄(ωt) (13)
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Figure 1: HYPERTIME CONCEPTS RELATED TO A BI-PERIODIC MOTION

The time derivatives involved by such hyper-time variablesare reformulated as follows:

ḟ =
∂f

∂t
=

∂ f̄

∂τ

∂τ

∂t
=

∂ f̄

∂τ
ω. (14)

ForM = 2, the bi-periodic motion (12) covers the invariant torus in the phase space (Fig. 1). For the
sake of clarity of the presentation, the bar sign referring to the multi-dimensional time domain will be
omitted by the following. This generalization may as well beperformed with the series representation
(12). The truncation to the harmonicN implies the presence ofNH harmonics:

NH =
(2N + 1)M + 1

2
, (15)

Generalized harmonic balance. By applying the harmonic representation (12) to the equation of mo-
tion (1) and by projecting it on the same harmonic functions by a Galerkin procedure analogous to (5),
we obtain the harmonic balance equation similar to (6):

Lx̃+ f̃NL(x̃)− g̃ = r̃ (= 0); (16)

whereL is modified for the new harmonic contents considered:

L =











L{0} 0 . . . 0

0 L{k1} . . . 0
...

...
. . .

...
0 0 . . . L{kNH−1}











, (17)

L{0} = K, L{kj} =

[

K− (kj ,ω)2M (kj ,ω)D
−(kj,ω)D K− (kj ,ω)2M

]

, j = 1, ..., NH − 1 . (18)

The AFT approach can be generalized by the use ofM -dimensional FFT so as to apply to theM -
dimensional hyper-time period.

As compared to the approach, described by (11) a way to accelerate the computation of the derivatives
matrix can be developed by taking advantage of the correlated nature of the coefficients of Fourier series
for fNL andx̃. To do so in terms of FFT, consider the following complex representation:

x̄(j) =
1

p

p−1
∑

l=0

e
2πilj
p

(

ã{l} − ib̃{l}
)

, (19)



f̄(j) =
1

p

p−1
∑

l=0

e
2πilj
p

(

c̃{l} − id̃{l}
)

. (20)

The derivatives of the terms ofkth harmonic term of̃fNL with respect to the andlth harmonic term of̃x
read as follows

∂ f̃
{k}
NL

∂x̃{l}
=

p−1
∑

j=0

e
−2πikj

p

[

∂fNL

∂x

]

x=x̄(j)

∂x̄(j)

∂x̃{l}
, (21)

or, in a more detailed way, considerith DOF of f̃NL andjth DOF ofx̃NL :

∂c̃
{k}
[i]

∂ã
{l}
[j]

=
1

p

p−1
∑

q=0

cos

(

2πkq

p

)[

∂fNL[i]

∂x[j]

]

x=x̄(q)

cos

(

2πql

p

)

; (22)

∂c̃
{k}
[i]

∂b̃
{l}
[j]

=
1

p

p−1
∑

q=0

cos

(

2πkq

p

)[

∂fNL[i]

∂x[j]

]

x=x̄(q)

sin

(

−2πql

p

)

; (23)

∂d̃
{k}
[i]

∂ã
{l}
[j]

=
1

p

p−1
∑

q=0

sin

(

2πkq

p

)[

∂fNL[i]

∂x[j]

]

x=x̄(q)

cos

(

2πql

p

)

; (24)

∂d̃
{k}
[i]

∂b̃
{l}
[j]

=
1

p

p−1
∑

q=0

sin

(

2πkq

p

)[

∂fNL[i]

∂x[j]

]

x=x̄(q)

sin

(

−2πql

p

)

(25)

with i, j = 1, . . . , n andk, l = 0, . . . , N . By introducing the notation

∆
{k}
[ij]

def
=

1

p

p−1
∑

l=0

e
−2πikl

p

[

∂fNL[i]

∂x[j]

]

x=x̄(l)

, (26)

after trigonometric transformations, the relations (22)–(25) can be rewritten as follows

∂c̃
{k}
[i]

∂ã
{l}
[j]

= Re∆
{k+l}
[ij] +Re∆

{k−l}
[ij] ; (27)

∂c̃
{k}
[i]

∂b̃
{l}
[j]

= Im∆
{k+l}
[ij] − Im∆

{k−l}
[ij] ; (28)

∂d̃
{k}
[i]

∂ã
{l}
[j]

= −Im∆
{k+l}
[ij] − Im∆

{k−l}
[ij] ; (29)

∂d̃
{k}
[i]

∂b̃
{l}
[j]

= Re∆
{k+l}
[ij] − Re∆

{k−l}
[ij] . (30)

Thus, the number of FFT computations can be reduced thanks toreutilization of the same transform
(26). This technique is particularly interesting when tangent stiffness in time domain is known analyti-
cally.
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Figure 2: MODIFIED JEFFCOTT ROTOR MODEL

In order to ensure the proper path following on the response curve, arc-length continuation is used. It
consists in controlling the length of curvilinear step∆s along the response curvẽx(ν). To this end, the
solution of the non-linear equation (16) is coupled with an arc-length continuation condition:

∥

∥

∥

∥

∥

[

x̃

ν

]j+1

−
[

x̃

ν

]j
∥

∥

∥

∥

∥

2

−∆s2 = 0. (31)

Hereν is the control parameter and the superscriptsj, j+1 denote the numbers of considered consecutive
points on the response curve. The step size∆s is adjusted according to the convergence of previous steps.

The expression (31) augments the system (16) so one can determine the value ofν. In our study, the
control parameter is equal to the spin speed of one of two rotors, the ratio between the two spin speeds
is constant.



2 NUMERICAL EXAMPLE

Consider the following elementary 2 DOF example consisted of a modified Jeffcott rotor, mounted in a
piecewise-linear pedestal and subject to two unitary unbalances (Fig. 2), rotating at speedsω1, ω2 with

ω1

ω2
=

√
2. (32)

The equation of motion (1) takes the following form for this system:

m

[

1 0
0 1

] [

ẍ

ÿ

]

+ c

[

1 0
0 1

] [

ẋ

ẏ

]

+ k1

[

1 0
0 1

] [

x

y

]

+ fNL(x) = g(t). (33)

with the radial piecewise linear stiffness

fNL(x) =

[

h(r − δ)k2
(

1− δ
r

)

x

h(r − δ)k2
(

1− δ
r

)

y

]

; (34)

and the external excitation vector composed by two unbalance forces

g(t) = ω2
1

[

cosω1t

sinω1t

]

+ ω2
2

[

cosω2t

sinω2t

]

; (35)

r =
√

x2 + y2; h(.) Heaviside’s step function;m = 1, k1 = 1, k2 = 5, c = 0.1, δ = 2 scalar mass,
linear and non-linear stiffness, damping and radial clearance parameters.

The system (33) has been solved by multidimensional harmonic balance up toN = 7 in order to
obtain a solution converged withN . The comparison between the speed of computations with different
AFT procedures ((11) vs. (26–30)) in terms of MATLAB CPU timeyields a reduction factor 1.5 to 2
thanks to the proposed approach.

Fig. 2 shows the response curve of this system in terms of the euclidian norm of the vector of
harmonic amplitudes̃x (DOF 1) versus the excitation frequencyω1 or s (curvilinear co-ordinate, see
(31), this presentation “unfolds” the response curve). Thekey points of the response are denoted by
letters A, B, C, D, E in order to associate them between two charts. One can see on the chart two
principal peaks (B and D) corresponding to the harmonic components{1, 0} and{0, 1}, as well as two
additional peaks (A and E) due to internal resonances: the components{2,-1} and{-2,1} are the most
excited on these peaks.

A numerical integration has been undertaken in the vicinityof points A,B,C and D in order to test the
observability of the obtained solutions (see Fig. 4, HBM: solution by harmonic balance, TM: solution
by time marching). As one may remark on all the plots of Fig. 4,the response is not periodic as in
case of a conventional harmonic balance solution. The simulations in points A and C exhibit significant
mismatching between HBM and TM. The point C corresponds to anHBM solution that is “classically”
unstable so the TM tends to a stable solution that has anotheramplitude. The computations for the points
B and D (near the top of the peaks,‖x̃‖ > 25 ) show a very good resemblance between the HBM and
TM results.

Finally, Fig. 5–7 show the coefficients of the harmonic termsof the response. Fig. 5 and 6 show the
fundamental terms with respect to each excitation component, i.e. ã andb̃, in following cases:

• quasi-periodic excitation according to (35),

• periodic excitation corresponding to the first term of (35) only,
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Figure 3: RESPONSE CURVES
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Figure 5: TERM{1, 0} COEFFICIENTS FOR QUASI-PERIODIC AND PERIODIC EXCITATION

• periodic excitation corresponding to the second term of (35) only.

On Fig. 5, one can remark a discrepancy over the rangeω1 ∈ [1.5, 3.5] that highlights the interaction of
the principal harmonic components of response: the excitation atω2 modifies the magnitude of response
at ω1. Fig. 6 puts forward analogous dissimilarity due to the influence of the excitation atω1 on the
response atω2, especially forω1 ∈ [1, 2.5]. As shown on Fig. 7, the composite components are
responsible for the secondary resonances atω1 = 1.3 andω1 = 4 (which correspond to points A and E
on Fig. 2).

CONCLUSION

A generalized harmonic balance method using AFT approach and an arc-length continuation is devel-
oped. This method is applied to a rotordynamic problem consisted of a modified Jeffcot rotor with
a piecewise linear radial stiffness under quasi-periodic excitation by two unbalance-type forces. The
response is quasi-periodic and strongly non-linear. It puts forward mutual influence of different com-
ponents of resonance due to non-linear coupling. Combination resonances are also observed on mixed
components of the response. The verification by time marching has shown that with help of continuation
procedure, the stable segments of the response curve have been computed as well as the unstable ones.
The improvement of the FFT-based AFT procedure has allowed to half the computation time.
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ã
ã
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