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Abstract

The purpose of this paper is to investigate the use oRtheand 3x super-harmonic components for
detecting the presence of a single transverse breathicy ora non-linear rotor system. This procedure
is based on the detection of the super-harmonic compongétite non-linear dynamical behaviour at the
associated sub-critical resonant peaks.

The non-linear behaviour of the rotor system with a bregthirack is briefly analysed numerically: it
will be illustrated that the effects of the crack size andalan induce the variation of non-linear re-
sponses and the emerging of new resonance - antiresonaake qfethe cracked rotor at second, third
and fourth harmonic component. Then, the influence of thekeumbalance interactions and more par-
ticularly the relative orientation between the front craakd the unbalance are also undertaken with
considerations of various crack depths, and unbalance itndgs. It is demonstrated that for a given
crack depth, the unbalance does not only affect the vibraimplitude of thel x amplitudes, but also
the 1 and% sub-critical resonant peaks. Finally, it is illustratecitlthe emerging of super-harmonic
components provides useful information on the presenceackcand may be used on an on-line crack
monitoring rotor system. Using this methodology, the débecof small levels of damage may be easily
undertaken.

Keywords: cracked detection, rotor system, non-linearatibn, super-harmonic components.

1 Introduction

Detection of damage in rotor systems is an important contemngineering communities. The im-
portance of early detection of cracks has led to continudfete due to the fact that unpredictable
occurrence of damage may cause catastrophic failure. kng difficult but also highly desirable to
pursue effective engineering solutions to detect and éottae damage situation in rotating systems at
the earliest possible stage. Reviews on the dynamical mivasf rotors with transverse crack were
published by Wauer [1], Gasch [2] and Dimarogonas [3].

During the past several decades, significant amount of refséas been conducted in the area of crack
detection in systems using only theoretical modelling rmétf—11], combined both theoretical and
experimental methods [12—-14] or only experimental methds].[ The main idea of these approaches
is that a change in a rotor system due to damage crack willfestritself as changes in the rotor dy-
namic behaviour: first of all, the presence of a transveraekcinduces a slight decrease of the natural
frequencies [2, 10, 16]. Secondly, resonances appear Weatational speeds of the shaft re%chnd

% of the critical speeds of the rotor system. Therefore, with increase of the crack depth, tg-leand



J-J. Sinou

% sub-critical resonant peaks increase [6,11,17]. Finallyne researchers [18] indicated that the shaft
executes two and three loops per shaft revolution a%tbed% sub-critical speeds, respectively.

In most of the studies for crack detection in rotor systerasearchers used changes in natural frequen-
cies and evolution of the non-linear behaviour of the sys&rine super-harmonic components as the
diagnostic tools. In this paper it will be shown that an appiaie use of the super-harmonic compo-
nents may be useful for crack detection in rotor systems. hBgtesent study attempts to propose a
complete analysis of the crack-unbalance interactionfiestiper-narmonic components at g'nand%
sub-critical resonant peaks. Numerical example will bedemted on variety of damage location, crack
size and unbalance parameters (magnitude and relativetaticen with the front crack) to verify the
suitability of the use of the super-harmonic componentsritento detect the presence of a transverse
crack in rotor. One of the advantages of the proposed apprisathat the emerging of super-harmonic
components may be easily undertaken for the detection chekdn rotating shafts, especially in the
early stage of the damage where the ability to discriminhtenges of modal parameters caused by dam-
age from those caused by other environmental conditiongdeis very difficult.

The paper is set up as follows: firstly, the description of tlo-linear rotor system and the model-
ing of the breathing crack are investigated. Then, the et periodic response of the cracked rotor
is undertaken by approximating the non-linear dynamic bpdated Fourier series with harmonics.
Moreover, the state vectors of the complete cracked rotbibeipartitioned into subvectors relating to
the Fourier components which are associated with the degrfefeeedom at the crack location, and the
Fourier components which are associated with the otheneds@f freedom. Then, the emerging of the
2x and3x super-harmonic components for detecting the presencerafch ¢s investigated. Numerical
examples including various crack parameters (location geyth) and unbalance parameters (magni-
tude and orientation with the crack) are considered in otdaralidate the detection of a crack based
on the resonance peaks at theor % sub-critical resonances and the determination of the &sdc
super-harmonic frequency components.

2 Themodd of the cracked rotor

In this study, the rotor is composed of a shaft with one dishatmid-span, as illustrated in Figure 1.
All the values of the physical parameters are given in Table 1

2.1 Shaft dements

The shatft is discretized into 10 Timoshenko beam finite efemwith four degrees of freedoms at each
node (two lateral displacements and two rotations). At eamlte of the Timoshenko beam finite ele-
ments, we have [19, 20]

(M5 + M%) X¢ + (1K — wG®) X + (KG + nwK§) X¢ = F¢ 1)

wherew is the rotational speedVI. andM¢$,, andG* are the translational, rotary mass and gyroscopic
matrices of the shaft element, respectivdljf; andKg¢, are the stiffness and circulatory matrices due to
shaft internal dampingy defines the coefficient of damping that is associated to thdairdamping for

the first mode of the system at rest (= 0 ). F¢ includes the gravitational forces and unbalance forces.
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2.2 Rigid disc
The rotor system has one disc at the mid-span that is modadledrigid disk and may be written as

(Mf + M%) X! - wGiX! = B )

whereMdT and M‘}% are the translational mass and rotary mass matrices résggctG¢ is the gyro-
scopic matrix, and™¢ corresponds to the unbalance and gravitational forces.

disk
l neutral axis
] centroid of bending
vV Y . ____l___
X X AR >
/\ Fays Y
T h I > >
crack e | |
- . o
I e
Figure 1: Finite-element model of the rotor and the cradkedm section
Notation Description Value
R radius of the rotor shaft 0.005m
L length of the rotor shaft 0.5m
Rp outer radius of the disk 0.025m
hp thickness of the disk 0.015m
E Young'’s modulus of elasticity 2.1 101 N.m~2
G shear modulus 7.7 1019N.m =2
p density 7800kg.m 3
v Poisson ratio 0.3
n coefficient of damping 21075
Me mass unbalance 0.001kg
de eccentricity of the mass unbalance 0.01m
10) relative orientation between the crack and the unbalance Odegree
K, stiffness of supports 2 105N.m~!
w1, W first double frequency of the uncracked rotor (at rest) 317rad.s™!

ws,wy  second double frequency of the uncracked rotor (at rest)898rad.s !

Table 1: Value of the physical parameters
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2.3 Moddling of the breathing crack
2.3.1 Thecrack model

If a transverse crack appears in a rotor system, additiomabilities are generated at the location of the
crack due to strain energy concentration in the vicinityhef track tip under load. There are a number of
approaches for modelling cracks in shafts; we refer the@sted reader to [1] and [3] for comprehensive
literature survey of various crack modelling techniques.

In this paper, the model proposed by Mayes and Davies [13s21ided in order to locally represent the
stiffness properties of the crack cross section. This modesiders the reduction of the second moment
of areaA[ of the element at the location of the crack that ay be defined by

)P

1+?(1—U2)F(M)
wherely, R, I, andv are the second moment of area, the shaft radius, the lengtieafection and
the Poisson’s ratio, respectively: is the non-dimensional crack depth and is givenuby- % where

h defines the crack depth of the shaff: (1) defines the non-linear compliance function varied with
the non-dimensional crack depihthat may be obtained from a series of experiments with ctiorda
cracks [13, 21]. So, the stiffness matii&.,.... of the crack cross section is given by (to the principal
axes of the crack front)

Al = I 3)

[ 12Ix 0O 0 6lIx —12Ix 0 0 611x
12Iy —6lIy 0 0 —12Iy —6lly 0
412 Iy 0 0 61y 211y 0
K. . -F APIx —6lIx 0 0 2Py @
erack T3 127y 0 0 —61Ix

12Iy  6lly 0
Sym. 412 Iy 0

I APIx |

The moments of inertia about the parallel centroidal akgsand/y-, are given by [10]
Ix =Ix 5)
Iy = Iy — AX? (6)

where X2 and A define the uncracked area of the cross-section and the césteom the axisX to the

centroid of the cross section 5
X =R 7
3 AR v (7)

A:RQ((I—u)er%) (8)

wherea defines the crack angle and is givendoy= 26~08_1 (1—p).
Then, the asymmetric area moments of inefifgand Iy about the X and Y-axes are defined as

iX:/AY2dA:RZ4((1—u)(1—4u+2/ﬂ)7+%) (9)

4
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b= [T m (20 baow (- g2y sin ) @0

where is equal to,/2, — 12 for convenience.

2.3.2 Thebreathing mechanism

When a cracked rotor rotates slowly under the load of its owigim, the crack will open and close once
per revolution. This periodic opening and closing of thec&res called ” breathing” phenomenon [8].
Due to this mechanism, the stiffness matrix of the shaftattiack position is non-linear and periodical
time varying during the rotation of the rotor system.

As previously demonstrated by Gasch [2, 16], the openingcdosing of the crack during its rotation
is mainly due to the shaft self-weight. So, assuming thatsthdc deflection is much greater that the
dynamic response of the cracked rotor, the breathing ofridiekanay be expressed by a cosine function
F(t) 1

F(t) = ;oswt
wherew defines the rotational speed of the rotor.

During the shaft’s rotation, the crack opens and closes:afiseciated breathing action of the crack is
illustrated in Figure 2. When the crack is fully closed theoranay be treated as uncracked, due to the
fact that the crack has no effect on the dynamic behaviounefator (i.e. f(t) = 0). If f(¢) = 1, the
crack is fully open. As previously explained, this openingl &losing of the crack (described in Equation
11) assumes that the gravity determinates the breathingeaérack due to weight dominance (i.e. the
static deflection is much greater than the rotor vibration).

®Dee@e

1

(11)

o
%

=3
=)

N
S

<
o

Open-close function of the crack

0 90 180 270 360
Rotation of the shaft (deg.)

Figure 2: Breathing crack due to the rotation of the shaftif@h portion of opened crack, black=portion
of closed crack)
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2.4 Equation of motion of the cracked rotor

After assembling the different shaft elements, the rigistdind the discrete bearing stiffness that are
located at the two ends of the shaft, the equation of motiaih@fcomplete cracked rotor system in a
fixed co-ordinate system can be written as

MX +DX+ (K- f(H)K)X=Q+W (12)

where overdots indicate differentiation with respect todi The mass matrik1 includes mass matrices
of the shaft and rigid disc. The matr® considers the shaft internal damping, the damping of the
supports and the gyroscopic moments. The maKixncludes the stiffness matrices of the shaft and
supports, and the circulatory matrix due to shaft interreahgding. K. is the stiffness matrix due to the
crack. The terms of this matrix are equal to zero except atthaek location degree-of-freedom where
the8 x 8 matrix K ... is present.QQ andW are the vector of gravity and imbalance forces due to the
disk and the shaft, respectively.

As previously indicated, the above equations of the cragkéor have a time-dependent coefficient
due to the fact that the crack breathes when the system sotétee amount of open part of the crack
constantly varies with the rotation of the shaft, therebgrding the stiffness of the cracked rotor. The
global stiffness matrix of the rotor consists of a constart K and a time dependent paftt) K..

3 Non-linear analysis

3.1 Non-linear responses of the cracked rotor

Due to the time-dependent coefficient of Equation 12, theesy®f the crack rotor may be rewritten in
a "'non-linear” form as

MX +DX + KX = Q+ W + fy, (X, w, 1) (13)

with )
v (X, w,t) = 3 (1 — coswt) K. X (14)

In the following the termfy;, will be treated as a non-linear term due to its dependenc& dhat
makes Equation 13 non-linear. A frequency-domain methatl s the harmonic balance methods with
continuation schemes that are well-known numerical taoy be applied in order to study non-linear
dynamics vibrations in rotating systems [22, 23]. This apph may be used as an alternative to time-
domain methods when periodic solutions of the on-lineatesysexist, and so is a very efficient way of
approximating the vibration of a cracked rotor. We refer ititerested reader to [22—25] for a survey of
some recent developments and alternative approaches.

The general idea of the harmonic balance method is to représe periodic solution of the non-linear
system by its frequency content.

So, the non-linear dynamical responses of the cracked sy&iem are represented as truncated Fourier
series withm harmonics:

m
X (t)=Bo+ Z (Bj cos (kwt) + Ay, sin (kwt)) (15)
k=1
wherew defines the fundamental frequend$,, A andBy (with £ = 1,---,m) define the unknown

coefficients of the finite Fourier series. The number of harimeoefficientsmn is selected on the basis
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of the number of significant harmonics expected in the noedr dynamical response.

Moreover, the non-linear forcky, the gravity forceQ and the global unbalance ford& are repre-
sented as truncated Fourier series. First of all, the nueali force due to the presence of the crigk
is approximated by finite Fourier series of order

fvr (X,w,t) = Cf + > (Cf cos (kwt) + Sf sin (kwt)) (16)
k=1

Then, it may be observed that the unbalance force compometitsut considering the crack (for the
shaft and the disk) in the horizontal and vertical direcsig@W-direction and X-direction as indicated in
Figure 1) are given agi.d.cos (wt + ¢) andm.d.sin (wt + ¢), respectively.m. andd, are the mass
unbalance and the eccentricity for each element of the sytstem.¢ defines the initial angular position
with respect to the Z-axis.
So, the gravity forc&Q and the global unbalance ford® are exactly defined by constant components
and first-order periodic components in the frequency donraspectively. We have

Q(X,w,t) = Cf (17)
W (X,w,t) = C}V cos (wt) + SV sin (kwt) (18)

Substituting these last fourth expressions 15, 16, 17 anthtd8the rotor equation of motion 13 and
balancing the harmonic terms yields a se{®#: + 1) * n equations where is the number of degree-
of-freedom for the complete cracked rotor system.

The constant termBy, that are given by the first*” relations are given by

KB, = C{ + C} (19)
Then, the first harmonic componems andB; are determined by resolving the following equations

[K—uﬂM —wD ] [All :[ SV + s/

20
wD K — w’M B, Cll/V + C{ (20)

Finally, the2m * (n — 1) remaining equations that define th& Fourier coefficientsA, and B, for
2 < k < m are given by

K- (kw))M  —kwD A, | [ sf
[ kwD K—(kw)zM] lB:] _[CIZ] 1)

The non-linear expressidiy 1, (X, w, t) is a function of the non-linear responsS¥g¢) and the associated
Fourier coefficient®B,, A, andB; (with 1 < k < m). So, the Fourier coefficient€?, Sg and Cg
(with 1 < k < m) may be determined froB,, A, andB; (with 1 < k£ < m) by using the following
iteration process, called the Alternate Frequency/Timmaaia approach (AFT method [26])

[BoA1B; - A, BT = X)) = fy, (X,w,t) = [CoS1Cy -+ Sy C]” (22)

Then, the(2m + 1) x n non-linear equations of motion 19, 20 and 21 can be solvedsimga solver
such as the Newton-Raphson method [27].

Moreover, a continuation scheme in conjunction with thent@ric balance method and based on the
path following continuation and Lagrangian polynomialragblation [10, 28], is used to give a first
approximation of the Fourier coefficienBy, A, andB; (with 1 < & < m) of the cracked rotor system
when the rotational speedincreases.
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3.2 Partition and condensation on the cracked e ement

The state vectora\, andBy, (for 1 < k& < m) are partitioned into subvectors relating to the Fourier
componentsA¢ andBg, which are associated with the degrees of freedom at the tvaekion, and the
Fourier componentd ;' andB}' which are associated with the others degrees of freedom.

Aj
U¢ B¢ Ay
Uy=| k| =] k| =w [ ] (23)
[ U ] Al B
B

The subscript ‘k’ represents 2" harmonic components™, the superscript ‘U’ representsittacked”,
and the superscript ‘c’ represents "'cracked”.

Hence, for the present case (i.e. the rotor system has omly@ek), the vectord{ andBj, have the
size of8 x 1, and the vectord\j andB}: have the size 036 x 1. Then, the vector¥J; have the size of
16 x 1, and the vectolU} have the size of2 x 1.

Considering Equation 23, Equation 20 and 21 which is asgatiaith the kth harmonic components can

be partitioned as

0,U; = Fy, (24)
with )
or O 7| K= (kw)*M —kwD
O [ e e ] [ kwD K — (kw)*M (25)

Each of the matrice®,, have the size 8 x 88; ©y°, ©¢", O} and®}" arel6 x 16, 16 x 72, 72 x 16,
and72 x 72 matrices, respectively.
The expressions df'; which is associated with the first harmonic components isrglyy

Si/l/,c + S{,C
F§ cy+cfe S +sf
F, = 1 — 1 1 — ‘I’T 1 1 26
! [ FY ] sy cV +cf (26)
W
Cl

and the expressions &, (for 2 < k < m) which are associated with té" harmonic components can
be rewritten as

sf*
¥ f
I F | F || _gr]| S
Fk_lF%]_[O]_ o | " [c &N
0

The vectorsF, have the size of8 x 1. The vectorss{, C/, S| andC|"* have the size of x 1,
and the vectors!"* andC]"* have the size o6 x 1.

The vectordF', (for 2 < k < m) represent the excitation due to the presence of the crackiesvector
F} is a is a zero vector, as indicated in Equation 27. Moreovenay be remained that the vectBy
corresponds not only to the excitation due to the presentieeafrack, but also to the contribution of the
unbalance force: the terms of this vector are zero excepteattack and unbalance locations. Bp
may only contain an unbalance contribution, as indicatdfigunation 26.
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So, considering Equations 23, 24, 25 and 26, Equations 2@ dfiae the first harmonic componems
andB; can be partitioned as
e e | | U | | F§
ERSIEIEE )

Then, considering 23, 24, 25 and 27, thex(n — 1) Equations 21 that define th&" Fourier coefficients
A, andBy for 2 < k£ < m may be partitioned as

or or |[up ]| [Fg
BRI INk )

Finally, considering Equations 28 and 29, the vecldfsand Uy, that correspond to the Fourier compo-
nents of the crack element may be determined by solving

-1
Ui = (&f - efe'ey)  (Ff - ef'ej ' F) (30)
-1
i = (er -epepeyr) Fy (31)
Then, the Fourier components vectds§ andU}: of the uncracked elements are given by

Ut = euuleu o euufl e ecue)uufl(_)uc -1 Fe — cheuuleu 32
1 k 1 k 1 1 1 1 1 1 1 1 ( )

u uu—1 guc ce cuguu—1muc) "L me
i =-epley (ef - ooy lepr)  F; (33)

4 Numerical ssmulations

4.1 Effectsof the crack size and location

In this section, the main effects of the crack size and looabn the non-linear behaviour of the cracked
rotor system are briefly summarized.

Firstly, Figures 3 illustrate the effects of crack depth loa vertical and horizontal responses correspond-
ing to the first harmonic component (see Figure 3(a)),2kesuper-harmonic frequency components
(see Figure 3(b)), thex super-harmonic frequency components (see Figure 3(c)) treev x super-
harmonic frequency components (see Figure 3(d)) at the podigion of the shaf0.15m. Due to the
presence of the crack, the second harmonic componentsagerehen the rotational speed reacées
and 1 of the critical speeds. The third harmonic componeatgpgctively, fourth harmonic components)
increase near the rotational speed% ,al} and 1 of the critical speeds (respectively near the rotation
speeds aﬁ, % % and 1 of the critical speeds). A decrease in the critical dp@eé the rotor system due to
the reduction in system stiffness resulting from the presesf the crack is also observed. Moreover, it
is clear that the vibration amplitudes of the second, thivd faurth harmonic components depend on the
cracked depth: with the increase of the crack depth, thesedrac components increase. Considering
the first harmonic component, the vibration amplitudes efcrack rotor system do not greatly change
with respect to the crack size. However, it may be remind float given crack depth, the first harmonic
component of the crack rotor system is associated with ttoe hmbalance and the relative position be-
tween the crack direction and the imbalance [17].

Then, the effects of crack position on the harmonic comptenefthe nonlinear response of the rotor are
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illustrated in Figures 4. It may be remind that the crack taraclearly affect the decrease in the critical
speeds of the cracked rotor and the vibration amplitudebarstub-critical resonances [11]. Finally, it
may be observed that antiresonances fordke3x and4x super-harmonic frequency components of
the cracked rotor system appears due to the presence ofable cFhe emerging and location of new
antiresonances and the shift in the antiresonances depeth@ arack size and location.

In conclusion, the variation of non-linear responses aedetherging of new resonance - antiresonance
peaks of the cracked rotor at second, third and fourth haienmemponents may provide useful infor-
mation on the presence of a crack and may be used on an ordicle monitoring rotor system.

0 500 1000 1500 2000
Rotating speed (rad. Js

0 500 1000 1500 2000
Rotating speed (rad. 13

Horizontal displacement (m) Vertical displacement (m

Horizontal displacement (m) Vertical displacement (m

- AN
10° /
1078 L L L I} 10710 L L L I}
0 500 1000 1500 2000 0 500 1000 1500 2000
Rotating speed (rad¥ Rotating speed (rad¥
(&) 1x harmonic components (R)x super-harmonic components

500 1000 1500 2000
Rotating speed (rad.’s)

0 500 1000 1500 2000
Rotating speed (rad.]3

Horizontal displacement (m) Vertical displacement (m
Horizontal displacement (m) Vertical displacement (m

0 500 1000 1500 2000 0 500 1000 1500 2000

Rotating speed (rad.’s Rotating speed (rad.’s)
(c) 3x super-harmonic components (@) super-harmonic components

Figure 3: Effects of the crack size at the node position of ghaft0.15m with a crack situated at
Leracr, = 0.175m and the unbalance locateddatm of the leftend ¢ =1, ... u = 0.75, —.— u = 0.5,
— — u=0.25)
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Figure 4: Effects of the crack location at the node positibthe shaft0.15m with a non-dimensional
crack depth: = 1 and the unbalance located(atm of the left end (position of the crack — L4k =
0.075m, —Lepaer = 0.126m, —. — Lepger = 0.175m, ... Lepger, = 0.225m)
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4.2 Damping and unbalance effects

First of all, it is well known that increasing the rotor unhate increases thex amplitudes of the
cracked rotor [17]: this fact is indicated in Equations 28 0. However, it may be noted that the other
nx amplitudes (withn > 2) may also be affected by the rotor imbalance. Figure 5(ajtlates the
evolution of the vibration amplitudes in tHesub-critical resonances with the variation of the unbaanc
of the cracked rotor. With the increase of the rotor unbataribe amplitudes at the sub-critical reso-
nances increase, due to the interaction of the crack brepthechanism, gravity and rotor unbalance (as
indicated in Equations 29 and 21). Effectively, it may be a@mad that the amplitudes of the non-linear
terms 16 due to the presence of the crack depend on the adgditf the rotor’s vertical and horizontal
displacements (as indicated in Equation 14) and so the uotioalance.

Moreover, the vibration amplitudes in t%@ub-critical resonances depend on the damping of the alacke
rotor system, as illustrated in Figure 5(b). With any desesaf damping, the amplitudes increase drasti-
cally and the presence of the crack may be clearly detectedekkr, if the damping of the rotor system
is relatively high, the resonant amplitudes in @eub—critical resonances will disappear due to the fact
that the2x and3x super-harmonic frequency components are suppressede Tifesmations can be
used as indexes for the detection of cracks in the rotor sysfehe damping remains constant, increas-
ing the unbalance of the rotor system may change and inctkagex amplitudes (withn > 2) when

the rotor reaches thg sub-critical resonances.

However, it is clear that the vibration amplitudes in tj;usub-critical resonances (with > 2) depend
not only on the rotor damping, unbalance, position and depthe crack, but also on the combinations
of the unbalance and the crack parameters. So, the effectack-unbalance interaction are analysed in
the following section of this paper.

— x 10
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é 15 Q § :,E,

g QU G £
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M N nHiinnin e =
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Figure 5: Influence of damping and mass unbalance on theakvibration amplitudes aroun§l sub-
critical resonances (with = 1, L..q.x = 0.225m) and the unbalance located(a25m
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4.3 Effects of the crack-unbalance interaction on the super-harmonic frequency compo-
nents

Figures 7 illustrate the second super-harmonic frequemegponents of the middle of the rotor for
various crack-unbalance orientations and unbalance indheal and horizontal directions. It clearly
appears that the relative orientation angle between thalante of the cracked rotor and the crack and
their interaction drastically affect the evolutions of thecond super-harmonic frequency component at
the% sub-critical resonances. Then, the evolutions of%trwb-critical resonances peak with respect to
the unbalance-crack angle change due to the magnitude ohttedance in both the vertical and hori-
zontal directions (see for example Figures 7(b), (d) and (f)

Therefore, it may be observed that the interaction betwkerctack and the unbalance may mask the
presence of the crack: effectively, the second super-haicrfoequency component and the resonant
amplitudes in th% sub-critical resonances may disappear (see for exampled-if(b) when the angle
of the unbalance is &0 degrees).

Figures 6 indicate the evolutions of the third super-haimaomponents of the middle of the rotor
when the rotor reaches t@esub—critical resonances. As previously seen for the sesapér-harmonic
frequency component, depending on the relative angle lestwebalance and crack vectors, the third
super-harmonic frequency component can increase or evaea® in vertical and horizontal ampli-
tudes. With the decrease of the rotor unbalance, the matgstof the super-harmonic frequency compo-
nents decrease in the vertical and horizontal directidritelcrack effect is predominant, the magnitude
of the sub-critical resonances peaks does not greatly ehamillustrated in Figures 7(e-f) and 6(e-f).
If the crack unbalance is more important than the crack, wed known that the the magnitude of the
sub-critical resonances peaks is constant as shown ind=if{aj for the horizontal direction. However,
it may be noted that the associated magnitude of the subatniesonances peak slightly changes in the
vertical direction: effectively, the highest changes ia #iffness of the crack cross section (see Equation
4) occur in the vertical direction due to the orientationlu# track and the shaft self-height. This is why
the sensibility of the magnitudes éfand% sub-critical resonances with respect to the unbalancesangl
and the unbalance-crack interactions are different in #roal and horizontal directions.

Moreover, the influence of the crack on the non-linear dymaohithe rotor system increases when the
unbalance magnitude decreases. In this case, two resosalkd pppear in the horizontal direction due
the coupling between the two bending directions, as inditat Figure 7(e). With the decrease of the
unbalance, the ratio between the first resonance peak%at.d/s) and the second resonance peak (at
105rad/s) decreases (see Figures 7(a), (c) and (e)). The same pheopriseobserved at th§ sub-
critical resonances, as indicated in Figures 6(a), (c) @)dIf may be noted that the crack-imbalance
magnitudes and relative angle are not known a priori, makiagk detection very difficult. All these
information can be used to identify the crack-unbalanceradtion and the predominance of the crack
or unbalance on the dynamic of the rotor system.

In conclusion, for a given crack depth and position, the nitages of the second and third super-
harmonic frequency components (at tlgleandé sub-critical resonances, respectively) are associated
with the rotor unbalance and the position of the unbalantaive to the front crack direction. With
the decrease and increase of the rotor unbalance, the mdgsiof the second and third super-harmonic
components in both the vertical and horizontal directiorss/ mirastically change due to the interaction
of gravity, the rotor unbalance and the crack breathingoacti

All these phenomena may also be observed for first order h@imfeequency components of the first
critical speed, as illustrated in Figure 8(a), but also fog super-harmonic frequency components of
the second critical speed of the cracked rotor, as indicetddgure 8(b): the rotor unbalance and the

13
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position of the unbalance relative to the crack directiogagly influence the maximum of the resonance
peak at the critical speed and the second super-harmomjoeiney components of the second critical
speed.

4.4 Effects of the crack-unbalance orientation and crack depth

In this section the influence of the crack depth with the sxtdon of the crack-unbalance orientation
is investigated. For the sake of clarity, we focus the studgha% sub-critical resonances. Figures 9
show the third super-harmonic frequency components of dgeas-of-freedom situated at the middle of
the rotor, for various crack-unbalance orientations ameamon-dimensional crack depth. These figures
may be compared with the Figures 6(c) and (d) of the previegtian (with a non-dimensional crack
depth that is equal to = 1, corresponding to the loss of half the shaft's area).

Due to the crack depth and the crack-unbalance interadtiermnagnitudes of the third super-harmonic
frequency components étsub—critical resonances of the first critical speed chamgt the decrease of
the non-dimensional crack depth, the influence of the cradiss predominant in the horizontal direc-
tion. Moreover, the value of the associated resonance pealeases with the increase of the crack due
to the reduction of the second moment of area at the locafidimeocrack. For a deep crack (= 1 in
Figure 6(c)), two resonance peaks appear due to the brgattack and the associated coupling between
the horizontal and vertical direction. When the crack defgbreases, the first resonance peak disappear
(as shown foy, = 0.75 in Figure 9(a)).

Then, the crack-unbalance interaction is more predomiiatiie vertical direction: when the crack
depth decrease, the ratio between the minimum and maximuimeahird super-harmonic frequency
components (as a function of the orientation between thek@ad the unbalance) decrease or increase.
This reflects the fact that for a deep crack, the crack effeptédominant, whereas the unbalance effect
is more important when the crack depth is small.

All these results illustrate that the detection of a craakloa difficult due to the interaction of the effects
of the crack and the unbalance. However, the influence of tieatation between the crack and the
unbalance appear to be clearly identified if the evolutioithe®n x super-harmonic frequency compo-
nents at the}l sub-critical resonances are investigated. It may be obddiat the classical non-linear
responses of the cracked rotor at t%ner % sub-critical resonances may be very complex, as indicated
in Figures 10. Effectively, the evolution of the completsndimear magnitudes as a function of the rela-
tive orientation angle between unbalance and the crackraidinteraction drastically affect the system
response, making crack detection very difficult. The magtes of thel or % sub-critical resonances
correspond to the combination of all the harmonic compa@iefb these evolutions of resonance peaks
do not permit a vibration characterization of the crackedmreystem due to the influence and interaction
between all the super-harmonic frequency components.

5 Conclusion

The evolution of the super-harmonic component2gf and 3x revolution in the sub-critical speed
region can be used as an index to detect a crack in the rotevetdw, due to crack-unbalance interaction
the evolutions of the super-harmonic frequency componemisthe associated resonance peaks may be
very complex. It was demonstrated that for a given crackigepe unbalance does not only affect the
vibration amplitude of thd x amplitudes, but also th§ and% sub-critical resonant peaks. With the
increase of the unbalance magnitude, gheub—critical resonant peaks increase obviously due to the
non-linear behaviour of the breathing crack and the inteadetween the crack, gravity and unbalance
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of the rotor.

Even if the crack-unbalance orientation and the unbalanagnitude are unknown, bothix and3x
super-harmonic frequency components can be used to de¢gmtesence of crack in rotor. The suitability
of this approach was verified for various numerical exampl@@ariety of damage location, crack size,
unbalance magnitude, and crack size orientation. It agptbat the detection of the resonances peaks
at the% or % sub-critical resonances and the determination of the &gsdcsuper-harmonic frequency
components may be useful and acceptable to the industnaincmity.
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