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Abstract

The purpose of this paper is to investigate the use of the2× and3× super-harmonic components for
detecting the presence of a single transverse breathing crack in a non-linear rotor system. This procedure
is based on the detection of the super-harmonic components of the non-linear dynamical behaviour at the
associated sub-critical resonant peaks.
The non-linear behaviour of the rotor system with a breathing crack is briefly analysed numerically: it
will be illustrated that the effects of the crack size and location induce the variation of non-linear re-
sponses and the emerging of new resonance - antiresonance peaks of the cracked rotor at second, third
and fourth harmonic component. Then, the influence of the crack-unbalance interactions and more par-
ticularly the relative orientation between the front crackand the unbalance are also undertaken with
considerations of various crack depths, and unbalance magnitudes. It is demonstrated that for a given
crack depth, the unbalance does not only affect the vibration amplitude of the1× amplitudes, but also
the 1

2
and 1

3
sub-critical resonant peaks. Finally, it is illustrated that the emerging of super-harmonic

components provides useful information on the presence of crack and may be used on an on-line crack
monitoring rotor system. Using this methodology, the detection of small levels of damage may be easily
undertaken.

Keywords: cracked detection, rotor system, non-linear vibration, super-harmonic components.

1 Introduction

Detection of damage in rotor systems is an important concernto engineering communities. The im-
portance of early detection of cracks has led to continuous efforts due to the fact that unpredictable
occurrence of damage may cause catastrophic failure. It is very difficult but also highly desirable to
pursue effective engineering solutions to detect and locate the damage situation in rotating systems at
the earliest possible stage. Reviews on the dynamical behaviour of rotors with transverse crack were
published by Wauer [1], Gasch [2] and Dimarogonas [3].
During the past several decades, significant amount of research has been conducted in the area of crack
detection in systems using only theoretical modelling method [4–11], combined both theoretical and
experimental methods [12–14] or only experimental method [15]. The main idea of these approaches
is that a change in a rotor system due to damage crack will manifest itself as changes in the rotor dy-
namic behaviour: first of all, the presence of a transverse crack induces a slight decrease of the natural
frequencies [2,10,16]. Secondly, resonances appear when the rotational speeds of the shaft reach1

2
and

1

3
of the critical speeds of the rotor system. Therefore, with the increase of the crack depth, the1

2
and

1
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1

3
sub-critical resonant peaks increase [6, 11, 17]. Finally,some researchers [18] indicated that the shaft

executes two and three loops per shaft revolution at the1

2
and 1

3
sub-critical speeds, respectively.

In most of the studies for crack detection in rotor systems, researchers used changes in natural frequen-
cies and evolution of the non-linear behaviour of the systemat the super-harmonic components as the
diagnostic tools. In this paper it will be shown that an appropriate use of the super-harmonic compo-
nents may be useful for crack detection in rotor systems. So the present study attempts to propose a
complete analysis of the crack-unbalance interactions on the super-harmonic components at the1

2
and 1

3

sub-critical resonant peaks. Numerical example will be conducted on variety of damage location, crack
size and unbalance parameters (magnitude and relative orientation with the front crack) to verify the
suitability of the use of the super-harmonic components in order to detect the presence of a transverse
crack in rotor. One of the advantages of the proposed approach is that the emerging of super-harmonic
components may be easily undertaken for the detection of a crack in rotating shafts, especially in the
early stage of the damage where the ability to discriminate changes of modal parameters caused by dam-
age from those caused by other environmental condition changes is very difficult.
The paper is set up as follows: firstly, the description of thenon-linear rotor system and the model-
ing of the breathing crack are investigated. Then, the non-linear periodic response of the cracked rotor
is undertaken by approximating the non-linear dynamic by truncated Fourier series withm harmonics.
Moreover, the state vectors of the complete cracked rotor will be partitioned into subvectors relating to
the Fourier components which are associated with the degrees of freedom at the crack location, and the
Fourier components which are associated with the others degrees of freedom. Then, the emerging of the
2× and3× super-harmonic components for detecting the presence of a crack is investigated. Numerical
examples including various crack parameters (location anddepth) and unbalance parameters (magni-
tude and orientation with the crack) are considered in orderto validate the detection of a crack based
on the resonance peaks at the1

2
or 1

3
sub-critical resonances and the determination of the associated

super-harmonic frequency components.

2 The model of the cracked rotor

In this study, the rotor is composed of a shaft with one disc atthe mid-span, as illustrated in Figure 1.
All the values of the physical parameters are given in Table 1.

2.1 Shaft elements

The shaft is discretized into 10 Timoshenko beam finite elements with four degrees of freedoms at each
node (two lateral displacements and two rotations). At eachnode of the Timoshenko beam finite ele-
ments, we have [19,20]

(Me
T +Me

R) Ẍ
e + (ηKe

B − ωGe) Ẋe + (Ke
B + ηωKe

C)X
e = Fe (1)

whereω is the rotational speed.Me
T andMe

R, andGe are the translational, rotary mass and gyroscopic
matrices of the shaft element, respectively.Ke

B andKe
C are the stiffness and circulatory matrices due to

shaft internal damping.η defines the coefficient of damping that is associated to the modal damping for
the first mode of the system at rest (ω = 0 ). Fe includes the gravitational forces and unbalance forces.
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2.2 Rigid disc

The rotor system has one disc at the mid-span that is modelledas a rigid disk and may be written as
(

Md
T +Md

R

)

Ẍd
− ωGdẊd = Fd (2)

whereMd
T andMd

R are the translational mass and rotary mass matrices respectively. Gd is the gyro-
scopic matrix, andFd corresponds to the unbalance and gravitational forces.

Figure 1: Finite-element model of the rotor and the cracked-beam section

Notation Description Value
R radius of the rotor shaft 0.005m
L length of the rotor shaft 0.5m
RD outer radius of the disk 0.025m
hD thickness of the disk 0.015m
E Young’s modulus of elasticity 2.1 1011N.m−2

G shear modulus 7.7 1010N.m−2

ρ density 7800kg.m−3

ν Poisson ratio 0.3
η coefficient of damping 2 10−5

me mass unbalance 0.001kg
de eccentricity of the mass unbalance 0.01m
φ relative orientation between the crack and the unbalance 0degree
Ks stiffness of supports 2 106N.m−1

ω1, ω2 first double frequency of the uncracked rotor (at rest) 317rad.s−1

ω3, ω4 second double frequency of the uncracked rotor (at rest)1898rad.s−1

Table 1: Value of the physical parameters
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2.3 Modelling of the breathing crack

2.3.1 The crack model

If a transverse crack appears in a rotor system, additional flexibilities are generated at the location of the
crack due to strain energy concentration in the vicinity of the crack tip under load. There are a number of
approaches for modelling cracks in shafts; we refer the interested reader to [1] and [3] for comprehensive
literature survey of various crack modelling techniques.
In this paper, the model proposed by Mayes and Davies [13, 21]is used in order to locally represent the
stiffness properties of the crack cross section. This modelconsiders the reduction of the second moment
of area∆I of the element at the location of the crack that ay be defined by

∆I = I0









R

l

(

1− ν2
)

F (µ)

1 +
R

l

(

1− ν2
)

F (µ)









(3)

whereI0, R , l, andν are the second moment of area, the shaft radius, the length ofthe section and
the Poisson’s ratio, respectively.µ is the non-dimensional crack depth and is given byµ = h

R
where

h defines the crack depth of the shaft.F (µ) defines the non-linear compliance function varied with
the non-dimensional crack depthµ that may be obtained from a series of experiments with chordal
cracks [13, 21]. So, the stiffness matrixKcrack of the crack cross section is given by (to the principal
axes of the crack front)

Kcrack =
E

l3





























12IX 0 0 6lIX −12IX 0 0 6lIX
12IY −6lIY 0 0 −12IY −6lIY 0

4l2IY 0 0 6lIY 2l2IY 0
4l2IX −6lIX 0 0 2l2IX

12IX 0 0 −6lIX
12IY 6lIY 0

Sym. 4l2IY 0
4l2IX





























(4)

The moments of inertia about the parallel centroidal axes,IX andIY , are given by [10]

IX = ĨX (5)

IY = ĨY −AX̄2 (6)

whereX̄2 andA define the uncracked area of the cross-section and the distance from the axisX to the
centroid of the cross section

X̄ =
2

3A
R3γ3 (7)

A = R2

(

(1− µ) γ +
α

2

)

(8)

whereα defines the crack angle and is given byα = 2cos−1 (1− µ).
Then, the asymmetric area moments of inertiaĨX andĨY about the X and Y-axes are defined as

ĨX =

∫ ∫

A
Y 2dA =

R4

4

(

(1− µ)
(

1− 4µ+ 2µ2
)

γ +
α

2

)

(9)
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ĨY =

∫ ∫

A
X2dA =

πR4

4
+R4

(

2

3
(1− µ) γ3 +

1

4
(1− µ)

(

1− 4µ+ 2µ2
)

γ + sin−1 (γ)

)

(10)

whereγ is equal to
√

2µ − µ2 for convenience.

2.3.2 The breathing mechanism

When a cracked rotor rotates slowly under the load of its own weight, the crack will open and close once
per revolution. This periodic opening and closing of the crack is called ” breathing”’ phenomenon [8].
Due to this mechanism, the stiffness matrix of the shaft at the crack position is non-linear and periodical
time varying during the rotation of the rotor system.
As previously demonstrated by Gasch [2, 16], the opening andclosing of the crack during its rotation
is mainly due to the shaft self-weight. So, assuming that thestatic deflection is much greater that the
dynamic response of the cracked rotor, the breathing of the crack may be expressed by a cosine function
f(t)

f (t) =
1− cosωt

2
(11)

whereω defines the rotational speed of the rotor.
During the shaft’s rotation, the crack opens and closes: theassociated breathing action of the crack is
illustrated in Figure 2. When the crack is fully closed the rotor may be treated as uncracked, due to the
fact that the crack has no effect on the dynamic behaviour of the rotor (i.e.f(t) = 0). If f(t) = 1, the
crack is fully open. As previously explained, this opening and closing of the crack (described in Equation
11) assumes that the gravity determinates the breathing of the crack due to weight dominance (i.e. the
static deflection is much greater than the rotor vibration).

Figure 2: Breathing crack due to the rotation of the shaft (white = portion of opened crack, black=portion
of closed crack)
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2.4 Equation of motion of the cracked rotor

After assembling the different shaft elements, the rigid disc and the discrete bearing stiffness that are
located at the two ends of the shaft, the equation of motion ofthe complete cracked rotor system in a
fixed co-ordinate system can be written as

MẌ+DẊ+ (K− f (t)Kc)X = Q+W (12)

where overdots indicate differentiation with respect to time. The mass matrixM includes mass matrices
of the shaft and rigid disc. The matrixD considers the shaft internal damping, the damping of the
supports and the gyroscopic moments. The matrixK includes the stiffness matrices of the shaft and
supports, and the circulatory matrix due to shaft internal damping.Kc is the stiffness matrix due to the
crack. The terms of this matrix are equal to zero except at thecrack location degree-of-freedom where
the8 × 8 matrixKcrack is present.Q andW are the vector of gravity and imbalance forces due to the
disk and the shaft, respectively.
As previously indicated, the above equations of the crackedrotor have a time-dependent coefficient
due to the fact that the crack breathes when the system rotates. The amount of open part of the crack
constantly varies with the rotation of the shaft, thereby changing the stiffness of the cracked rotor. The
global stiffness matrix of the rotor consists of a constant partK and a time dependent partf (t)Kc.

3 Non-linear analysis

3.1 Non-linear responses of the cracked rotor

Due to the time-dependent coefficient of Equation 12, the system of the crack rotor may be rewritten in
a ”‘non-linear”’ form as

MẌ+DẊ+KX = Q+W + fNL (X, ω, t) (13)

with

fNL (X, ω, t) =
1

2
(1− cosωt)KcX (14)

In the following the termfNL will be treated as a non-linear term due to its dependence onX that
makes Equation 13 non-linear. A frequency-domain method such as the harmonic balance methods with
continuation schemes that are well-known numerical tools,may be applied in order to study non-linear
dynamics vibrations in rotating systems [22, 23]. This approach may be used as an alternative to time-
domain methods when periodic solutions of the on-linear system exist, and so is a very efficient way of
approximating the vibration of a cracked rotor. We refer theinterested reader to [22–25] for a survey of
some recent developments and alternative approaches.
The general idea of the harmonic balance method is to represent the periodic solution of the non-linear
system by its frequency content.
So, the non-linear dynamical responses of the cracked rotorsystem are represented as truncated Fourier
series withm harmonics:

X (t) = B0 +
m
∑

k=1

(Bk cos (kωt) +Ak sin (kωt)) (15)

whereω defines the fundamental frequency.B0, Ak andBk (with k = 1, · · · ,m) define the unknown
coefficients of the finite Fourier series. The number of harmonic coefficientsm is selected on the basis

6



J-J. Sinou

of the number of significant harmonics expected in the non-linear dynamical response.
Moreover, the non-linear forcefNL, the gravity forceQ and the global unbalance forceW are repre-
sented as truncated Fourier series. First of all, the non-linear force due to the presence of the crackfNL

is approximated by finite Fourier series of orderm

fNL (X, ω, t) = C
f
0
+

m
∑

k=1

(

C
f
k cos (kωt) + S

f
k sin (kωt)

)

(16)

Then, it may be observed that the unbalance force componentswithout considering the crack (for the
shaft and the disk) in the horizontal and vertical directions (Y-direction and X-direction as indicated in
Figure 1) are given asmedecos (ωt+ φ) andmedesin (ωt+ φ), respectively.me andde are the mass
unbalance and the eccentricity for each element of the rotorsystem.φ defines the initial angular position
with respect to the Z-axis.
So, the gravity forceQ and the global unbalance forceW are exactly defined by constant components
and first-order periodic components in the frequency domain, respectively. We have

Q (X, ω, t) = C
Q
0

(17)

W (X, ω, t) = CW
1 cos (ωt) + SW

1 sin (kωt) (18)

Substituting these last fourth expressions 15, 16, 17 and 18into the rotor equation of motion 13 and
balancing the harmonic terms yields a set of(2m+ 1) ∗ n equations wheren is the number of degree-
of-freedom for the complete cracked rotor system.
The constant termsB0 that are given by the firstnth relations are given by

KB0 = C
Q
0
+C

f
0

(19)

Then, the first harmonic componentsA1 andB1 are determined by resolving the following equations
[

K− ω2M −ωD
ωD K− ω2M

] [

A1

B1

]

=

[

SW
1 + S

f
1

CW
1 +C

f
1

]

(20)

Finally, the2m ∗ (n− 1) remaining equations that define thekth Fourier coefficientsAk andBk for
2 ≤ k ≤ m are given by

[

K− (kω)2 M −kωD

kωD K− (kω)2 M

] [

Ak

Bk

]

=

[

S
f
k

C
f
k

]

(21)

The non-linear expressionfNL (X, ω, t) is a function of the non-linear responsesX (t) and the associated
Fourier coefficientsB0, Ak andBk (with 1 ≤ k ≤ m). So, the Fourier coefficientsCf

0
, Sf

k andCf
k

(with 1 ≤ k ≤ m) may be determined fromB0, Ak andBk (with 1 ≤ k ≤ m) by using the following
iteration process, called the Alternate Frequency/Time domain approach (AFT method [26])

[B0 A1 B1 · · · Am Bm]T ⇒ X (t) ⇒ fNL (X, ω, t) ⇒ [C0 S1 C1 · · · Sm Cm]T (22)

Then, the(2m+ 1) ∗ n non-linear equations of motion 19, 20 and 21 can be solved by using a solver
such as the Newton-Raphson method [27].
Moreover, a continuation scheme in conjunction with the harmonic balance method and based on the
path following continuation and Lagrangian polynomial extrapolation [10, 28], is used to give a first
approximation of the Fourier coefficientsB0, Ak andBk (with 1 ≤ k ≤ m) of the cracked rotor system
when the rotational speedω increases.
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3.2 Partition and condensation on the cracked element

The state vectorsAk andBk (for 1 ≤ k ≤ m) are partitioned into subvectors relating to the Fourier
componentsAc

k andBc
k which are associated with the degrees of freedom at the cracklocation, and the

Fourier componentsAu
k andBu

k which are associated with the others degrees of freedom.

Uk =

[

Uc
k

Uu
k

]

=











Ac
k

Bc
k

Au
k

Bu
k











= Ψ

[

Ak

Bk

]

(23)

The subscript ‘k’ represents ”‘kth harmonic components”’, the superscript ‘u’ represents ”‘uncracked”’,
and the superscript ‘c’ represents ”‘cracked”’.
Hence, for the present case (i.e. the rotor system has only one crack), the vectorsAc

k andBc
k have the

size of8× 1, and the vectorsAu
k andBu

k have the size of36× 1. Then, the vectorsUc
k have the size of

16× 1, and the vectorUu
k have the size of72× 1.

Considering Equation 23, Equation 20 and 21 which is associated with the kth harmonic components can
be partitioned as

ΘkUk = Fk (24)

with

Θk =

[

Θcc
k Θcu

k

Θuc
k Θuu

k

]

= ΨT

[

K− (kω)2M −kωD

kωD K− (kω)2 M

]

Ψ (25)

Each of the matricesΘk have the size of88×88; Θcc
k , Θcu

k , Θuc
k andΘuu

k are16×16, 16×72, 72×16,
and72× 72 matrices, respectively.
The expressions ofF1 which is associated with the first harmonic components is given by

F1 =

[

Fc
1

Fu
1

]

=













S
W,c
1

+ S
f,c
1

C
W,c
1

+C
f,c
1

S
W,u
1

C
W,u
1













= ΨT

[

SW
1 + S

f
1

CW
1 +C

f
1

]

(26)

and the expressions ofFk (for 2 ≤ k ≤ m) which are associated with thekth harmonic components can
be rewritten as

Fk =

[

Fc
k

Fu
k

]

=

[

Fc
k

0

]

=











S
f,c
k

C
f,c
k

0

0











= ΨT

[

S
f
k

C
f
k

]

(27)

The vectorsFk have the size of88 × 1. The vectorsSf,c
k , Cf,c

k , SW,c
1

andCW,c
1

have the size of8 × 1,
and the vectorsSW,u

1
andCW,u

1
have the size of36× 1.

The vectorsFk (for 2 ≤ k ≤ m) represent the excitation due to the presence of the crack. So the vector
Fu
k is a is a zero vector, as indicated in Equation 27. Moreover, it may be remained that the vectorF1

corresponds not only to the excitation due to the presence ofthe crack, but also to the contribution of the
unbalance force: the terms of this vector are zero except at the crack and unbalance locations. SoFu

1

may only contain an unbalance contribution, as indicated inEquation 26.
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So, considering Equations 23, 24, 25 and 26, Equations 20 that define the first harmonic componentsA1

andB1 can be partitioned as
[

Θcc
1 Θcu

1

Θuc
1 Θuu

1

] [

Uc
1

Uu
1

]

=

[

Fc
1

Fu
1

]

(28)

Then, considering 23, 24, 25 and 27, the2m∗(n− 1) Equations 21 that define thekth Fourier coefficients
Ak andBk for 2 ≤ k ≤ m may be partitioned as

[

Θcc
k Θcu

k

Θuc
k Θuu

k

] [

Uc
k

Uu
k

]

=

[

Fc
k

0

]

(29)

Finally, considering Equations 28 and 29, the vectorsUc
1 andUc

k that correspond to the Fourier compo-
nents of the crack element may be determined by solving

Uc
1 =

(

Θcc
1 −Θcu

1 Θuu−1

1
Θuc

1

)

−1 (

Fc
1 −Θcu

1 Θuu−1

1
Fu
1

)

(30)

Uc
k =

(

Θcc
k −Θcu

k Θuu−1

k Θuc
k

)

−1

Fc
k (31)

Then, the Fourier components vectorsUu
1 andUu

k of the uncracked elements are given by

Uu
1 = Θuu−1

k Fu
1 −Θuu−1

k

(

(

Θcc
1 −Θcu

1 Θuu−1

1
Θuc

1

)

−1 (

Fc
1 −Θcu

1 Θuu−1

1
Fu
1

)

)

(32)

Uu
k = −Θuu−1

k Θuc
k

(

Θcc
k −Θcu

k Θuu−1

k Θuc
k

)

−1

Fc
k (33)

4 Numerical simulations

4.1 Effects of the crack size and location

In this section, the main effects of the crack size and location on the non-linear behaviour of the cracked
rotor system are briefly summarized.
Firstly, Figures 3 illustrate the effects of crack depth on the vertical and horizontal responses correspond-
ing to the first harmonic component (see Figure 3(a)), the2× super-harmonic frequency components
(see Figure 3(b)), the2× super-harmonic frequency components (see Figure 3(c)), and the4× super-
harmonic frequency components (see Figure 3(d)) at the nodeposition of the shaft0.15m. Due to the
presence of the crack, the second harmonic components increase when the rotational speed reaches1

2

and 1 of the critical speeds. The third harmonic components (respectively, fourth harmonic components)
increase near the rotational speeds at1

3
, 1

2
and 1 of the critical speeds (respectively near the rotational

speeds at1
4
, 1

3
, 1

2
and 1 of the critical speeds). A decrease in the critical speeds of the rotor system due to

the reduction in system stiffness resulting from the presence of the crack is also observed. Moreover, it
is clear that the vibration amplitudes of the second, third and fourth harmonic components depend on the
cracked depth: with the increase of the crack depth, these harmonic components increase. Considering
the first harmonic component, the vibration amplitudes of the crack rotor system do not greatly change
with respect to the crack size. However, it may be remind that, for a given crack depth, the first harmonic
component of the crack rotor system is associated with the rotor imbalance and the relative position be-
tween the crack direction and the imbalance [17].
Then, the effects of crack position on the harmonic components of the nonlinear response of the rotor are
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illustrated in Figures 4. It may be remind that the crack location clearly affect the decrease in the critical
speeds of the cracked rotor and the vibration amplitudes in the sub-critical resonances [11]. Finally, it
may be observed that antiresonances for the2×, 3× and4× super-harmonic frequency components of
the cracked rotor system appears due to the presence of the crack. The emerging and location of new
antiresonances and the shift in the antiresonances depend on the crack size and location.
In conclusion, the variation of non-linear responses and the emerging of new resonance - antiresonance
peaks of the cracked rotor at second, third and fourth harmonic components may provide useful infor-
mation on the presence of a crack and may be used on an on-line crack monitoring rotor system.
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Figure 3: Effects of the crack size at the node position of theshaft 0.15m with a crack situated at
Lcrack = 0.175m and the unbalance located at0.1m of the left end (− µ = 1, ... µ = 0.75, −.− µ = 0.5,
−− µ = 0.25)
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Figure 4: Effects of the crack location at the node position of the shaft0.15m with a non-dimensional
crack depthµ = 1 and the unbalance located at0.1m of the left end (position of the crack−−Lcrack =
0.075m, −Lcrack = 0.125m, −.− Lcrack = 0.175m, ...Lcrack = 0.225m)

11



J-J. Sinou

4.2 Damping and unbalance effects

First of all, it is well known that increasing the rotor unbalance increases the1× amplitudes of the
cracked rotor [17]: this fact is indicated in Equations 28 and 20. However, it may be noted that the other
n× amplitudes (withn ≥ 2) may also be affected by the rotor imbalance. Figure 5(a) illustrates the
evolution of the vibration amplitudes in the1

2
sub-critical resonances with the variation of the unbalance

of the cracked rotor. With the increase of the rotor unbalance, the amplitudes at the sub-critical reso-
nances increase, due to the interaction of the crack breathing mechanism, gravity and rotor unbalance (as
indicated in Equations 29 and 21). Effectively, it may be remained that the amplitudes of the non-linear
terms 16 due to the presence of the crack depend on the amplitudes of the rotor’s vertical and horizontal
displacements (as indicated in Equation 14) and so the rotorunbalance.
Moreover, the vibration amplitudes in the1

2
sub-critical resonances depend on the damping of the cracked

rotor system, as illustrated in Figure 5(b). With any decrease of damping, the amplitudes increase drasti-
cally and the presence of the crack may be clearly detected. However, if the damping of the rotor system
is relatively high, the resonant amplitudes in the1

2
sub-critical resonances will disappear due to the fact

that the2× and3× super-harmonic frequency components are suppressed. These informations can be
used as indexes for the detection of cracks in the rotor system: if the damping remains constant, increas-
ing the unbalance of the rotor system may change and increasethen× amplitudes (withn ≥ 2) when
the rotor reaches the1

n
sub-critical resonances.

However, it is clear that the vibration amplitudes in the1

n
sub-critical resonances (withn ≥ 2) depend

not only on the rotor damping, unbalance, position and depthof the crack, but also on the combinations
of the unbalance and the crack parameters. So, the effects ofcrack-unbalance interaction are analysed in
the following section of this paper.

152
154

156
158

160

0

1

2

3

4

x 10
−3

5

10

15

x 10
−3

ω (rad/s)
Unbalance (kg.m)

 V
er

tic
al

 d
is

pl
ac

em
en

t (
m

)

152
154

156
158

160

0.5

1

1.5

2

x 10
−4

2

4

6

8

10

12

x 10
−5

ω (rad/s)Damping factor

 V
er

tic
al

 d
is

pl
ac

em
en

t (
m

)

(a) Unbalance effect (b) Damping effect

Figure 5: Influence of damping and mass unbalance on the vertical vibration amplitudes around1
2

sub-
critical resonances (withµ = 1, Lcrack = 0.225m) and the unbalance located at0.25m
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4.3 Effects of the crack-unbalance interaction on the super-harmonic frequency compo-
nents

Figures 7 illustrate the second super-harmonic frequency components of the middle of the rotor for
various crack-unbalance orientations and unbalance in thevertical and horizontal directions. It clearly
appears that the relative orientation angle between the unbalance of the cracked rotor and the crack and
their interaction drastically affect the evolutions of thesecond super-harmonic frequency component at
the 1

2
sub-critical resonances. Then, the evolutions of the1

2
sub-critical resonances peak with respect to

the unbalance-crack angle change due to the magnitude of theunbalance in both the vertical and hori-
zontal directions (see for example Figures 7(b), (d) and (f)).
Therefore, it may be observed that the interaction between the crack and the unbalance may mask the
presence of the crack: effectively, the second super-harmonic frequency component and the resonant
amplitudes in the1

2
sub-critical resonances may disappear (see for example Figure 7(b) when the angle

of the unbalance is at270 degrees).
Figures 6 indicate the evolutions of the third super-harmonic components of the middle of the rotor
when the rotor reaches the1

3
sub-critical resonances. As previously seen for the secondsuper-harmonic

frequency component, depending on the relative angle between unbalance and crack vectors, the third
super-harmonic frequency component can increase or even decrease in vertical and horizontal ampli-
tudes. With the decrease of the rotor unbalance, the magnitudes of the super-harmonic frequency compo-
nents decrease in the vertical and horizontal directions. If the crack effect is predominant, the magnitude
of the sub-critical resonances peaks does not greatly change, as illustrated in Figures 7(e-f) and 6(e-f).
If the crack unbalance is more important than the crack, it iswell known that the the magnitude of the
sub-critical resonances peaks is constant as shown in Figure 7(a) for the horizontal direction. However,
it may be noted that the associated magnitude of the sub-critical resonances peak slightly changes in the
vertical direction: effectively, the highest changes in the stiffness of the crack cross section (see Equation
4) occur in the vertical direction due to the orientation of the crack and the shaft self-height. This is why
the sensibility of the magnitudes of1

2
and 1

3
sub-critical resonances with respect to the unbalance angle

and the unbalance-crack interactions are different in the vertical and horizontal directions.
Moreover, the influence of the crack on the non-linear dynamic of the rotor system increases when the
unbalance magnitude decreases. In this case, two resonant peaks appear in the horizontal direction due
the coupling between the two bending directions, as indicated in Figure 7(e). With the decrease of the
unbalance, the ratio between the first resonance peak (at103rad/s) and the second resonance peak (at
105rad/s) decreases (see Figures 7(a), (c) and (e)). The same phenomenon is observed at the1

3
sub-

critical resonances, as indicated in Figures 6(a), (c) and (e). It may be noted that the crack-imbalance
magnitudes and relative angle are not known a priori, makingcrack detection very difficult. All these
information can be used to identify the crack-unbalance interaction and the predominance of the crack
or unbalance on the dynamic of the rotor system.
In conclusion, for a given crack depth and position, the magnitudes of the second and third super-
harmonic frequency components (at the1

2
and 1

3
sub-critical resonances, respectively) are associated

with the rotor unbalance and the position of the unbalance relative to the front crack direction. With
the decrease and increase of the rotor unbalance, the magnitudes of the second and third super-harmonic
components in both the vertical and horizontal directions may drastically change due to the interaction
of gravity, the rotor unbalance and the crack breathing action.
All these phenomena may also be observed for first order harmonic frequency components of the first
critical speed, as illustrated in Figure 8(a), but also for the super-harmonic frequency components of
the second critical speed of the cracked rotor, as indicatedin Figure 8(b): the rotor unbalance and the
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position of the unbalance relative to the crack direction greatly influence the maximum of the resonance
peak at the critical speed and the second super-harmonic frequency components of the second critical
speed.

4.4 Effects of the crack-unbalance orientation and crack depth

In this section the influence of the crack depth with the interaction of the crack-unbalance orientation
is investigated. For the sake of clarity, we focus the study at the 1

3
sub-critical resonances. Figures 9

show the third super-harmonic frequency components of the degree-of-freedom situated at the middle of
the rotor, for various crack-unbalance orientations and three non-dimensional crack depth. These figures
may be compared with the Figures 6(c) and (d) of the previous section (with a non-dimensional crack
depth that is equal toµ = 1, corresponding to the loss of half the shaft’s area).
Due to the crack depth and the crack-unbalance interaction,the magnitudes of the third super-harmonic
frequency components at1

3
sub-critical resonances of the first critical speed change:with the decrease of

the non-dimensional crack depth, the influence of the crack is less predominant in the horizontal direc-
tion. Moreover, the value of the associated resonance peak decreases with the increase of the crack due
to the reduction of the second moment of area at the location of the crack. For a deep crack (µ = 1 in
Figure 6(c)), two resonance peaks appear due to the breathing crack and the associated coupling between
the horizontal and vertical direction. When the crack depthdecreases, the first resonance peak disappear
(as shown forµ = 0.75 in Figure 9(a)).
Then, the crack-unbalance interaction is more predominantin the vertical direction: when the crack
depth decrease, the ratio between the minimum and maximum ofthe third super-harmonic frequency
components (as a function of the orientation between the crack and the unbalance) decrease or increase.
This reflects the fact that for a deep crack, the crack effect is predominant, whereas the unbalance effect
is more important when the crack depth is small.
All these results illustrate that the detection of a crack can be difficult due to the interaction of the effects
of the crack and the unbalance. However, the influence of the orientation between the crack and the
unbalance appear to be clearly identified if the evolutions of the n× super-harmonic frequency compo-
nents at the1

n
sub-critical resonances are investigated. It may be observed that the classical non-linear

responses of the cracked rotor at the1

2
or 1

3
sub-critical resonances may be very complex, as indicated

in Figures 10. Effectively, the evolution of the complete non-linear magnitudes as a function of the rela-
tive orientation angle between unbalance and the crack and their interaction drastically affect the system
response, making crack detection very difficult. The magnitudes of the1

2
or 1

3
sub-critical resonances

correspond to the combination of all the harmonic components. So these evolutions of resonance peaks
do not permit a vibration characterization of the cracked rotor system due to the influence and interaction
between all the super-harmonic frequency components.

5 Conclusion

The evolution of the super-harmonic components of2× and 3× revolution in the sub-critical speed
region can be used as an index to detect a crack in the rotor. However, due to crack-unbalance interaction
the evolutions of the super-harmonic frequency componentsand the associated resonance peaks may be
very complex. It was demonstrated that for a given crack depth, the unbalance does not only affect the
vibration amplitude of the1× amplitudes, but also the1

2
and 1

3
sub-critical resonant peaks. With the

increase of the unbalance magnitude, the1

n
sub-critical resonant peaks increase obviously due to the

non-linear behaviour of the breathing crack and the interaction between the crack, gravity and unbalance
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Figure 6: Evolution of the3× super-harmonic frequency components on the1

3
sub-critical resonances

(at the middle of the shaft0.25m) with respect to the crack-unbalance orientation (withµ = 1, Lcrack =
0.225m and the unbalance located at0.25m)
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Figure 7: Evolution of the2× super-harmonic frequency components on the1

2
sub-critical resonances

(at the middle of the shaft0.25m) with respect to the crack-unbalance orientation (withµ = 1, Lcrack =
0.225m and the unbalance located at0.25m)
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(a)µ = 1, Lcrack = 0.225m, mede = 10−7kg.m (b) µ = 1, Lcrack = 0.125m, mede = 10−5kg.m

Figure 8: Evolution of the amplitudes with respect to the crack-unbalance orientation (a) at the middle
of the shaft0.25m for the first harmonic frequency components in the first critical speed with the un-
balance located at0.25m, (b) at the one third of the shaft0.15m for the2× super-harmonic frequency
components in the1

2
sub-critical resonances of the second critical speed with the unbalance located at

0.15m

of the rotor.
Even if the crack-unbalance orientation and the unbalance magnitude are unknown, both2× and3×
super-harmonic frequency components can be used to detect the presence of crack in rotor. The suitability
of this approach was verified for various numerical example on a variety of damage location, crack size,
unbalance magnitude, and crack size orientation. It appears that the detection of the resonances peaks
at the 1

2
or 1

3
sub-critical resonances and the determination of the associated super-harmonic frequency

components may be useful and acceptable to the industrial community.
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